Dr. Schuster György február / 32
|
|
- Botond Nemes
- 8 évvel ezelőtt
- Látták:
Átírás
1 Algoritmusok és magvalósítások Dr. Schuster György OE-KVK-MAI február február / 32
2 Algoritmus Alapfogalmak Algoritmus Definíció Algoritmuson olyan megengedett végesszámú lépésekből álló módszert, utasítás sorozatot, részletes útmutatást, receptet értünk, amely valamely felmerült probléma megoldására alkalmas február / 32
3 Algoritmus Alapfogalmak Algoritmus Tulajdonságai: 1 Az eljárás egyértelműen leírható véges szöveggel. 2 Az eljárás minden lépése ténylegesen kivitelezhető. 3 Az eljárás minden időpontban véges sok tárat használ. 4 Az eljárás véges sok lépésből áll. Következmény: 1 Az algoritmus ugyanarra a bemenetre mindig ugyanazt az eredményt adja. 2 Minden időpontban egyértelműen adott a következő lépés február / 32
4 Adatstruktúra Alapfogalmak Algoritmus Algoritmus adatstruktúra Az algoritmus az elemi műveletek sorozata. Az algoritmus adatok alapján dolgozik. Az adatstruktúra Az elérhető adatok egy szisztematikusan összeállított szerkezete február / 32
5 Jellemzők: Alapfogalmak Algoritmusok analízise Futási idő Elsődleges mérőszám. Az idő az egyik legfontosabb erőforrás. Természetes elvárás a lehető legkisebb időfelhasználás. Tárfelhasználás: Lényeges mérőszám. Hardver függő. Beleférünk-e a tárba, vagy nem. Manapság háttérbe szorul, mivel a memória egyre olcsóbb. Megjegyzés: A futási sebesség és a tárfelhasználás egymásnak ellentmondó követelmények február / 32
6 Futási sebesség Alapfogalmak Algoritmusok analízise Mitől függ? a bementek számátol, a műveletek számától, a kimenetek számától február / 32
7 Futási sebesség Alapfogalmak Algoritmusok analízise Tapasztalati mérések Hasznos, de korlátai vannak: limitált számú teszt bemenet használható, két algoritmus nehezen hasonlítható össze, hacsak nem azonos hardver és szoftver környezetben vizsgáljuk, az algoritmust implementálni és futtatni kell azért, hogy a mérést el lehessen végezni február / 32
8 Futási sebesség Alapfogalmak Algoritmusok analízise Feladatok a tapasztalati méréshez: a lehetséges bemenetek felmérése, az algoritmus hatékonyságának eldöntése, illetőleg összehasonlítása hardver- és szoftver környezettől függetlenül, az algoritmus magas szintű leírása implementáció nélkül február / 32
9 Futási sebesség Alapfogalmak Algoritmusok analízise Komponensek: az implementáció nyelve, a számítási modell, amelyben az algoritmus fut, a mérőszám, amelyben mérjük a futási sebességet, az a megközelítés, amely alapján a futási időt mgehatározzuk, a rekurzív algoritmusokat is február / 32
10 Pszeudó kód Példa: Alapfogalmak Pszeudo kód Algorithm arraymax(a, n): Input: An array A storing n 1 integers. Output: The maximum element in A. currentmax <- A[0] for i <- 1 to n 1 do if currentmax < A[i] then currentmax <- A[i] return currentmax február / 32
11 Pszeudó kód Alapfogalmak Pszeudo kód Mi is ez? A pszeudó kód egyfajta keveréke a természetes nyelv(ek)nek és egy magasszintű szabványos programozási nyelvnek február / 32
12 Pszeudó kód Alapfogalmak Pszeudo kód Elemei: Kifejezések: a logikai és matematikai kifejezésekre szabványos matematikai jelölések, Metódusok deklarációja: az algoritmus neve és paraméter lista, Döntési struktúrák: szabványos if, then és else kifejezések, While ciklus: while feltétel do művelet, Repeat ciklus: repeat művelet until feltétel, For ciklus: for változó - inkremens to feltétel do művelet, Tömb indexelés: A[i], Metódus hívás: metodus(argumentumok), Metódus visszatérés: return(változó) február / 32
13 Alapfogalmak Pszeudo kód RAM (Random Access Machine) Miért kell: A kisérleti analízis limitált pontosságú és hatékonyságú. Ezért két eljárást nehéz összehasonlítani - főleg futtatás nélkül. Műveleti primitívek: változónak értékadás, metódus hívás, aritmetikai művelet végrehajtása, két szám összehasonlítása, tömb indexelés, objektum referencia kezelése, metódusból visszatérés február / 32
