ELEMI PROGRAMOZÁSI TÉTELEK

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ELEMI PROGRAMOZÁSI TÉTELEK"

Átírás

1 ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk a programozási munka során gyakran előforduló, tipikus programozási feladatokra. A programozási tételek nem egyedi feladatokra, hanem feladatosztályokra adnak megoldást, ezért a megfogalmazásuk is általános. Azokat a típusalgoritmusokat tekintjük programozási tételeknek, melyeknek helyessége (matematikai jellegű módszerekkel) bizonyított A programozási tételek megfogalmazásának elemei - Feladatkitűzés: az általános feladat szöveges formában - Specifikáció: az általános feladatban szereplő adatok (intervallumok, függvények, relációk) megadása, elő- és utófeltételek megadása - Algoritmus: az általános specifikációban szereplő adatok segítségével megfogalmazott megoldás. 1.3 A programozási tételek alkalmazásának lépései - Specifikáljuk a konkrét programozási feladatot. - A specifikáció ismeretében eldöntjük, hogy az adott feladat programozási tétellel megoldható-e. - Ha igen, kiválasztjuk a megfelelő programozási tételt. Néha ez többféleképpen is megtehető. - A tételben szereplő általános elemeket megfeleltetjük az aktuális feladat konkrét adatainak. - A megfeleltetés és a tétel általános algoritmusa alapján behelyettesítés módszerével megadjuk az aktuális feladat megoldását. Megfelelő rutin birtokában a tétel általános algoritmusát és a megfeleltetést nem kell leírnunk, egyből a behelyettesítést végezzük el. 1.4 A programozási tételekkel történő feladatmegoldás hatékonysága Programozási tételek alkalmazásával a megoldásunk biztosan helyes, de nem feltétlenül a leghatékonyabb. A tétel alkalmazása után mindig célszerű hatékonyságelemzést végeznünk. 1

2 2. A PROGRAMOZÁSI TÉTELEK CSOPORTOSÍTÁSA A programozási tételek a bemenő és kimenő adatok jellege szerint az alábbi módon csoportosíthatók: - Egy sorozathoz egy értéket rendelő tételek. Ide soroljuk azokat is, amelyek egy sorozathoz néhány (kettő, három) egymással összefüggő értéket rendelnek. (Pl. lineáris keresés.) - Egy sorozathoz egy sorozatot rendelő tételek. Pl. Rendezések, kiválogatás. - Egy sorozathoz több sorozatot rendelő tételek. Pl. szétválogatás - Több sorozathoz egy sorozatot rendelő tételek. Pl. Metszet, unió. 3. EGY SOROZATHOZ EGY ÉRTÉKET RENDELŐ, ELEMI PROGRAMOZÁSI TÉTELEK 3.1 Összegzés tétele Kitűzés Adott egy sorozat, a sorozat elemein értelmezett egy + művelet. Feladat: Határozzuk meg a sorozat elemeinek az összegét! Specifikáció f:[m..n] -> H / A H-n értelmezett egy + művelet / s: H Előfeltétel: m,n, f adott, m<=n Utófeltétel: s n im f (i) / azaz s tartalmazza az f függvény [m..n] intervallum elemeihez rendelt függvényértékeinek az összegét / Megjegyzések: - A sorozat elemeit a lehető legáltalánosabban egy [m..n] egész intervallumon értelmezett függvényként adhatjuk meg. - A H halmaz a sorozat elemeinek a típusa - A + művelet nem csak összeadás lehet, lehet pl. *, vagy logikai AND, OR stb. Ebben az esetben a 0 kezdőérték a műveletre jellemző semleges érték. (Pl. szorzás esetében 1, AND esetében True) 2

