Neurális hálózatok bemutató

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Neurális hálózatok bemutató"

Átírás

1 Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet

2 Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.: arcfelismerés Számítógép Gyors Pontos Előre programozott Agy Lassú (10 6 ) Összetett Párhuzamos asszociatív működés 2/33

3 Neurális hálózat Neurális hálózatnak nevezzük azt a hardver vagy szoftver megvalósítású párhuzamos, elosztott működésre képes információfeldolgozó eszközt, amely: azonos, vagy hasonló típusú általában nagyszámú lokális feldolgozást végző műveleti elem, neuron(processing element, neuron) többnyire rendezett topológiájú, nagymértékben összekapcsolt rendszeréből áll, rendelkezik tanulási algoritmussal (learning algorithm), mely általában minta alapján való tanulást jelent, és amely az információfeldolgozás módját határozza meg, rendelkezik a megtanult információ felhasználását lehetővé tevő információ előhívási, vagy röviden előhívási algoritmussal (recall algorithm). 3/33

4 Neuron általános felépítése 4/33

5 Perceptron típusú mesterséges neuron Rosenblatt /33

6 Tipikus aktivációs függvények 6/33

7 Bemeneti összegzést nem használó neuron x bemeneti vektor c középpont vektor 7/33

8 Memóriával rendelkező neuron 8/33

9 FIR / IIR neuron struktúra 9/33

10 Hálózat topológia A hálózat topológiáján a neuronok összeköttetési rendszerét és a hálózat bemeneteinek és kimeneteinek helyét értjük. irányított gráf gráf csomópontjai a neuronok 10/33

11 Rétegbe szervezett topológia Bementi réteg Rejtett réteg Kimeneti réteg 11/33

12 Visszacsatolások 12/33

13 Tanítás Ellenőrzött tanulásnál be- és kimeneti tanító mintapont párok rendelkezésre állnak Tanítás a mintapárok alapján Az összehasonlítás eredménye a tényleges és a kívánt válasz különbsége felhasználható a hálózat olyan módosítására, hogy a tényleges válaszok a kívánt válaszokkal minél inkább megegyezzenek, és a hálózat tényleges viselkedése és a kívánt viselkedés közötti eltérés csökkenjen. Nemellenőrzött tanulásnál(unsupervised learning) nem állnak rendelkezésünkre adott bemenetekhez tartozó kívánt válaszok bemenetek és a kimenetek alapján a viselkedést kialakítása Környezetből nincs visszajelzés Bemeneti adatokban, jelekben valami hasonlóság, korreláció, kategóriák, csoportok 13/33

14 Tanítás leállítása 14/33

15 MLP Bementi réteg Rejtett réteg Kimeneti réteg 15/33

16 Virtuális bemenetek Dinamikus rendszer modellezése SISO - Single Input Single Output System u(t) ~ y ( t ) Z -1 u(t-1) Z -1 u(t-2) Z -1 u(t-3) Egy rejtett rétegű neurális hálózat u t, u t 1, u t 2 u t n ~ y( t) f,..., 16/33

17 Neurális háló alkalmazása Alkalmazási területek: Mérnöki önjáró autó, repülőgépek szabályozása Fizikai adaptív teleszkóp optika Biológiai - protein identifikáció Orvosi ráksejt, EKG analízis Pénzügyi tőzsdei előrejelzés Művészet beszéd és írásfelismerés Katonai adattömörítés, célpont követés stb Feladatcsoportok: Minta asszociáció klaszterezés., osztályozás, jellemvonás felismerés Függvény közelítés Szabályozás Optimalizálás Tudás rögzítés 17/33

18 Szoftverek Szkript nyelvek: Matlab + Simulink NN Toolbox, NNSYSID, stb. Scilab + Xcos ANN Toolbox, LoLiMoT, stb. Octave Matematica Programozási nyelvek C/C++ FANN OpenNN C# Encog Specifikus programok Alyda NeuroIntelligence NeuroXL NeuroSolution EasyNN 18/33

19 Források Retter Gyula: Fuzzy, neurális, genetikus, kaotikus rendszerek Akadémiai Kiadó, Budapest, 2. kiadás, 2006 ISBN Google.hu 19/33

20 u be [V] i ki [A] Feladat RL tag bekapcsolási folyamata i ki (t) R L ube [V] iki [A] u be 25 2, i ki = u be u L R u L = L di ki dt 15 1, i ki = u be R 1 R e L t ,5 0 t [ms] 20/33

21 Feladat RL tag bekapcsolási folyamata i ki (t) R L u be u be i ki (t) i ki (t-1) 21/33

22 Feladat 22/33

23 Feladat RL tag bekapcsolási folyamata i ki (t) R L u be 23/33

24 Feladat RL tag bekapcsolási folyamata i ki (t) R L u be Tanító készlet Kiértékelő készlet Közelítés Valós Közelítés Valós 1,2 1, ,8 0,8 0,6 0,6 0,4 0,4 0,2 0, /33