14 Alapfogalmak Pszeudo kód RAM (Random Access Machine) Definíció: feltételezi, hogy a CPU a RAM modellben bármelyik műveleti primitívet véges lépésben végre tudja hajtani. A műveletek nem függnek a bemeneti értékektől február / 32
15 Alapfogalmak Pszeudo kód RAM (Random Access Machine) Számolás a műveleti primitívekkel A példa alapján: A[0]-t a CurrentMax értékkel inicializálja, azi-t ciklusszálálót 1-el inicializálja, mielőtt a ciklustörzsbe belép ellenőrzi, hogy i<n a ciklustörzset n-1-szer végrehajtja, ahol - inedxel, - összehasonlít CurrentMax-al, - A[i]-t esetleg cseréli CurrentMax-al (indexel és értéket ad), visszatér a CurrentMax értékkel. Legalább 2+1+n+ 4(n 1)+1 = 5n Legfeljebb 2+1+n+6(n 1)+1 = 7n február / 32
16 Alapfogalmak Pszeudo kód Átlagos eset vagy legrosszabb eset Átlagos eset Az átlagos futási sebesség egy adott nagyrészt véletlenszerű bemeneti halmazra vonatkozik és statisztikai vizsgálatokat, illetőleg valószínűség számítási módszereket igényel. A legrosszabb eset A legroszabb (leghosszabb) futási sebesség bemeneti halmaza gyakran egyértelműen megállapítható, így a kalkuláció pontosan elvégezhető február / 32
17 Alapfogalmak Pszeudo kód Rekurzív algoritmusok analízise A példa rekurzív megoldása: Algorithm recursivemax(a,n) Input: An array A storing n 1 itegers. Output: The maximum element in A if n=1 then return A[0] return max{recursivemax(a,n-1),a[n-1]} A futási idő: { 3 ha n = 1. T(n) = T(n 1)+7 egyébként február / 32
18 Alapfogalmak Miért? 1 a pontos meghatározás nagyon munkaigényes, 2 minden egyes magasszintű utasítás számos elemi utasítást tartalmaz, 3 az elemi utasítások száma nem mindig határozható meg (JIT compile), 4 sokszor elegendő egy közelítés is, főleg összehasonlítások esetén február / 32
19 Alapfogalmak Nagy O definíció Legyenek f(n) és g(n) függvények, amelyek nem negatív egészek halmazáról a valós számok halmazára képeznek le. f(n) akkor O(g(n)), ha létezik egy olyan c R, hogy c > 0 és egy n n 0, ahol n, n 0 Z +, hogy n n 0 esetén f(n) c g(n). Ekkor mondjuk, hogy f(n) O(g(n)), vagy f(n) nagy ordo g(n). Példa: 7n 2 az O(n) Bizonyítás: Keressük c > 0 és n 0 1, hogy 7n 2 c n, ha n n 0 -ra. Célszerű választás a c = 7 és az n 0 = február / 32
20 Alapfogalmak 20n n log n+5 az O(n 3 ) 20n n log n+5 35n 3 n 1 Megjegyzés: Minden a k n k + a k 1 n k 1 + +a 1 n+a 0 polinóm az O(n k ). 3 log n+ log log n az O(log n) 3 log n+ log log n 4 log n, ha n az O(1) , ha n 1 5n log n+2n az O(n log n) 5n log n+2n 7n log n, ha n február / 32
21 Alapfogalmak Szabályok: 1 ha d(n) az O(f(n)), akkor ad(n) szintén O(f(n)) minden a > 0-ra, 2 ha d(n) az O(f(n)) és e(n) az O(g(n)), akkor d(n)+e(n) az O(f(n)+g(n)), 3 ha d(n) az O(f(n)) és e(n) az O(g(n)), akkor d(n) e(n) az O(f(n) g(n)), 4 ha d(n) az O(f(n)), akkor f(n) az O(g(n)), 5 ha a k n k + a k 1 n k 1 + +a 1 n+a 0, akkor f(n) az O(n k ), 6 ha f(n) = n x, akkor O(a n ), bármilyen rögzített x > 0 és a > 1-re, 7 ha log n x az O(log n) bármilyen rögzített x > 0-ra, 8 ha log x n az O(n y ) bármilyen rögzített x > 0 és y > 1-re február / 32
22 Alapfogalmak Példa: 2n 3 + 4n 2 log n az O(n 3 ) log n az O(n), 8. szabály, 4n 2 log n az O(4n 3 ), 3. szabály, an 3 + 4n 2 log n az O(2n 3 + 4n 3 ), 2. szabály, 2n + 4n 3 az O(n 3 ), 5. és 1. szabály, 2n 3 + 4n 2 log n az O(n 3 ), 4. szabály február / 32
23 Alapfogalmak Terminológia: O(log n) logaritmikus, O(n) lineáris, O(n 2 ) kvadratikus, O(n k ) polinomiális (k 1), O(a n ) exponenciális (a > 1) február / 32