3 3.1.3 Algoritmus Eljárás Összegez: s:=0 Ciklus I:=m-től n-ig s:=s+f(i) Példa Feladat: Határozzuk meg két N dimenziós valós elemű vektor skaláris szorzatát! Specifikáció: A,B:Tömb[1..N]:Valós SkalarSzorzat:Valós Ef: A,B adott Uf: SkalarSzor zat N i1 A[i]* B[i] Megfeleltetés: (az összegzés tétel általános elemeivel) m 1 n N f(i) A[i]*B[i] s SkalarSzorzat Algoritmus: Eljárás SkalarSzorzás: SkalarSzorzat:=0; Ciklus I:=1-től N-ig SkalarSzorzat:= SkalarSzorzat + A[i]*B[i] Szürke kiemeléssel láthatóak a behelyettesített kifejezések. Megjegyzés: C alapú programozási nyelvekben a tömbök indexelése 0-val kezdődik. Ennek megfelelően az algoritmusban a ciklus kezdő és végértéke 0-ra és N-1-re módosul. Ez a megjegyzés érvényes a további példákra is. 3.2 Megszámlálás tétele Kitűzés Adott egy sorozat, a sorozat elemein értelmezett egy T tulajdonság. Feladat: Határozzuk meg a sorozat T tulajdonságú elemeinek a számát! 3

4 3.2.2 Specifikáció T:[m..n] -> logikai s: egész Előfeltétel: m,n, T adott, m<=n Utófeltétel: s n 1 T i (i) m / azaz s tartalmazza az [m..n] intervallum azon elemeinek a számát, amelyekhez T igazat rendel / Algoritmus Eljárás Megszamlal: s:=0 Ciklus I:=m-től n-ig Ha T(I) Akkor s:=s+1 Elágazás vége Példa Feladat: Határozzuk meg egy pozitív egész szám valódi osztóinak a számát! Specifikáció: N:egész ValodiOsztoDb:egész Ef: N adott, N>0 Uf: ValodiOsztoDb N Div 2 1 i2 N mod i 0 Megfeleltetés: (A megszámlálás tétel általános elemeivel) m 2 n N Div 2 /elég a szám feléig vizsgálnunk T(i) N mod i=0 / i osztója N-nek s ValodiOsztoDb 4

5 Algoritmus: Eljárás ValodiOsztoSzamol: ValodiOsztoDb:=0; Ciklus I:=2-től N Div 2-ig Ha N mod I=0 akkor ValodiOsztoDb:= ValodiOsztoDb + 1 Elágazás vége Szürke kiemeléssel láthatóak a behelyettesített kifejezések. 3.3 Eldöntés tétele Kitűzés Adott egy sorozat, a sorozat elemein értelmezett egy T tulajdonság. Feladat: Döntsük el, hogy van-e a sorozatban T tulajdonságú elem! Specifikáció T:[m..n] -> logikai L:Logikai Előfeltétel: m,n, T adott, m<=n Utófeltétel: L i [m..n]: T(i) / azaz L igaz, ha létezik () az [m..n] intervallumban olyan elem, amelyhez T igaz értéket rendel / Algoritmus Eljárás Eldontes: i:=m Ciklus amíg (i<=n) és nem(t(i)) i:=i+1 L:=(i<=n) 5

6 3.3.4 Példa Feladat: Adott egy nem üres string. Állapítsuk meg, hogy tartalma palindroma-e, azaz visszafelé olvasva ugyanazt a szöveget kapjuk? (Pl. Géza, kék az ég! ) Megjegyzés: a szöveg előfeldolgozásával (pl. kiválogatás alkalmazásával) elérhető, hogy a stringünk az eredeti tartalomból csak a betűket tartalmazza, szóközök, írásjelek nélkül, nagybetűssé konvertálva. ( GÉZAKÉKAZÉG ) Specifikáció: S:Szöveg Palindroma:logikai Ef: S adott, nem üres, csak az ABC nagybetűit tartalmazza Uf: Palindroma nem( i [1..Hossz(s) Div 2]:S[I] S[Hossz(S) i 1]) / azaz S palindroma, ha az első felében nincs olyan karakter, amely különbözik a stringben hozzá képest szimmetrikusan elhelyezkedő karaktertől / Megfeleltetés: m 1 n Hossz(s) Div 2 T(i) S[I]<>S[Hossz(S)-i+1] L Palindroma Megoldás: Eljárás PalindromaE: i:=1 Ciklus amíg (i<=hossz(s) Div 2) és nem(s[i]<>s[hossz(s)-i+1]) i:=i+1 Palindroma:=(i<= Hossz(S) Div 2) Megjegyzések: - nem(s[i]<>s[hossz(s)-i+1]) helyett hatékonyabb az S[I]=S[Hossz(S)-i+1] feltétel - Hossz(S) Div 2-t célszerű előre kiszámolni, és egy változóban tárolni. 3.4 Kiválasztás tétele Kitűzés Adott egy sorozat, a sorozat elemein értelmezett egy T tulajdonság, és tudjuk, hogy van a sorozatban T tulajdonságú elem. Feladat: Határozzuk meg az első T tulajdonságú elem sorszámát! 6