Kovács Ernő 1, Füvesi Viktor 2

Kovács Ernő 1, Füvesi Viktor 2 Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs

Részletesebben

Hibadetektáló rendszer légtechnikai berendezések számára

Hibadetektáló rendszer légtechnikai berendezések számára Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő

Részletesebben

NEURÁLIS HÁLÓZATOK 1. eloadás 1

NEURÁLIS HÁLÓZATOK 1. eloadás 1 NEURÁLIS HÁLÓZATOKH 1. eloadás 1 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága,

Részletesebben

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Budapesti Műszaki és Gazdaságtudományi Egyetem Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Cselkó Richárd 2009. október. 15. Az előadás fő témái Soft Computing technikák alakalmazásának

Részletesebben

KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM

KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM Kernel módszerek idősor előrejelzés Mérési útmutató Készítette: Engedy István (engedy@mit.bme.hu) Méréstechnika és Információs Rendszerek Tanszék Budapesti Műszaki

Részletesebben

Megújuló energia bázisú, kis léptékű energiarendszer

Megújuló energia bázisú, kis léptékű energiarendszer Megújuló energia bázisú, kis léptékű energiarendszer Molnárné Dőry Zsófia 2. éves doktorandusz hallgató, energetikai mérnök (MSc), BME, Energetikai Gépek és Rendszerek Tanszék, Magyar Energetikai Társaság

Részletesebben

Intelligens Rendszerek Elmélete

Intelligens Rendszerek Elmélete Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 288/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák

Részletesebben

egy szisztolikus példa

egy szisztolikus példa Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus

Részletesebben

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA Kovács Ernő 1, Füvesi Viktor 2 1 Egyetemi docens, PhD; 2 tudományos segédmunkatárs 1 Eletrotechnikai és Elektronikai Tanszék, Miskolci Egyetem

Részletesebben

Párhuzamos programozási platformok

Párhuzamos programozási platformok Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási

Részletesebben

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BESZÉDTUDOMÁNY Az emberi kommunikáció egyik leggyakrabban használt eszköze a nyelv. A nyelv hangzó változta, a beszéd a nyelvi kommunikáció

Részletesebben

Mobil Gamma-log berendezés hajtásláncának modellezése LOLIMOT használatával

Mobil Gamma-log berendezés hajtásláncának modellezése LOLIMOT használatával Mobil Gamma-log berendezés hajtásláncának modellezése LOLIMOT használatával Füvesi Viktor 1, Kovács Ernő 2, Jónap Károly 3, Vörös Csaba 4 1,4 tudományos s. munkatárs, 2 PhD, egyetemi docens, 3 PhD, tudományos

Részletesebben

FIR és IIR szűrők tervezése digitális jelfeldolgozás területén

FIR és IIR szűrők tervezése digitális jelfeldolgozás területén Dr. Szabó Anita FIR és IIR szűrők tervezése digitális jelfeldolgozás területén A Szabadkai Műszaki Szakfőiskola oktatójaként kutatásaimat a digitális jelfeldolgozás területén folytatom, ezen belül a fő

Részletesebben

Gépi tanulás a gyakorlatban. Bevezetés

Gépi tanulás a gyakorlatban. Bevezetés Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis

Részletesebben

Intelligens Rendszerek Elmélete

Intelligens Rendszerek Elmélete Intellgens Rendszerek Elmélete Dr. Kutor László A mesterséges neuráls hálózatok alapfogalma és meghatározó eleme http://mobl.nk.bmf.hu/tantargyak/re.html Logn név: re jelszó: IRE07 IRE 7/1 Neuráls hálózatok

Részletesebben

alkalmazásfejlesztő környezete

alkalmazásfejlesztő környezete A HunGrid infrastruktúra és alkalmazásfejlesztő környezete Gergely Sipos sipos@sztaki.hu MTA SZTAKI Hungarian Academy of Sciences www.lpds.sztaki.hu www.eu-egee.org egee EGEE-II INFSO-RI-031688 Tartalom

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók

Részletesebben

Hogyan lesz adatbányából aranybánya?

Hogyan lesz adatbányából aranybánya? Hogyan lesz adatbányából aranybánya? Szolgáltatások kapacitástervezése a Budapest Banknál Németh Balázs Budapest Bank Fehér Péter - Corvinno Visontai Balázs - KFKI Tartalom 1. Szolgáltatás életciklus 2.

Részletesebben

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával SAT probléma kielégíthetőségének vizsgálata masszív parallel mesterséges neurális hálózat alkalmazásával Tajti Tibor, Bíró Csaba, Kusper Gábor {gkusper, birocs, tajti}@aries.ektf.hu Eszterházy Károly Főiskola

Részletesebben

Mesterséges Intelligencia Elektronikus Almanach. Konzorciumi partnerek

Mesterséges Intelligencia Elektronikus Almanach. Konzorciumi partnerek Mesterséges Intelligencia Elektronikus Almanach Konzorciumi partnerek 1 Konzorcium Budpesti Mőszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek

Részletesebben

CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens

CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens CARE Biztonságos CARE Biztonságos otthonok idős embereknek otthonok idős embereknek 2010-09-02 Dr. Vajda Ferenc Egyetemi docens 3D Érzékelés és Mobilrobotika kutatócsoport Budapesti Műszaki és Gazdaságtudományi

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 20/2011 Az Előadások Témái 226/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus

Részletesebben

IBM felhő menedzsment

IBM felhő menedzsment IBM Váltsunk stratégiát! Budapest, 2012 november 14. IBM felhő menedzsment SmartCloud Provisioning és Service Delivery Manager Felhő alapú szolgáltatások Felhasználás alapú számlázás és dinamikus kapacitás

Részletesebben

Fotódokumentáció. Projektazonosító: KMOP-1.1.1-08/1-2008-0049

Fotódokumentáció. Projektazonosító: KMOP-1.1.1-08/1-2008-0049 Fotódokumentáció Projektazonosító: KMOP-1.1.1-08/1-2008-0049 Laborkísérletekhez használt reaktorrendszer előkészítése A laborkísérletek elvégzéséhez szükséges volt egy kisméretű FCR (food chain reactor

Részletesebben

MATEMATIKA - STATISZTIKA TANSZÉK

MATEMATIKA - STATISZTIKA TANSZÉK MATEMATIKA - STATISZTIKA TANSZÉK 1. A Kodolányi János Főiskolán végzett kutatások Tananyagfejlesztés A kutatási téma címe, rövid leírása Várható eredmények vagy célok; részeredmények Kutatás kezdete és

Részletesebben

NEURONHÁLÓS HANGTÖMÖRÍTÉS. Áfra Attila Tamás

NEURONHÁLÓS HANGTÖMÖRÍTÉS. Áfra Attila Tamás NEURONHÁLÓS HANGTÖMÖRÍTÉS Áfra Attila Tamás Tartalom Bevezetés Prediktív kódolás Neuronhálós prediktív modell Eredmények Források Bevezetés Digitális hanghullámok Pulzus kód moduláció Hangtömörítés Veszteségmentes

Részletesebben

EEE Kutatólaboratórium MTA-SZTAKI Magyar Tudományos Akadémia

EEE Kutatólaboratórium MTA-SZTAKI Magyar Tudományos Akadémia DElosztott I S T R I B U T EEsemények D EV E N T S A NElemzé A L Y S I S se R E SKutatólaboratór E A R C H L A B O R A T Oium R Y L I D A R B a s e d S u r v e i l l a n c e Városi LIDAR adathalmaz szegmentációja

Részletesebben

SZÁMÍTÓGÉP FELÉPÍTÉSE (TK 61-TŐL)

SZÁMÍTÓGÉP FELÉPÍTÉSE (TK 61-TŐL) SZÁMÍTÓGÉP FELÉPÍTÉSE (TK 61-TŐL) SZÁMÍTÓGÉP Olyan elektronikus berendezés, amely adatok, információk feldolgozására képes emberi beavatkozás nélkül valamilyen program segítségével. HARDVER Összes műszaki

Részletesebben

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet

Részletesebben

WAGO PLC-vel vezérelt hő- és füstelvezetés

WAGO PLC-vel vezérelt hő- és füstelvezetés WAGO PLC-vel vezérelt hő- és füstelvezetés Wago Hungária Kft. Cím: 2040. Budaörs, Gyár u. 2. Tel: 23 / 502 170 Fax: 23 / 502 166 E-mail: info.hu@wago.com Web: www.wago.com Készítette: Töreky Gábor Tel:

Részletesebben

Modellkiválasztás és struktúrák tanulása

Modellkiválasztás és struktúrák tanulása Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális

Részletesebben

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok Debreceni Egyetem Informatikai Kar Fazekas István Neurális hálózatok Debrecen, 2013 Szerző: Dr. Fazekas István egyetemi tanár Bíráló: Dr. Karácsony Zsolt egyetemi docens A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0103

Részletesebben

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar A Jövő Internet elméleti alapjai Vaszil György Debreceni Egyetem, Informatikai Kar Kutatási témák Bizalmas adatok védelme, kriptográfiai protokollok DE IK Számítógéptudományi Tsz., MTA Atomki Informatikai

Részletesebben

A számítógép-hálózat egy olyan speciális rendszer, amely a számítógépek egymás közötti kommunikációját biztosítja.

A számítógép-hálózat egy olyan speciális rendszer, amely a számítógépek egymás közötti kommunikációját biztosítja. A számítógép-hálózat egy olyan speciális rendszer, amely a számítógépek egymás közötti kommunikációját biztosítja. A hálózat kettő vagy több egymással összekapcsolt számítógép, amelyek között adatforgalom

Részletesebben

1. Bevezetés...4. 1.1. A kutatás iránya, célkitűzése...4. 1.2. A dokumentum felépítése...6. 2. Irodalmi áttekintés...8

1. Bevezetés...4. 1.1. A kutatás iránya, célkitűzése...4. 1.2. A dokumentum felépítése...6. 2. Irodalmi áttekintés...8 Tartalomjegyzék 1. Bevezetés...4 1.1. A kutatás iránya, célkitűzése...4 1.. A dokumentum felépítése...6. Irodalmi áttekintés...8.1. Fuzzy logika, halmazok, műveletek...8.1.1. Fuzzy halmazok...9.1.. Fuzzy

Részletesebben

Neurális hálózatok MATLAB programcsomagban

Neurális hálózatok MATLAB programcsomagban Debreceni Egyetem Informatikai Kar Neurális hálózatok MATLAB programcsomagban Témavezető: Dr. Fazekas István Egyetemi tanár Készítette: Horváth József Programtervező informatikus Debrecen 2011 1 Tartalomjegyzék

Részletesebben

Vállalati modellek. Előadásvázlat. dr. Kovács László

Vállalati modellek. Előadásvázlat. dr. Kovács László Vállalati modellek Előadásvázlat dr. Kovács László Vállalati modell fogalom értelmezés Strukturált szervezet gazdasági tevékenység elvégzésére, nyereség optimalizálási céllal Jellemzői: gazdasági egység

Részletesebben

SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL

SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL infokommunikációs technológiák SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL Dr. Jaskó Szilárd Pannon Egyetem, MIK, Nagykanizsai kampusz Kanizsa Felsőoktatásáért Alapítvány 2015 VIRTUÁLIS STRUKTÚRA 2 VIRTUÁLIS

Részletesebben

Máté: Számítógépes grafika alapjai

Máté: Számítógépes grafika alapjai Történeti áttekintés Interaktív grafikai rendszerek A számítógépes grafika osztályozása Valós és képzeletbeli objektumok (pl. tárgyak képei, függvények) szintézise számítógépes modelljeikből (pl. pontok,

Részletesebben

Egy csodálatos elme modellje

Egy csodálatos elme modellje Egy csodálatos elme modellje A beteg és az egészséges agy információfeldolgozási struktúrái Bányai Mihály1, Vaibhav Diwadkar2, Érdi Péter1 1 RMKI, Biofizikai osztály 2 Wayne State University, Detroit,

Részletesebben

Állandó tartós halhatatlan, könnyő átvinni reprodukálni,(oktatni a szakértıi rendszerhasználatát kell)

Állandó tartós halhatatlan, könnyő átvinni reprodukálni,(oktatni a szakértıi rendszerhasználatát kell) 90. Mi az MI program, tudásalapú rendszer, szakértıi rendszer és kapcsolatuk? MI program Olyan programok, amik a beérkezı információkat valamilyen logikus módszerrel képesek feldolgozni, még akkor is,

Részletesebben

"A tízezer mérföldes utazás is egyetlen lépéssel kezdődik."

A tízezer mérföldes utazás is egyetlen lépéssel kezdődik. "A tízezert mérföldes utazás is egyetlen lépéssel kezdődik dik." A BINB INSYS Előadók: Kornafeld Ádám SYS PROJEKT Ádám MTA SZTAKI kadam@sztaki.hu Kovács Attila ELTE IK attila@compalg.inf.elte.hu Társszerzők:

Részletesebben

Mágnesszelep analízise. IX. ANSYS felhasználói konferencia 2010 Előadja: Gráf Márton

Mágnesszelep analízise. IX. ANSYS felhasználói konferencia 2010 Előadja: Gráf Márton Mágnesszelep analízise MaxwellbenésSimplorerben IX. ANSYS felhasználói konferencia 2010 Előadja: Gráf Márton Diesel hidegindítás A hidegindítási rendszerek szerepe A dízelmotorokban az égés öngyulladás

Részletesebben

Költségbecslési módszerek a szerszámgyártásban. Tartalom. CEE-Product Groups. Költségbecslés. A költségbecslés szerepe. Dr.

Költségbecslési módszerek a szerszámgyártásban. Tartalom. CEE-Product Groups. Költségbecslés. A költségbecslés szerepe. Dr. Gépgyártástechnológia Tsz Költségbecslési módszerek a szerszámgyártásban Szerszámgyártók Magyarországi Szövetsége 2003. december 11. 1 2 CEE-Product Groups Tartalom 1. Költségbecslési módszerek 2. MoldCoster

Részletesebben

Tisztelt Hallgatók! Jó tanulást kívánok, üdvözlettel: Kutor László

Tisztelt Hallgatók! Jó tanulást kívánok, üdvözlettel: Kutor László Tisztelt Hallgatók! Az alábbi anyaga arra ó, hogy lehessen tudni, mi tartozik egy-egy kérdéshez. Ami itt olvasható, az a éghegy csúcsa. Ha alapos tudást akarnak, a éghegy alát önállóan kell hozzá gyűteniük.

Részletesebben

A Jövő Internet Nemzeti Kutatási Program bemutatása

A Jövő Internet Nemzeti Kutatási Program bemutatása A Jövő Internet Nemzeti Kutatási Program bemutatása Dr. Bakonyi Péter és Dr. Sallai Gyula Jövő Internet Kutatáskoordinációs Központ Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2013. június

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Az irányítástechnika alapfogalmai. 2008.02.15. Irányítástechnika MI BSc 1

Az irányítástechnika alapfogalmai. 2008.02.15. Irányítástechnika MI BSc 1 Az irányítástechnika alapfogalmai 2008.02.15. 1 Irányítás fogalma irányítástechnika: önműködő irányítás törvényeivel és gyakorlati megvalósításával foglakozó műszaki tudomány irányítás: olyan művelet,

Részletesebben

Csoportos üzenetszórás optimalizálása klaszter rendszerekben

Csoportos üzenetszórás optimalizálása klaszter rendszerekben Csoportos üzenetszórás optimalizálása klaszter rendszerekben Készítette: Juhász Sándor Csikvári András Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Automatizálási

Részletesebben

Közigazgatási informatika tantárgyból

Közigazgatási informatika tantárgyból Tantárgyi kérdések a záróvizsgára Közigazgatási informatika tantárgyból 1.) A közbeszerzés rendszere (alapelvek, elektronikus árlejtés, a nyílt eljárás és a 2 szakaszból álló eljárások) 2.) A közbeszerzés

Részletesebben

A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON

A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON Pintér István, pinter@gandalf.gamf.hu Nagy Zoltán Gépipari és Automatizálási Mûszaki Fõiskola, Informatika Tanszék Gépipari és Automatizálási

Részletesebben

HÁLÓZATOK I. Segédlet a gyakorlati órákhoz. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék. 2014-15. tanév 1.

HÁLÓZATOK I. Segédlet a gyakorlati órákhoz. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék. 2014-15. tanév 1. HÁLÓZATOK I. Segédlet a gyakorlati órákhoz 1. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék 2014-15. tanév 1. félév Elérhetőség Göcs László Informatika Tanszék 1.emelet 116-os iroda gocs.laszlo@gamf.kefo.hu

Részletesebben

Az oktatás stratégiái

Az oktatás stratégiái Az oktatás stratégiái Pedagógia I. Neveléselméleti és didaktikai alapok NBÁA-003 Falus Iván (2003): Az oktatás stratégiái és módszerei. In: Falus Iván (szerk.): Didaktika. Elméleti alapok a tanítás tanulásához.

Részletesebben

Irányítástechnikai alapok. Zalotay Péter főiskolai docens KKMF

Irányítástechnikai alapok. Zalotay Péter főiskolai docens KKMF Irányítástechnikai alapok Zalotay Péter főiskolai docens KKMF Az irányítás feladatai és fajtái: Alapfogalmak Irányítás: Műszaki berendezések ( gépek, gyártó sorok, szállító eszközök, vegyi-, hő-technikai

Részletesebben

elektronikus adattárolást memóriacím

elektronikus adattárolást memóriacím MEMÓRIA Feladata A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása

Részletesebben

Statisztika oktatása és alkalmazása a mérnöki területen

Statisztika oktatása és alkalmazása a mérnöki területen Statisztika oktatása és alkalmazása a mérnöki területen 1,2 1:, Neumann János Informatikai Kar, Élettani Szabályozások Csoport 2: Budapesti Corvinus Egyetem, Statisztika Tanszék MTA Statisztikai Tudományos

Részletesebben

Geoinformatikai rendszerek

Geoinformatikai rendszerek Geoinformatikai rendszerek Térinfomatika Földrajzi információs rendszerek (F.I.R. G.I.S.) Térinformatika 1. a térinformatika a térbeli információk elméletével és feldolgozásuk gyakorlati kérdéseivel foglalkozó

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007 Az Előadások Témái -hálók Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus

Részletesebben

Informatika témavázlat. 3. évfolyam

Informatika témavázlat. 3. évfolyam Informatika témavázlat 3. évfolyam 1. óra Ismétlés tanévi aktualitások Balesetvédelem baleset megelőzés. Mit tanultunk az elmúl időszakban Miről tanulunk az idei tanévben Felszerelések Munkarend 1. Mi

Részletesebben

A számítógépek felépítése. A számítógép felépítése

A számítógépek felépítése. A számítógép felépítése A számítógépek felépítése A számítógépek felépítése A számítógépek felépítése a mai napig is megfelel a Neumann elvnek, vagyis rendelkezik számoló egységgel, tárolóval, perifériákkal. Tápegység 1. Tápegység:

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

A MatekSzabadon LiveDVD

A MatekSzabadon LiveDVD A MatekSzabadon LiveDVD dr. Virágh János viragh@inf.u-szeged.hu SZTE TTIK Informatikai Tanszékcsoport 2010. október 11. Tartalom Bevezetés 1 Bevezetés 2 3 4 5 6 Szabad szoftverek, Linux, matematika - hol

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Játékos tanulás a felhőn számítógépes társsal, mentorral

Játékos tanulás a felhőn számítógépes társsal, mentorral IK Játékos tanulás a felhőn számítógépes társsal, mentorral Palotai Zsolt ELTE Informatikai Kar Projektek Számítógép, mint a közösség résztvevője CaSA Személyes arcmodell megtanulása, követése Kontextus

Részletesebben

Történet John Little (1970) (Management Science cikk)

Történet John Little (1970) (Management Science cikk) Információ menedzsment Szendrői Etelka Rendszer- és Szoftvertechnológia Tanszék szendroi@witch.pmmf.hu Vezetői információs rendszerek Döntéstámogató rendszerek (Decision Support Systems) Döntések információn

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Informatika. 3. Az informatika felhasználási területei és gazdasági hatásai

Informatika. 3. Az informatika felhasználási területei és gazdasági hatásai Informatika 1. Hírek, információk, adatok. Kommunikáció. Definiálja a következő fogalmakat: Információ Hír Adat Kommunikáció Ismertesse a kommunikáció modelljét. 2. A számítástechnika története az ENIAC-ig

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

A PhysioBank adatmegjelenítő szoftvereinek hatékonysága

A PhysioBank adatmegjelenítő szoftvereinek hatékonysága A PhysioBank adatmegjelenítő szoftvereinek hatékonysága Kaczur Sándor kaczur@gdf.hu GDF Informatikai Intézet 2012. november 14. Célok, kutatási terv Szabályos EKG-felvétel: P, Q, R, S, T csúcs Anatómiai

Részletesebben

Jelgenerátorok ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2 Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.

Részletesebben

IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata

IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata IKP-9010 Számítógépes számelmélet 1. EA IK Komputeralgebra Tsz. IKP-9011 Számítógépes számelmélet 2. EA IK Komputeralgebra Tsz. IKP-9021 Java technológiák IK Prog. Nyelv és Ford.programok Tsz. IKP-9030

Részletesebben

FORGALOMIRÁNYÍTÓK. 6. Forgalomirányítás és irányító protokollok CISCO HÁLÓZATI AKADÉMIA PROGRAM IRINYI JÁNOS SZAKKÖZÉPISKOLA

FORGALOMIRÁNYÍTÓK. 6. Forgalomirányítás és irányító protokollok CISCO HÁLÓZATI AKADÉMIA PROGRAM IRINYI JÁNOS SZAKKÖZÉPISKOLA FORGALOMIRÁNYÍTÓK 6. Forgalomirányítás és irányító protokollok 1. Statikus forgalomirányítás 2. Dinamikus forgalomirányítás 3. Irányító protokollok Áttekintés Forgalomirányítás Az a folyamat, amely révén

Részletesebben

Vezetői információs rendszerek

Vezetői információs rendszerek Vezetői információs rendszerek Kiadott anyag: Vállalat és információk Elekes Edit, 2015. E-mail: elekes.edit@eng.unideb.hu Anyagok: eng.unideb.hu/userdir/vezetoi_inf_rd 1 A vállalat, mint információs rendszer

Részletesebben

HU-3515 Miskolc-Egyetemváros tel.: +36-(46)-565-111 mellék: 12-16, 12-18, fax : +36-(46)-563-447 2 elkke@uni-miskolc.hu

HU-3515 Miskolc-Egyetemváros tel.: +36-(46)-565-111 mellék: 12-16, 12-18, fax : +36-(46)-563-447 2 elkke@uni-miskolc.hu Összetett mechatronikai rendszer hibadetektálása és hiba identifikációja Complex mechatronic system fault detection and fault identification FÜVESI Viktor 1, KOVÁCS Ernő 2 4 tudományos segédmunkatárs,

Részletesebben

Üdvözlöm Önöket a Konferencián!

Üdvözlöm Önöket a Konferencián! Üdvözlöm Önöket a Konferencián! Nyílt Forráskódú Szoftverek a Közigazgatásban 2009. június 2., Miniszterelnöki Hivatal Foglalkoztatási és Szociális Hivatal Készítette: Kuskó István Reverse proxy megoldás

Részletesebben

VigilancePro. All Rights Reserved, Copyright 2005 Hitachi Europe Ltd.

VigilancePro. All Rights Reserved, Copyright 2005 Hitachi Europe Ltd. Reseller Lengyelországban: VigilancePro All Rights Reserved, Copyright 2005 Hitachi Europe Ltd. Bevezetés Vigilance Pro Hálózati elemzés valós időben A Vigilance Pro szoftver egy egyedi megoldás, amely

Részletesebben

Beszédfeldolgozási zavarok és a tanulási nehézségek összefüggései. Gósy Mária MTA Nyelvtudományi Intézete

Beszédfeldolgozási zavarok és a tanulási nehézségek összefüggései. Gósy Mária MTA Nyelvtudományi Intézete Beszédfeldolgozási zavarok és a tanulási nehézségek összefüggései Gósy Mária MTA Nyelvtudományi Intézete Kutatás, alkalmazás, gyakorlat A tudományos kutatás célja: kérdések megfogalmazása és válaszok keresése

Részletesebben

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó

Részletesebben

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11.

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11. Haszongépj pjármű fékrendszer intelligens vezérl rlése Németh Huba Knorr-Bremse Kutatási és s Fejlesztési si Központ, Budapest 2004. November 17. Knorr-Bremse 19.11.2004 Huba Németh 1 Tartalom Motiváció

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Orvosi diagnosztikai célú röntgenképfeldolgozás

Orvosi diagnosztikai célú röntgenképfeldolgozás Orvosi diagnosztikai célú röntgenképfeldolgozás Önálló labor zárójegyzkönyv Lasztovicza László VII. évf. vill. szakos hallgató 2002. Konzulens: dr. Pataki Béla docens Méréstechnika és Információs Rendszerek

Részletesebben

BACK-PROPAGATION NEURON HÁLÓ LOGIKAI JÁTÉK JÁTSZÓ KÉPESSÉGÉNEK VIZSGÁLATA

BACK-PROPAGATION NEURON HÁLÓ LOGIKAI JÁTÉK JÁTSZÓ KÉPESSÉGÉNEK VIZSGÁLATA FIATAL ŰSZAKIAK TUDÁNYS ÜLÉSSZAKA Kolozsvár, 1998. március 20-21. BACK-PRPAGATIN NURN HÁLÓ LGIKAI JÁTÉK JÁTSZÓ KÉPSSÉGÉNK VIZSGÁLATA ABSTRACT Dudás László 1, Ferenczi László 2 egyetemi docens 1, doktorandusz

Részletesebben

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput

Részletesebben

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása A fordítóprogramok szerkezete Forrásprogram Forrás-kezelő (source handler) Kódoptimalizálás Fordítóprogramok előadás (A,C,T szakirány) Lexikális elemző (scanner) Szintaktikus elemző (parser) Szemantikus

Részletesebben

DLM PULSE - PREDIKTÍV TÁRGYALÁS TÁMOGATÓ ALKALMAZÁS DLM PULSE

DLM PULSE - PREDIKTÍV TÁRGYALÁS TÁMOGATÓ ALKALMAZÁS DLM PULSE DLM PULSE - PREDIKTÍV TÁRGYALÁS TÁMOGATÓ ALKALMAZÁS DLM PULSE A DLM Pulse innovatív testbeszéd kiértékelő megoldás virtuális tanácsadóként segíti az értékesítő munkáját az üzleti tárgyalás során. Könnyen

Részletesebben

MESTERSÉGES INTELLIGENCIA ÉS HATÁRTERÜLETEI

MESTERSÉGES INTELLIGENCIA ÉS HATÁRTERÜLETEI MESTERSÉGES INTELLIGENCIA ÉS HATÁRTERÜLETEI MESTERSÉGES INTELLIGENCIA ÉS HATÁRTERÜLETEI INTERJÚK KUTATÓKKAL AKADÉMIAI KIADÓ Szerkesztette Kömlõdi Ferenc Az elõszót írta: Tatai Gábor ISBN Kiadja az Akadémiai

Részletesebben

Neurális hálózatokon alapuló modellezés és hibadiagnosztika villamos hajtások példáján keresztül

Neurális hálózatokon alapuló modellezés és hibadiagnosztika villamos hajtások példáján keresztül Neurális hálózatokon alapuló modellezés és hibadiagnosztika villamos hajtások példáján keresztül Ph.D. védés Jelölt: Okleveles gépészmérnök, tudományos segédmunkatárs Témavezető: Dr. Kovács Ernő Társ-témavezető:

Részletesebben

DOKTORANDUSZ FÓRUM, 1999 Miskolc, 1999. november. Megerősítő tanulási módszerek alkalmazása az informatikában

DOKTORANDUSZ FÓRUM, 1999 Miskolc, 1999. november. Megerősítő tanulási módszerek alkalmazása az informatikában DOKTORANDUSZ FÓRUM, 1999 Miskolc, 1999. november Megerősítő tanulási módszerek alkalmazása az informatikában STEFÁN PÉTER Miskolci Egyetem, Alkalmazott Informatikai Tanszék 3515 Miskolc-Egyetemváros 1.

Részletesebben

2. rész BEVEZETÉS A SZÁMÍTÓGÉPEK VILÁGÁBA. Az információ elérésének és felhasználásának képessége.

2. rész BEVEZETÉS A SZÁMÍTÓGÉPEK VILÁGÁBA. Az információ elérésének és felhasználásának képessége. 2. rész BEVEZETÉS A SZÁMÍTÓGÉPEK VILÁGÁBA 1. INFORMÁCIÓS ÍRÁSTUDÁS Az információ elérésének és felhasználásának képessége. - leggyakrabban számítógép és / vagy Internet használat - IKT technológiák alkalmazásának

Részletesebben

Gépi tanulás a Rapidminer programmal. Stubendek Attila

Gépi tanulás a Rapidminer programmal. Stubendek Attila Gépi tanulás a Rapidminer programmal Stubendek Attila Rapidminer letöltése Google: download rapidminer Rendszer kiválasztása (iskolai gépeken Other Systems java) Kicsomagolás lib/rapidminer.jar elindítása

Részletesebben

Folyamatoptimalizálás: a felhőalapú modernizáció kiindulópontja. Bertók Botond Pannon Egyetem, Műszaki Informatikai Kar

Folyamatoptimalizálás: a felhőalapú modernizáció kiindulópontja. Bertók Botond Pannon Egyetem, Műszaki Informatikai Kar Folyamatoptimalizálás: a felhőalapú modernizáció kiindulópontja Bertók Botond Pannon Egyetem, Műszaki Informatikai Kar Tartalom Felhőalapú szolgáltatások Kihívások Módszertan Kutatás Projektek 2 Felső

Részletesebben

Vektorugrás védelmi funkció blokk

Vektorugrás védelmi funkció blokk Vektorugrás védelmi funkció blokk Dokumentum azonosító: PP-13-21101 Budapest, 2015. augusztus A leírás verzió-információja Verzió Dátum Változás Szerkesztette Verzió 1.0 07.03.2012. First edition Petri

Részletesebben

elearning TAPASZTALATOK ÉS TERVEK A ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEMEN

elearning TAPASZTALATOK ÉS TERVEK A ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEMEN elearning TAPASZTALATOK ÉS TERVEK A ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEMEN Vörös Miklós Zrínyi Miklós Nemzetvédelmi Egyetem Távoktatási Koordinációs Központ AKI MA HOMOKBA DUGJA A FEJÉT, HOLNAP CSIKORGATJA

Részletesebben

BEVEZETÉS A SZÁMÍTÓGÉPEK VILÁGÁBA

BEVEZETÉS A SZÁMÍTÓGÉPEK VILÁGÁBA BEVEZETÉS A SZÁMÍTÓGÉPEK VILÁGÁBA Ismeretterjesztő előadás 2. Rész Előadó:Pintér Krisztina etanácsadó aniszirk@gmail.com INFORMÁCIÓS ÍRÁSTUDÁS Az információ elérésének és felhasználásának képessége. leggyakrabban

Részletesebben

Koós Dorián 9.B INFORMATIKA

Koós Dorián 9.B INFORMATIKA 9.B INFORMATIKA Számítástechnika rövid története. Az elektronikus számítógép kifejlesztése. A Neumann-elv. Információ és adat. A jel. A jelek fajtái (analóg- és digitális jel). Jelhalmazok adatmennyisége.

Részletesebben

Integrált gyártórendszerek

Integrált gyártórendszerek IGyR-10 p. 1/35 Integrált gyártórendszerek Számítógép hálózatok alapismeretei Összetett szabályozó rendszerek Mérés-adatgyűjtő és irányító szoftver rendszerek Diagnosztika: meghibásodás detektálás és azonosítás

Részletesebben