24 Alapfogalmak Ω jelölés Legyenek f(n) és g(n) függvények, amelyek nem negatív egészek halmazáról a valós számok halmazára képeznek le. f(n) akkor Ω(g(n)), ha g(n) O(f(n)), amely szerint létezik olyan c > 0 valós konstans és egy n n 0 (n 0 1) egész küszöbszám, amelyre igaz az, hogy f(n) cg(n) n n 0. Ez a definíció lehetővé teszi, hogy két algoritmus egy adott c konstans erejéig aszomptotikusan egyenlőek, illetve összehasonlíthatóak. Θ jelölés Legyenek f(n) és g(n) függvények, amelyek nem negatív egészek halmazáról a valós számok halmazára képeznek le. f(n) akkor Ω(g(n)), ha g(n) O(f(n)), amely szerint léteznek olyan c > 0 és c > 0 valós konstansok és egy n n 0 (n 0 1) egész küszöbszám, amelyre igaz az, hogy c g(n) f(n) c g(n) n n február / 32
25 Alapfogalmak Kis o definíció Legyenek f(n) és g(n) függvények, amelyek nem negatív egészek halmazáról a valós számok halmazára képeznek le. f(n) akkor o(g(n)), ha bármely olyan c R + és egy n n 0, ahol n, n 0 Z 0,+, hogy n n 0 esetén f(n) c g(n). Ekkor mondjuk, hogy f(n) az o(g(n)), vagy f(n) kis ordo g(n). ω definíció Akkor mondjuk, hogy f(n) az ω(g(n)), ha g(n) az o(f(n)), vagyis ha bármely olyan c R + és egy n n 0, ahol n, n 0 Z 0,+, hogy n n 0 esetén g(n) c f(n). Megjegyzés: o( ) analóg a kisebb egyenlő, az ω( ) analóg a nagyobb aszimptótikus közelítéssel február / 32
26 Alapfogalmak f(n) = 12n 2 + 6n az o(n 3 ) és ω(n) 1 fn(n) az o(n 3 ) legyen c > 0 ebből n 0 = (12+6)/c = 18/c 18 < cn n n 0, ebből f(n) = 12n 2 + 6n 12n 2 + 6n 2 = 18n 2 cn 3. Tehát f(n) az o(n 3 ). 2 f(n) az ω(n) legyen c > 0 ebből n 0 = c/12 egy n n 0 12n c, így f(n) = 12n 2 + 6n 12n 2 cn. Tehát f(n) az ω(n). Megjegyzés: Vagis f(n) akkor és csak akkor o(g(n)), ha f(n) lim n g(n) = február / 32
27 Összegzés Alapfogalmak Matematikai áttekintés Definíció: b f(i) = f(a)+f(a+1)+f(a+2)+ +f(b) i=a Gyakori!! Ha ciklussal dolgozunk, akkor a futásidő lineárisan nő. Ezért jó tudni, hogy: n i=0 ai = 1+a+a 2 + +a n = 1+an+1, ha a > 0, 1 a n 1 i=0 = n 1 = 2 n 1, n n(n+1) i=1 = n 1+n =, ha n 1, február / 32
28 Esettanulmány Alapfogalmak Matematikai áttekintés Egyszerű részösseg algoritmus s j,k = a j + a j+1 + +a k = Algorithm MaxsubSlow(A): Input: An n-element array A of numbers, indexed from 1 to n. Output: The maximum subarray sum of array A. m 0 // the maximum found so far for j 1 to n do for k j to n do s 0 // the next partial sum we are computing for i j to k do s s + A[i] if s > m then m s return m Ez O(n 3 ). k i=j a i február / 32
29 Esettanulmány Alapfogalmak Matematikai áttekintés Javított részösszeg algoritmus Input: An n-element array A of numbers, indexed from 1 to n. Output: The maximum subarray sum of array A. S 0 0 // the initial prefix sum for i 1 to n do S i S i1 + A[i] m 0 // the maximum found so far for j 1 to n do for k j to n do s = S k - S jx1 if s > m then m s return m Ez O(n 2 ) február / 32
30 Esettanulmány Alapfogalmak Matematikai áttekintés Lineáris idejű részösszeg algoritmis M t = max{0, M t 1 + A[t]} Algorithm MaxsubFastest(A): Input: An n-element array A of numbers, indexed from 1 to n. Output: The maximum subarray sum of array A. M0 0 // the initial prefix maximum for t 1 to n do M t max{0, M t1 + A[t]} m 0 // the maximum found so far for t 1 to n do m max{m, M t} return m Ez O(n) február / 32
31 Alapfogalmak Matematikai áttekintés február / 32
32 Alapfogalmak Matematikai áttekintés február / 32
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
RészletesebbenA félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
RészletesebbenSpecifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
RészletesebbenSpecifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
RészletesebbenAlgoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
RészletesebbenFüggvények növekedési korlátainak jellemzése
17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,
RészletesebbenNagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.
Nagyságrendek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 018. február 1. Az O, Ω, Θ jelölések Az algoritmusok
RészletesebbenTeljesítmény Mérés. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés / 20
Teljesítmény Mérés Tóth Zsolt Miskolci Egyetem 2013 Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés 2013 1 / 20 Tartalomjegyzék 1 Bevezetés 2 Visual Studio Kód metrikák Performance Explorer Tóth Zsolt
RészletesebbenProgramozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs
Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán
RészletesebbenÖsszetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.
Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,
Részletesebben14. Mediánok és rendezett minták
14. Mediánok és rendezett minták Kiválasztási probléma Bemenet: Azonos típusú (különböző) elemek H = {a 1,...,a n } halmaza, amelyeken értelmezett egy lineáris rendezési reláció és egy i (1 i n) index.
RészletesebbenProgramozási módszertan. Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer
PM-03 p. 1/13 Programozási módszertan Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer Werner Ágnes Villamosmérnöki és Információs Rendszerek
RészletesebbenEdényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).
Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a
RészletesebbenProgramok értelmezése
Programok értelmezése Kód visszafejtés. Izsó Tamás 2016. szeptember 22. Izsó Tamás Programok értelmezése/ 1 Section 1 Programok értelmezése Izsó Tamás Programok értelmezése/ 2 programok szemantika értelmezése
RészletesebbenErdélyi Magyar TudományEgyetem (EMTE
TARTALOM: Általánosságok Algoritmusok ábrázolása: Matematikai-logikai nyelvezet Pszeudokód Függőleges logikai sémák Vízszintes logikai sémák Fastruktúrák Döntési táblák 1 Általánosságok 1. Algoritmizálunk
RészletesebbenKiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
RészletesebbenRendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat
9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:
RészletesebbenBASH script programozás II. Vezérlési szerkezetek
06 BASH script programozás II. Vezérlési szerkezetek Emlékeztető Jelölésbeli különbség van parancs végrehajtása és a parancs kimenetére való hivatkozás között PARANCS $(PARANCS) Jelölésbeli különbség van
RészletesebbenKomputeralgebra Rendszerek
Komputeralgebra Rendszerek Programozás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2014. február 23. TARTALOMJEGYZÉK 1 of 28 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Értékadás MAPLE -ben SAGE -ben 3
RészletesebbenProgramozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.
Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /
RészletesebbenBonyolultságelmélet. Monday 26 th September, 2016, 18:50
Bonyolultságelmélet Monday 26 th September, 2016, 18:50 A kiszámítás modelljei 2 De milyen architektúrán polinom? A kiszámításnak számos (matematikai) modellje létezik: Általános rekurzív függvények λ-kalkulus
RészletesebbenGyakorló feladatok ZH-ra
Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re
RészletesebbenA programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai
A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási
RészletesebbenSzámjegyes vagy radix rendezés
Számláló rendezés Amennyiben a rendezendő elemek által felvehető értékek halmazának számossága kicsi, akkor megadható lineáris időigényű algoritmus. A bemenet a rendezendő elemek egy n méretű A tömbben
RészletesebbenMintavételes szabályozás mikrovezérlő segítségével
Automatizálási Tanszék Mintavételes szabályozás mikrovezérlő segítségével Budai Tamás budai.tamas@sze.hu http://maxwell.sze.hu/~budait Tartalom Mikrovezérlőkről röviden Programozási alapismeretek ismétlés
RészletesebbenAlgoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
RészletesebbenProgramozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.
Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /
RészletesebbenAlgoritmusok helyességének bizonyítása. A Floyd-módszer
Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk
RészletesebbenPénzügyi algoritmusok
Pénzügyi algoritmusok A C++ programozás alapjai Tömbök (3. rész) Konstansok Kivételkezelés Tömbök 3. Többdimenziós tömbök Többdimenziós tömbök int a; Többdimenziós tömbök int a[5]; Többdimenziós tömbök
RészletesebbenS z á m í t ó g é p e s a l a p i s m e r e t e k
S z á m í t ó g é p e s a l a p i s m e r e t e k 7. előadás Ami eddig volt Számítógépek architektúrája Alapvető alkotóelemek Hardver elemek Szoftver Gépi kódtól az operációs rendszerig Unix alapok Ami
RészletesebbenBonyolultságelmélet. Monday 26 th September, 2016, 18:28
Bonyolultságelmélet Monday 26 th September, 2016, 18:28 A kurzus teljesítési követelményei 2 Gyakorlat Három kisdolgozat 6 6 pontért kb. a 4., 7. és 10. gyakorlaton Egy nagydolgozat 28 pontért utolsó héten
RészletesebbenAlgoritmuselmélet 1. előadás
Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források
Részletesebben1. ábra. Számláló rendezés
1:2 2:3 1:3 1,2,3 1:3 1,3,2 3,1,2 2,1,3 2:3 2,3,1 3,2,1 1. ábra. Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással
Részletesebbenend function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
RészletesebbenBánsághi Anna 2014 Bánsághi Anna 1 of 68
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív
RészletesebbenElőfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
RészletesebbenAlgoritmizálás és adatmodellezés tanítása 1. előadás
Algoritmizálás és adatmodellezés tanítása 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az
Részletesebben9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
RészletesebbenInformációk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása
1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június
RészletesebbenI. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.
RészletesebbenTartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.
Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
RészletesebbenProgramozási nyelvek a közoktatásban alapfogalmak I. előadás
Programozási nyelvek a közoktatásban alapfogalmak I. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig)
RészletesebbenTartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1
Köszönetnyilvánítás Bevezetés Kinek szól a könyv? Elvárt előismeretek A könyv témája A könyv használata A megközelítés alapelvei Törekedjünk az egyszerűségre! Ne optimalizáljunk előre! Felhasználói interfészek
RészletesebbenKeresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala
RészletesebbenOrdó, omega, theta, rekurzió :15 11:45. Megoldás. A nagyságrendi sorra tekintve nyilvánvalóan igaz pl., hogy: 1
Algoritmuselmélet 1. gyakorlat megoldások Gyakorlatvezető: Engedy Balázs Ordó, omega, theta, rekurzió 01.0.08. 10:15 11:45 Bemelegítés 1. Az f(n) = O(g(n)) jelölés egyenletnek tekinthető-e? Mi fejezi ki
RészletesebbenKupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
RészletesebbenSmalltalk 2. Készítette: Szabó Éva
Smalltalk 2. Készítette: Szabó Éva Blokkok Paraméter nélküli blokk [műveletek] [ x := 5. 'Hello' print. 2+3] Kiértékelés: [művelet] value az értéke az utolsó művelet értéke lesz, de mindet kiírja. x :=
RészletesebbenProgramozás I. Matematikai lehetőségek Műveletek tömbökkel Egyszerű programozási tételek & gyakorlás V 1.0 OE-NIK,
Programozás I. Matematikai lehetőségek Műveletek tömbökkel Egyszerű programozási tételek & gyakorlás OE-NIK, 2013 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk
RészletesebbenAlgoritmuselmélet 12. előadás
Algoritmuselmélet 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Április 9. ALGORITMUSELMÉLET 12. ELŐADÁS 1 Turing-gépek
RészletesebbenObjektumorientált Programozás VI.
Objektumorientált Programozás Metódusok Paraméterek átadása Programozási tételek Feladatok VI. ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a számonkérendő
Részletesebben2. Rekurzió. = 2P2(n,n) 2 < 2P2(n,n) 1
2. Rekurzió Egy objektum definícióját rekurzívnak nevezünk, ha a definíció tartalmazza a definiálandó objektumot. Egy P eljárást (vagy függvényt) rekurzívnak nevezünk, ha P utasításrészében előfordul magának
RészletesebbenAdatszerkezetek 7a. Dr. IványiPéter
Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a
RészletesebbenDiszkrét Irányítások tervezése. Heurisztika Dr. Bécsi Tamás
Diszkrét Irányítások tervezése Heurisztika Dr. Bécsi Tamás Algoritmusok futásideje Az algoritmus futásideje függ az N bemenő paramétertől. Azonos feladat különböző N értékek esetén más futásidőt igényelnek.
RészletesebbenAlgoritmusok, adatszerkezetek, objektumok
Algoritmusok, adatszerkezetek, objektumok 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 14. Sergyán (OE NIK) AAO 01 2011.
RészletesebbenProgramozási nyelvek 6. előadás
Programozási nyelvek 6. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig) Számítási modell (hogyan
Részletesebben... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.
Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat
RészletesebbenNagyordó, Omega, Theta, Kisordó
A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,
RészletesebbenBonyolultságelmélet. Monday 26 th September, 2016, 18:27. Bonyolultságelmélet
Monday 26 th September, 2016, 18:27 A kurzus teljesítési követelményei Gyakorlat Három kisdolgozat 6 6 pontért kb. a 4., 7. és 10. gyakorlaton Egy nagydolgozat 28 pontért utolsó héten előadáson Pontszám:
RészletesebbenBonyolultságelmélet. Thursday 1 st December, 2016, 22:21
Bonyolultságelmélet Thursday 1 st December, 2016, 22:21 Tárbonyolultság A futásidő mellett a felhasznált tárterület a másik fontos erőforrás. Ismét igaz, hogy egy Ram-program esetében ha csak a használt
Részletesebben7. előadás. Gyorsrendezés, rendezés lineáris lépésszámmal. Adatszerkezetek és algoritmusok előadás március 6.
7. előadás, rendezés lineáris lépésszámmal Adatszerkezetek és algoritmusok előadás 2018. március 6.,, és Debreceni Egyetem Informatikai Kar 7.1 Általános tudnivalók Ajánlott irodalom: Thomas H. Cormen,
RészletesebbenMaximum kiválasztás tömbben
ELEMI ALKALMAZÁSOK FEJLESZTÉSE I. Maximum kiválasztás tömbben Készítette: Szabóné Nacsa Rozália Gregorics Tibor tömb létrehozási módozatok maximum kiválasztás kódolása for ciklus adatellenőrzés do-while
RészletesebbenMesterséges intelligencia 1 előadások
VÁRTERÉSZ MAGDA Mesterséges intelligencia 1 előadások 2006/07-es tanév Tartalomjegyzék 1. A problémareprezentáció 4 1.1. Az állapottér-reprezentáció.................................................. 5
RészletesebbenA C programozási nyelv III. Pointerek és tömbök.
A C programozási nyelv III. Pointerek és tömbök. Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv III. (Pointerek, tömbök) CBEV3 / 1 Mutató (pointer) fogalma A mutató olyan változó,
RészletesebbenProgramozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása
PM-06 p. 1/28 Programozási módszertan Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
RészletesebbenBABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli. A versenyzők figyelmébe:
BABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli A versenyzők figyelmébe: 1. A tömböket 1-től kezdődően indexeljük. 2. A rácstesztekre
RészletesebbenA C programozási nyelv III. Pointerek és tömbök.
A C programozási nyelv III. Pointerek és tömbök. Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv III. (Pointerek, tömbök) CBEV3 / 1 Mutató (pointer) fogalma A mutató olyan változó,
RészletesebbenBevezetés az informatikába
Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
RészletesebbenDeníciók és tételek a beugró vizsgára
Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,
RészletesebbenJava programozási nyelv
Java programozási nyelv 2. rész Vezérlő szerkezetek Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2005. szeptember A Java programozási nyelv Soós Sándor 1/23 Tartalomjegyzék
RészletesebbenAlgoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan
RészletesebbenAdatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként
RészletesebbenAlgoritmuselmélet 2. előadás
Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés
Részletesebben1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás
Preorder ejárás Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra.
RészletesebbenSzimuláció RICHARD M. KARP és AVI WIGDERSON. (Készítette: Domoszlai László)
Szimuláció RICHARD M. KARP és AVI WIGDERSON A Fast Parallel Algorithm for the Maximal Independent Set Problem című cikke alapján (Készítette: Domoszlai László) 1. Bevezetés A következőkben megadott algoritmus
RészletesebbenSzoftver karbantartási lépések ellenőrzése
Szoftverellenőrzési technikák (vimim148) Szoftver karbantartási lépések ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/
Részletesebben1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007
Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii
RészletesebbenAlgoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
RészletesebbenFelvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
RészletesebbenPartíció probléma rekurzíómemorizálással
Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott
RészletesebbenAlgoritmusok és adatszerkezetek gyakorlat 07
Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet
RészletesebbenProgramozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat
PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07
RészletesebbenAlgoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
RészletesebbenFüggvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Függvények C program egymás mellé rendelt függvényekből áll. A függvény (alprogram) jó absztrakciós eszköz a programok
RészletesebbenProgramozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.05. -1- Függvények C program egymás mellé rendelt függvényekből
RészletesebbenProgramozási segédlet
Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen
RészletesebbenVáltozók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai):
Python Változók Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Név Érték Típus Memóriacím A változó értéke (esetleg más attribútuma is) a program futása alatt
RészletesebbenOperációs rendszerek. 11. gyakorlat. AWK - szintaxis, vezérlési szerkezetek UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED
UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED AWK - szintaxis, vezérlési szerkezetek Operációs rendszerek 11. gyakorlat Szegedi Tudományegyetem Természettudományi és Informatikai Kar Csuvik
RészletesebbenRekurzív algoritmusok
Rekurzív algoritmusok 11. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. november 14. Sergyán (OE NIK) AAO 11 2011. november 14. 1 / 32 Rekurzív
RészletesebbenC programozási nyelv Pointerek, tömbök, pointer aritmetika
C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek
RészletesebbenFormális módszerek GM_IN003_1 Program verifikálás, formalizmusok
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott
RészletesebbenAdattípusok, vezérlési szerkezetek. Informatika Szabó Adrienn szeptember 14.
Informatika 1 2011 Második előadás, vezérlési szerkezetek Szabó Adrienn 2011. szeptember 14. Tartalom Algoritmusok, vezérlési szerkezetek If - else: elágazás While ciklus For ciklus Egyszerű típusok Összetett
RészletesebbenAlgoritmuselmélet 1. előadás
Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források
RészletesebbenProgramozás alapjai C nyelv 5. gyakorlat. Írjunk ki fordítva! Írjunk ki fordítva! (3)
Programozás alapjai C nyelv 5. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.10.17. -1- Tömbök Azonos típusú adatok tárolására. Index
RészletesebbenKupac adatszerkezet. 1. ábra.
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
RészletesebbenKriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések
Kriptográfia 0 Számítás-komplexitási kérdések A biztonság alapja Komplexitás elméleti modellek független, egyenletes eloszlású véletlen változó értéke számítással nem hozható kapcsolatba más információval
RészletesebbenProgramozási alapismeretek 3. előadás
Programozási alapismeretek 3. előadás Tartalom Ciklusok specifikáció+ algoritmika +kódolás Egy bevezető példa a tömbhöz A tömb Elágazás helyett tömb Konstans tömbök 2/42 Ciklusok Feladat: Határozzuk meg
RészletesebbenPermutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation
Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation
RészletesebbenSzámítógép hálózatok, osztott rendszerek 2009
Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc
RészletesebbenProgramozás alapjai C nyelv 4. gyakorlat. Mit tudunk már? Feltételes operátor (?:) Típus fogalma char, int, float, double
Programozás alapjai C nyelv 4. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.10.10.. -1- Mit tudunk már? Típus fogalma char, int, float,
RészletesebbenFibonacci számok. Dinamikus programozással
Fibonacci számok Fibonacci 1202-ben vetette fel a kérdést: hány nyúlpár születik n év múlva, ha feltételezzük, hogy az első hónapban csak egyetlen újszülött nyúl-pár van; minden nyúlpár, amikor szaporodik
Részletesebben