7 3.4.2 Specifikáció T:[m..n] -> logikai Ind:egész Előfeltétel: m,n, T adott, m<=n, i [m..n]: T(i) / azaz, van olyan elem [m..n]-ben, amelyhez T igazat rendel / Utófeltétel: ind [m..n] és T(Ind) és i [m..ind 1]: nem(t(i)) /azaz az Ind az első (legkisebb) olyan elem az [m..n] intervallumban, amelyhez T igaz értéket rendel / Algoritmus Eljárás Kiválasztás: i:=m Ciklus amíg nem(t(i)) i:=i+1 Ind:=i Példa Feladat: határozzuk meg az A és B pozitív egészek legkisebb közös többszörösét! Specifikáció: A,B:egész Lkkt:egész Ef: A,B adottak, A>0, B>0 Uf: Lkkt=(A és B legkisebb közös többszöröse, azaz a legkisebb olyan egész szám, amely A-nak és B-nek is többszöröse) Mivel mindig létezik a legkisebb közös többszörös, kiválasztás tételt alkalmazunk. Megfeleltetés: m Max(A,B) / a keresést az A, B pár maximumáról indítjuk n A*B /Legrosszabb esetben A*B lesz a LKKT, egyébként n értékét nem használja az algoritmus T(i) (I mod A=0) és (I mod B=0) /I többszöröse A-nak, B- nek Ind Lkkt 7

8 Megoldás: Eljárás LKKTKeres: i:=max(a,b) Ciklus amíg nem( (I mod A=0) és (I mod B=0) ) i:=i+1 Lkkt:=i Megjegyzések: ez a megoldás nem túl hatékony az egyesével történő vizsgálat miatt. Gyorsabb, ha Max(A,B)-vel lépkedünk, azaz, egyből a nagyobb szám többszöröseit vizsgáljuk. (pl. 20 és 45 esetén 45, 90, 135 stb.) 3.5 Lineáris keresés tétele Kitűzés Adott egy sorozat, a sorozat elemein értelmezett egy T tulajdonság. Feladat: Döntsük el, hogy van-e a sorozatban T tulajdonságú elem, és ha van, adjuk meg a sorszámát! Specifikáció T:[m..n] -> logikai L:Logikai Ind:egész Előfeltétel: m,n, T adott, m<=n Utófeltétel: L i [m..n]: T(i) és L ind [ m.. n] és T ( Ind ) és i [ m.. Ind 1] : nem( T ( i)) / azaz L igaz, ha létezik () az [m..n] intervallumban olyan elem, amelyhez T igaz értéket rendel, és ha létezik ilyen, akkor az Ind az első (legkisebb) olyan elem az [m..n] intervallumban, amelyhez T igaz értéket rendel / Algoritmus Eljárás LinKer: i:=m Ciklus amíg (i<=n) és nem(t(i)) i:=i+1 L:=(i<=n) Ha L, akkor Ind:=I 8

9 3.6 Logaritmikus keresés tétele Kitűzés Adott egy sorozat, a sorozat elemein értelmezett egy < reláció. A sorozat elemei növekvően rendezettek az adott reláció szerint. Feladat: Döntsük el, hogy szerepel-e a sorozatban egy megadott K elem, és ha van, adjuk meg a sorszámát! Specifikáció f:[m..n] -> H L:Logikai Ind:egész Előfeltétel: m,n,f, < adott, m<=n, f elemei növekvően rendezettek < reláció szerint Utófeltétel: L i [ m.. n] : f ( i) K és L ind [ m.. n] és f ( Ind ) K A keresés elve A rendezettséget kihasználva keresünk. Először a középső elemmel hasonlítjuk össze a keresett elemet. Ha a keresett elem kisebb, mint a középső elem, akkor a középső elemtől balra lévő elemek között folytatjuk a keresést, ha pedig nagyobb, akkor az attól jobbra lévő elemek között. A keresést ugyanezen az elven folytatjuk, mindaddig meg nem találjuk a keresett elemet, vagy 0 eleműre nem szűkül a keresési intervallum. Utóbbi esetben a keresés eredménytelen Algoritmus Eljárás LogKer: E:=m V:=n L:=Hamis Ciklus amíg (E<=V) és Nem(L) I:=(E+V) Div 2 // Kiválasztjuk a középső elemet Elágazás (f(i)<k) esetén E:=I+1 // A jobb felében folytatjuk (f(i)>k) esetén V:=I-1 // A bal felében folytatjuk (f(i)=k) esetén Ind:=I // L:=Igaz Elágazás vége 9

10 3.6.5 A logaritmikus keresés hatékonysága A logaritmikus keresés sokkal hatékonyabb (gyorsabb), mint a lineáris keresés. Ennek oka a rendezettség kihasználása. N elem esetében a lineáris keresés átlagosan N/2 lépésben végzi el a keresést, a logaritmikus keresés pedig átlagosan log 2 N/2 lépésben. 3.7 Maximum- és minimumkiválasztás tétele Kitűzés Adott egy sorozat, a sorozat elemein értelmezett egy < reláció. Feladat: Határozzuk meg a sorozat legnagyobb (legkisebb) elemét az adott reláció szerint! Specifikáció f:[m..n] -> H / H elemein értelmezett egy < reláció Max:H Ind:egész Előfeltétel: m,n, f adott, m<=n, Utófeltétel: ind [m..n] és max f (Ind) és i [m..n]: (max f (i)) /azaz Ind az [m..n] intervallum azon eleme, amelyben f a maximális értékét, max-ot felveszi / Algoritmus Eljárás MaximumKiválasztás: Ind:=m Ciklus i:=m+1-től n-ig Ha f(i)>f(ind) Akkor Ind:=i Elágazás vége Max:=f(Ind) Megjegyzés: - Fordított reláció esetén az algoritmus a legkisebb elemet határozza meg -> minimumkiválasztás tétele (ez esetben az elnevezéseket is érdemes értelemszerűen megváltoztatni) 10

11 3.7.4 Feladatok - Adott síkbeli pontok közül válasszuk ki az origótól legtávolabb lévő pontot! - Határozzuk meg az A..B egész intervallum elemei közül azt az egész számot, amelynek a legtöbb prímosztója van! (A>0) 11

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

Programozási tételek. Dr. Iványi Péter

Programozási tételek. Dr. Iványi Péter Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Összetett programozási tételek

Összetett programozási tételek Összetett programozási tételek 3. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 19. Sergyán (OE NIK) AAO 03 2011. szeptember

Részletesebben

Algoritmizálás, adatmodellezés tanítása 2. előadás

Algoritmizálás, adatmodellezés tanítása 2. előadás Algoritmizálás, adatmodellezés tanítása 2. előadás Programozási tételek Mi az, hogy programozási tétel? Típusfeladat általános megoldása. Sorozat érték Sorozat sorozat Sorozat sorozatok Sorozatok sorozat

Részletesebben

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok és programozási tételek

Részletesebben

RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK

RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK 1. EGY SOROZATHOZ EGY SOROZATOT RENDELŐ TÉTELEK 1.1 Rendezések 1.1.1 Kitűzés Adott egy sorozat, és a sorozat elemein értelmezett egy < reláció. Rendezzük a sorozat

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Bevezetés a programozásba I. 3. gyakorlat Tömbök, programozási tételek Surányi Márton PPKE-ITK 2010.09.21. ZH! PlanG-ból papír alapú zárthelyit írunk el reláthatólag október 5-én! Tömbök Tömbök Eddig egy-egy

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Alkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto

Alkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás Programozási tételek, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok

Részletesebben

Programozási alapismeretek 3. előadás

Programozási alapismeretek 3. előadás Programozási alapismeretek 3. előadás Tartalom Ciklusok specifikáció+ algoritmika +kódolás Egy bevezető példa a tömbhöz A tömb Elágazás helyett tömb Konstans tömbök 2/42 Ciklusok Feladat: Határozzuk meg

Részletesebben

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez Pásztor Attila Algoritmizálás és programozás tankönyv az emeltszintű érettségihez 9. ÖSSZETETT FELADATOK...111 9.1. ELEMI ALGORITMUSOK ÖSSZEÉPÍTÉSE...111 9.2. ÖSSZEFOGLALÁS...118 9.3. GYAKORLÓ FELADATOK...118

Részletesebben

Objektum Orientált Programozás VII.

Objektum Orientált Programozás VII. Objektum Orientált Programozás VII. Összetett programozási tételek Programozási tételek összeépítése Feladatok ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk

Részletesebben

Programozási tételek. PPT 2007/2008 tavasz.

Programozási tételek. PPT 2007/2008 tavasz. Programozási tételek szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Strukturált programozás paradigma Alapvető programozási tételek Összetett programozási tételek Programozási

Részletesebben

Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19.

Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19. Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19. Programkészítés Megrendelői igények begyűjtése Megoldás megtervezése (algoritmuskészítés)

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Programozás I. 3. előadás Tömbök a C#-ban Metódusok C#-ban Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia

Részletesebben

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I. Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Részletesebben

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Programozási tételek. Jegyzet. Összeállította: Faludi Anita 2012.

Programozási tételek. Jegyzet. Összeállította: Faludi Anita 2012. Programozási tételek Jegyzet Összeállította: Faludi Anita 2012. Tartalomjegyzék Bevezetés... 3 Programozási tételek... 4 I. Elemi programozási tételek... 4 1. Sorozatszámítás (összegzés)... 4 2. Eldöntés...

Részletesebben

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport 10-es Keressünk egy egész számokat tartalmazó négyzetes mátrixban olyan oszlopot, ahol a főátló alatti elemek mind nullák! Megolda si terv: Specifika cio : A = (mat: Z n m,ind: N, l: L) Ef =(mat = mat`)

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Sorozat érték típusú programozási tételek

Sorozat érték típusú programozási tételek Sorozat érték típusú programozási tételek A soron következő specifikációk és algoritmusok mind olyan típusfeladatokhoz kötődnek, amik igazán sűrűn előfordulhatnak a gyakorlatban. Meg kell keresni valamit,

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Dokumentáció az 1. feladatsorhoz (egyszerű, rövidített kivitelben)

Dokumentáció az 1. feladatsorhoz (egyszerű, rövidített kivitelben) Dokumentáció az 1. feladatsorhoz (egyszerű, rövidített kivitelben) Felhasználói dokumentáció Feladat: Adjuk meg két N elemű vektor skalárszorzatát! Skalárszorzat : X, Y : N i 1 x i * y i Környezet: IBM

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Haladó rendezések. PPT 2007/2008 tavasz.

Haladó rendezések. PPT 2007/2008 tavasz. Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés

Részletesebben

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán

Részletesebben

Bevezetés a programozáshoz I. Feladatok

Bevezetés a programozáshoz I. Feladatok Bevezetés a programozáshoz I. Feladatok 2006. szeptember 15. 1. Alapfogalmak 1.1. példa: Írjuk fel az A B, A C, (A B) C, és A B C halmazok elemeit, ha A = {0, 1}, B = {1, 2, 3}, C = {p, q}! 1.2. példa:

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek Sorozatszámítás tétele Például az X tömbben kövek súlyát tároljuk. Ha ki kellene számolni az összsúlyt, akkor az S = f(s, X(i)) helyére S = S + X(i) kell írni. Az f0 tartalmazza

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

Webprogramozás szakkör

Webprogramozás szakkör Webprogramozás szakkör Előadás 5 (2012.04.09) Programozás alapok Eddig amit láttunk: Programozás lépései o Feladat leírása (specifikáció) o Algoritmizálás, tervezés (folyamatábra, pszeudokód) o Programozás

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

A tényleges mérőszám függ az adat méretétől, illetve a feltétel összetettségétől.

A tényleges mérőszám függ az adat méretétől, illetve a feltétel összetettségétől. HATÉKONYSÁGVIZSGÁLAT 1. A HATÉKONYSÁG FOGALMA A specifikációnak megfelelően elkészített, működőképes programjaink általában sok szempontból még nem tökéletesek. A legtöbb kész program javítható, pl. -

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt!

Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt! Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt! valós adatokat növekvő sorrendbe rendezi és egy sorba kiírja

Részletesebben

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Abszolút érték...1 Hányados ismételt kivonással...1 Legnagyobb közös osztó... 1 2 Páros számok szűrése...2 Palindrom számok...2 Orosz szorzás...3 Minimum

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Multihalmaz típus TÁMOP-4.2.3.-12/1/KONV Értékhalmaz: az alaphalmaz (amely az Elemtípus és egy darabszám által van meghatározva)

Részletesebben

Gyakorló feladatok az 1. nagy zárthelyire

Gyakorló feladatok az 1. nagy zárthelyire Gyakorló feladatok az 1. nagy zárthelyire 2012. október 7. 1. Egyszerű, bevezető feladatok 1. Kérjen be a felhasználótól egy sugarat. Írja ki az adott sugarú kör kerületét illetve területét! (Elegendő

Részletesebben

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete 8. Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus gyakran olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Sok optimalizálási probléma esetén

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

1. Jelölje meg az összes igaz állítást a következők közül!

1. Jelölje meg az összes igaz állítást a következők közül! 1. Jelölje meg az összes igaz állítást a következők közül! a) A while ciklusban a feltétel teljesülése esetén végrehajtódik a ciklusmag. b) A do while ciklusban a ciklusmag után egy kilépési feltétel van.

Részletesebben

PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar

PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar PROGRAMOZÁS tantárgy Gregorics Tibor egyetemi docens ELTE Informatikai Kar Követelmények A,C,E szakirány B szakirány Előfeltétel Prog. alapismeret Prog. alapismeret Diszkrét matematika I. Óraszám 2 ea

Részletesebben

Láncolt listák Témakörök. Lista alapfogalmak

Láncolt listák Témakörök. Lista alapfogalmak Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Lista alapfogalmai Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Speciális láncolt listák Témakörök

Részletesebben

Egyszerű programok készítése... 56 Kifejezések... 57 Bitszintű műveletek... 57 Relációs műveletek... 58

Egyszerű programok készítése... 56 Kifejezések... 57 Bitszintű műveletek... 57 Relációs műveletek... 58 Tartalomjegyzék Algoritmusok - pszeudókód... 1 Abszolút érték... 1 Hányados ismételt kivonással... 1 Legnagyobb közös osztó... 1 Páros számok szűrése... 2 Palindrom számok... 2 Orosz szorzás... 3 Minimum

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

Programozás alapjai. 5. előadás

Programozás alapjai. 5. előadás 5. előadás Wagner György Általános Informatikai Tanszék Cserélve kiválasztásos rendezés (1) A minimum-maximum keresés elvére épül. Ismétlés: minimum keresés A halmazból egy tetszőleges elemet kinevezünk

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek Sorozatszámítás Eljárás Sorozatszámítás(N, X, S) R R 0 Ciklus i 1-től N-ig R R művelet A[i] A : számokat tartalmazó tömb N : A tömb elemszáma R : Művelet eredménye Eldöntés

Részletesebben

Programozási alapismeretek 1. előadás

Programozási alapismeretek 1. előadás Programozási alapismeretek 1. előadás Tartalom A problémamegoldás lépései programkészítés folyamata A specifikáció Az algoritmus Algoritmikus nyelvek struktogram A kódolás a fejlesztői környezet 2/33 A

Részletesebben

A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában

A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában Oktatási Hivatal A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a

Részletesebben

ALGORITMUSOK ÉS PROBLÉMAOSZTÁLYOK (1. előadás)

ALGORITMUSOK ÉS PROBLÉMAOSZTÁLYOK (1. előadás) ALGORITMUSOK ÉS PROBLÉMAOSZTÁLYOK (1. előadás) Programozási feladatok megoldásának lépései 1, a feladatok meghatározása -egyértelmű, rövid, tömör, pontos 2, a feladat algoritmusának elkészítése jól definiált

Részletesebben

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Elágazás Bevezetés a programozásba I. 2. gyakorlat, tömbök Surányi Márton PPKE-ITK 2010.09.14. Elágazás Elágazás Eddigi programjaink egyszer ek voltak, egy beolvasás (BE: a), esetleg valami m velet (a

Részletesebben

Rekurzív algoritmusok

Rekurzív algoritmusok Rekurzív algoritmusok 11. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. november 14. Sergyán (OE NIK) AAO 11 2011. november 14. 1 / 32 Rekurzív

Részletesebben

Bevezetés a programozásba. 5. Előadás: Tömbök

Bevezetés a programozásba. 5. Előadás: Tömbök Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és

Részletesebben

Tartalom. Programozási alapismeretek. 11. előadás

Tartalom. Programozási alapismeretek. 11. előadás Tartalom Programozási alapismeretek 11. előadás Rendezési feladat specifikáció Egyszerű cserés Minimum-kiválasztásos Buborékos Javított buborékos Beillesztéses Javított beillesztéses Szétosztó Számlálva

Részletesebben

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb 1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb #include main() { int a, b; printf( "a=" ); scanf( "%d", &a ); printf( "b=" ); scanf( "%d", &b ); if( a< b ) { inttmp = a; a =

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Programozás alapjai (ANSI C)

Programozás alapjai (ANSI C) Programozás alapjai (ANSI C) 1. Előadás vázlat A számítógép és programozása Dr. Baksáné dr. Varga Erika adjunktus Miskolci Egyetem, Informatikai Intézet Általános Informatikai Intézeti Tanszék www.iit.uni-miskolc.hu

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Geometriai algoritmusok

Geometriai algoritmusok Geometriai algoritmusok Alapfogalmak Pont: (x,y) R R Szakasz: Legyen A,B két pont. Az A és B pontok által meghatározott szakasz: AB = {p = (x,y) : x = aa.x + (1 a)b.x,y = aa.y + (1 a)b.y),a R,0 a 1. Ha

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Bevezetés a programozásba I. 6. gyakorlat C++ alapok, szövegkezelés Surányi Márton PPKE-ITK 2010.10.12. Forrásfájlok: *.cpp fájlok Fordítás: a folyamat, amikor a forrásfájlból futtatható állományt állítunk

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Elemi programozási tételek 1 TÁMOP-4.2.3.-12/1/KONV-2012-0018 Feladataink egy jelentős csoportjában egyetlen bemenő sorozat alapján

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Összetett programozási tételek 2 TÁMOP-4.2.3.-12/1/KONV Feladataink egy jelentős csoportjában több bemenő sorozat alapján egy sorozatot

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

Algoritmusok - pszeudókód... 1

Algoritmusok - pszeudókód... 1 Tartalomjegyzék Algoritmusok - pszeudókód... 1 Abszolút érték... 1 Hányados ismételt kivonással... 1 Legnagyobb közös osztó... 1 Páros számok szűrése... 2 Palindrom számok... 2 Orosz szorzás... 2 Minimum

Részletesebben

1. Alapok. #!/bin/bash

1. Alapok. #!/bin/bash 1. oldal 1.1. A programfájlok szerkezete 1. Alapok A bash programok tulajnképpen egyszerű szöveges fájlok, amelyeket bármely szövegszerkesztő programmal megírhatunk. Alapvetően ugyanazokat a at használhatjuk

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses maximumkiválasztás TÁMOP-4.2.3.-12/1/KONV 1. Munkásfelvétel: N állás N jelentkező Egy vállalkozás N különböző állásra

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Algoritmizálás és adatmodellezés tanítása beadandó feladat: Algtan1 tanári beadandó /99 1

Algoritmizálás és adatmodellezés tanítása beadandó feladat: Algtan1 tanári beadandó /99 1 Algoritmizálás és adatmodellezés tanítása beadandó feladat: Algtan1 tanári beadandó /99 1 Készítette: Gipsz Jakab Neptun-azonosító: ABC123 E-mail: gipszjakab@seholse.hu Kurzuskód: IT-13AAT1EG Gyakorlatvezető

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben