Megerősítéses tanulási módszerek és alkalmazásaik
|
|
- Botond Bognár
- 7 évvel ezelőtt
- Látták:
Átírás
1 MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc, szeptember 15.
2 Tartalom Gépi tanulás története Gépi tanulás típusai A megerősítéses tanulás Q-learning SARSA FRIQ-learning FRIQ-learning Maze, Pong alkalmazás példák
3 A gépi tanulás története 1947-ben Arthur Lee Samuel dáma játék, ami képes legyőzni a világbajnokot motiváló okok: szimbolikus számítás hatékonyságának bemutatása szükség van PC-re az egyetemeken 20 évnyi fejlesztés gépi tanulás alappillérjeinek megalkotása
4 A gépi tanulás A gépi tanulás alapgondolata egy ágens képességeinek javítása A gépi tanulás egy eljárás, amely a rendszerben változásokat hoz létre a változtatások következtében a problémát a rendszer már helyesebben oldja meg
5 A gépi tanulás formái Felügyelt (ellenőrzött) supervised learning Felügyelet nélküli (nem ellenőrzött) unsupervised learning Megerősítéses reinforcement learning
6 A megerősítéses tanulás Egy módszer, amely megerősítési információk alapján tanul a környezetből érkező visszajelzések a megerősítések (reward) jutalmak/büntetések (sikerek/kudarcok) cél: várható jutalmak maximalizálása (optimális stratégia keresése) Pl.: egy ismeretlen játék játszása
7 A megerősítéses tanulás típusa Passzív rögzített stratégia -> viselkedés cél: stratégia jóságának megtanulása Aktív nincs rögzített stratégia cselekvés választásának eldöntése (mohó például) cél: cselekvésérték-függvény tanulása
8 A megerősítéses tanulás elemei állapot (s), akció (a), jutalom (r) politika (policy) jutalom függvény (reward function) értékelő függvény (value funciton) környezet modellje (model of the environment) 8
9 Ágens-környezet modell
10 Ágens-környezet modell példa
11 Ágens-környezet modell ágens lehet bármi, ami (érzékelőivel) érzékeli a környezetét és (beavatkozóival) megváltoztatja azt környezet determinisztikus: következő állapota, csakis a jelenlegi állapotától és a végrehajtott cselekvéstől függ nem determinisztikus: következő állapotát nem határozza meg az előző állapot és a végrehajtott cselekvés
12 Ágens-környezet modell állapot (s), akció (a), jutalom (r), politika (π) állapot: az ágens megfigyelése a környezetről akció: cselekvés, ez hat a környezetre jutalom: egyetlen szám politika: állapot-akció leképezés
13 Ágens-környezet modell diszkrét idő ( t=1, 2, 3, ) minden egyes t időpillanatban az ágens megkapja a környezet ez alapján választ egy akciót a választott akció függvényeként kap egy jutalmat majd egy új állapotba kerül az ágens célja: hosszú távon maximalizálja az összegyűjtött jutalmakat epizódikusság
14 Ágens-környezet modell a t s t s t+1 r t+1 s t : állapot a t időpillanatban a t : a végrehajtott akció a t időpillanatban r t+1 : a kapott jutalom a t+1 időpillanatban s t+1 : az új állapot Π t (s, a): s-ben a lépés a t időpontban 14
15 Ágens-környezet modell Az összegyűjtött jutalmak összegét hozamnak nevezzük: ahol T, az utolsó időpillanat ha nem beszélhetünk utolsó időpillanatról akkor: gond: R t végtelen lehet megoldás: diszkontálás, a diszkontált hozam:
16 Ágens-környezet modell Összefoglalva, a hozamfüggvény a következő formában írható fel: γ a diszkontálási paraméter: a jelen állapot jövőre vetíthetőségének mértéke. mekkora súllyal vegyük figyelembe egy későbbi állapot hasznosságát értéke: [0;1]
17 Ágens-környezet modell A feladat realizálása: interakció a környezet modellje: az átmeneti valószínűségek és jutalmak cél: maximális várható jutalom, optimális stratégia megtalálása
18 A Markov-feltevés Feltesszük, hogy a múlt nem számít Markov-tulajdonság : egy folyamat jövőbeli feltételezett állapota csak a jelenlegi állapottól függ, még akkor is, ha ismerjük a korábbi történéseket nincs emlékezés az átmeneti valószínűség megadja az s állapotba kerülés valószínűségét s állapotból a akció választása mellett: a várható jutalom: azokra a feladatokra alkalmazható a megerősítéses tanulás módszere, amelyek Markov-tulajdonságúak
19 Az állapot értékelő függvény E π jelöli a π politika követése melletti várható értéket, a t tetszőleges időpillanatban. Megadjuk az s állapotban a akció választásának értékét a π politika mellett. Ezt Q π (s,a) -val jelöljük:
20 A Bellman-egyenlet Az előzőek alapján a következő egyenlet a V π -re vonatkozó Bellman-egyenlet: egy állapot hasznosságának meghatározása egy állapot hasznossága, az állapotban tartózkodás jutalmának és a következő állapot várható hasznosságának összege az állapotok hasznosságai a Bellman-egyenletek egy rendszerének egyértelmű megoldásai
21 A Bellman-egyenlet Optimális: V*(s): s-ből indulva Q*(s,a): s-ben a A Bellman-egyenlet megoldása: dinamikus programozással értékiteráció minden egyes állapot hasznosságának számítása -> optimális cselekvés választása eljárásmód-iteráció ha egy akció jobb mint a többi -> a releváns állapotok hasznosságainak nagyságát nem szükséges precízen tudni - >értékelés;javítás. Leáll ha nincs hasznosságváltozás.
22 Megerősítéses tanulási algoritmusok Q-learning SARSA Fuzzy Q-learning FRI based Q-learning Stb.
23 Q-learning az egyik leggyakrabban alkalmazott megerősítéses tanulási módszer Q quality érték Q(s,a): s-ben a végrehajtásának jósága -> Q(s,a) párok ->Q-függvény; Q-tábla Update formula:
24 Q-learning - algoritmus
25 Q-learning - algoritmus
26 SARSA Szintén megerősítéses tanulási algoritmus State-Action-Reward-State-Action A Q-learning hasonló módszer Update formula: 26
27 SARSA - algoritmus 27
28 Q-learning vs. SARSA 28
29 Q-learning hátrány lehetséges állapotok exponenciálisan sok száma állapottér növekedése Q-tábla növekedése konvergenciája exponenciálisan lassú lehet Kb a kezelhető állapotok száma Pl. n db állapotleíró, k részre osztva: k n az állapotok száma 29
30 RL alkalmazások TD-Gammon (Tesauro, 1992) Robotirányítási alkalmazások inverz inga (cart-pole) mountain- car maze pong rc drift autó: video és számos egyéb... 30
31 FRIQ-learning Az előzőleg bemutatott Q-learning módszer diszkrét állapot-akció térre alkalmazható fuzzy modell bevezetésével azonban kiterjeszthető folytonos állapot- és akciótérre A fuzzy szabály interpoláció alapú Q-tanulás (FRIQ-learning) az FQ-learning (fuzzy Q-learning) kiegészítése ritka szabálybázisok alkalmazhatósága
32 FRIQ-learning A diszkrét Q-learning fuzzy modell alkalmazásával kiterjeszthető folytonos állapot-akció térre Fuzzy Q-learning (FQ-learning) E.g. 0-order Takagi-Sugeno Fuzzy Inference model Probléma: a szabályszám exponenciálisan nő az állapot dimenzió (antecedens) számával Lehetséges megoldás: Fuzzy Rule Interpolation (FRI) FQ-learning + FRI FIVE: FRIQ-learning
33 FRIQ-learning példák Nézzünk működő alkalmazásokat : ) Maze Pong
34 FRIQ-learning példák - Maze 2 állapot leíró x pozíció: 0-8 y pozíció: akció: elmozdulás (fel, le, jobbra, balra)
35 FRIQ-learning példák - Pong 4 állapot leíró labda x pozíció labda y pozíció labda iránya (6 eset) ütő pozíciója 1 akció: elmozdulás (fel, le, semerre)
36 FRIQ-learning példák Matlab bemutató : )
37 Felhasznált irodalom Richard S. Sutton and Andrew G. Barto Reinforcement Learning: An Introduction Peter Norvig, Stuart J. Russel Mesterséges intelligencia Modern megközelítésben 37
38 Köszönöm a figyelmet!
Korszerű információs technológiák
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Korszerű információs technológiák Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc,
Megerősítéses tanulás 2. előadás
Megerősítéses tanulás 2. előadás 1 Technikai dolgok Email szityu@eotvoscollegium.hu Annai levlista http://nipglab04.inf.elte.hu/cgi-bin/mailman/listinfo/annai/ Olvasnivaló: Sutton, Barto: Reinforcement
Megerősítéses tanulás
Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:
Stratégiák tanulása az agyban
Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
Programozási módszertan. A gépi tanulás alapmódszerei
SZDT-12 p. 1/24 Programozási módszertan A gépi tanulás alapmódszerei Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu SZDT-12 p. 2/24 Ágensek Az új
Megerősítéses tanulás 7. előadás
Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig
Adaptív menetrendezés ADP algoritmus alkalmazásával
Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet
Megerősítéses tanulás
Gépi tanulás (Szekvenciális döntési probléma) Megerősítéses tanulás Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Az egész világot nem tudjuk modellezni,
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Megerősítéses tanulás Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Ágens tudása: Induláskor: vagy ismeri már a környezetet
Intelligens ágensek. Mesterséges intelligencia február 28.
Intelligens ágensek Mesterséges intelligencia 2014. február 28. Ágens = cselekvő Bevezetés Érzékelői segítségével érzékeli a környezetet Beavatkozói/akciói segítségével megváltoztatja azt Érzékelési sorozat:
Dr. Vincze Dávid, Miskolci Egyetem, Informatikai Intézet: Szabálybázis redukció az FRIQ-tanulási módszerben
Kutatási jelentés Dr. Vincze Dávid, Miskolci Egyetem, Informatikai Intézet: Szabálybázis redukció az FRIQ-tanulási módszerben A már korábbi kutatások során kifejlesztett és bemutatott fuzzy szabály interpoláció
DOKTORANDUSZ FÓRUM, 1999 Miskolc, 1999. november. Megerősítő tanulási módszerek alkalmazása az informatikában
DOKTORANDUSZ FÓRUM, 1999 Miskolc, 1999. november Megerősítő tanulási módszerek alkalmazása az informatikában STEFÁN PÉTER Miskolci Egyetem, Alkalmazott Informatikai Tanszék 3515 Miskolc-Egyetemváros 1.
Dunaújvárosi Főiskola Informatikai Intézet. Intelligens ágensek. Dr. Seebauer Márta. főiskolai tanár
Dunaújvárosi Főiskola Informatikai Intézet Intelligens ágensek Dr. Seebauer Márta főiskolai tanár seebauer.marta@szgti.bmf.hu Ágens Ágens (agent) bármi lehet, amit úgy tekinthetünk, hogy érzékelők (sensors)
Megerősítéses tanulás 9. előadás
Megerősítéses tanulás 9. előadás 1 Backgammon (vagy Ostábla) 2 3 TD-Gammon 0.0 TD() tanulás (azaz időbeli differencia-módszer felelősségnyomokkal) függvényapproximátor: neuronháló 40 rejtett (belső) neuron
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége, hogy ilyen problémákkal mégis megbirkozzék.
Vizsga, 2015. dec. 22. B cs. B1. Hogyan jellemezhetők a tanulást igénylő feladatok? (vendégelőadás) Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége,
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Keresés ellenséges környezetben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Ellenség
Problémamegoldás kereséssel. Mesterséges intelligencia március 7.
Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési
Komponensek keresése a megerősítéses tanulásban
Eötvös Loránd Tudományegyetem Informatikai Kar Komponensek keresése a megerősítéses tanulásban Doktori értekezés Takács Bálint témavezető: Dr. habil. Lőrincz András tudományos főmunkatárs ELTE Információs
12. előadás - Markov-láncok I.
12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Tanulás elosztott rendszerekben/3
Tanulás elosztott rendszerekben/3 MARL Multi Agent Reinforcement Learning Többágenses megerősítéses tanulás Kezdjük egy ágenssel. Legyenek a környezeti állapotai s-ek, cselekvései a-k, az ágens cselekvéseit
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
Mesterséges intelligencia 3. laborgyakorlat
Mesterséges intelligencia 3. laborgyakorlat Kétszemélyes játékok - Minimax A következő típusú játékok megoldásával foglalkozunk: (a) kétszemélyes, (b) determinisztikus, (c) zéróösszegű, (d) teljes információjú.
Numerikus matematika
Numerikus matematika Baran Ágnes Gyakorlat Nemlineáris egyenletek Baran Ágnes Numerikus matematika 9.10. Gyakorlat 1 / 14 Feladatok (1) Mutassa meg, hogy az 3x 3 12x + 4 = 0 egyenletnek van gyöke a [0,
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)
Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses
Megerősítéses tanulás
Megerősítéses tanulás 2 Múltbeli események Tudás A világ tanult szabályosságai Tudatosság? A konkrét megfigyelésből kikövetkeztetett információ Döntéshozás Érzékelés Izomvezérlés How to build a decision
Hidden Markov Model. March 12, 2013
Hidden Markov Model Göbölös-Szabó Julianna March 12, 2013 Outline 1 Egy példa 2 Feladat formalizálása 3 Forward-algoritmus 4 Backward-algoritmus 5 Baum-Welch algoritmus 6 Skálázás 7 Egyéb apróságok 8 Alkalmazás
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 8. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.
E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek
NGB_IN040_1 SZIMULÁCIÓS TECHNIKÁK dr. Pozna Claudio Radu, Horváth Ernő
SZÉCHENYI ISTVÁN EGYETEM Műszaki Tudományi Kar Informatika Tanszék BSC FOKOZATÚ MÉRNÖK INFORMATIKUS SZAK NGB_IN040_1 SZIMULÁCIÓS TECHNIKÁK dr. Pozna Claudio Radu, Horváth Ernő Fejlesztői dokumentáció GROUP#6
Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
Gépi tanulás és Mintafelismerés
Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,
GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.
ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem
előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás
13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Intelligens adatelemzés
Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
DIFFERENCIAEGYENLETEK
DIFFERENCIAEGYENLETEK Példa: elsőrendű állandó e.h. lineáris differenciaegyenlet Ennek megoldása: Kezdeti feltétellel: Kezdeti feltétel nélkül ha 1 és a végtelen összeg (abszolút) konvergens: / 1 Minden
Gépi tanulás a gyakorlatban. Bevezetés
Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis
Valószínűségi modellellenőrzés Markov döntési folyamatokkal
Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek
4. Lokalizáció Magyar Attila
4. Lokalizáció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. szeptember 23. 4. Lokalizáció 2 4. Tartalom
Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán
Név KP Blokk neve KP Felelıs vizsgáztató Kombinatorikus módszerek és algoritmusok 5 MAT 10 Dr. Tuza Zsolt Diszkrét és folytonos dinamikai rendszerek matematikai alapjai 5 Matematika Dr. Hartung Ferenc
Számítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
1. gyakorlat. Mesterséges Intelligencia 2.
1. gyakorlat Mesterséges Intelligencia. Elérhetőségek web: www.inf.u-szeged.hu/~gulyasg mail: gulyasg@inf.u-szeged.hu Követelmények (nem teljes) gyakorlat látogatása kötelező ZH írása a gyakorlaton elhangzott
(Diszkrét idejű Markov-láncok állapotainak
(Diszkrét idejű Markov-láncok állapotainak osztályozása) March 21, 2019 Markov-láncok A Markov-láncok anaĺızise főként a folyamat lehetséges realizációi valószínűségeinek kiszámolásával foglalkozik. Ezekben
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
A szimplex algoritmus
. gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék 2012/13 2. félév 4. Előadás Dr. Kulcsár Gyula egyetemi docens Gyártórendszerek egyszerűsített irányítási modellje Zavaró
Az informatika logikai alapjai
Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. Példák Az alábbi világokban állításokat akarunk megfogalmazni: A táblára színes karikákat
Mesterséges intelligencia. Gregorics Tibor people.inf.elte.hu/gt/mi
people.inf.elte.hu/gt/mi Szakirodalom Könyvek Fekete István - - Nagy Sára: Bevezetés a mesterséges intelligenciába, LSI Kiadó, Budapest, 1990, 1999. ELTE-Eötvös Kiadó, Budapest, 2006. Russel, J. S., Norvig,
Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel
Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11.
Haszongépj pjármű fékrendszer intelligens vezérl rlése Németh Huba Knorr-Bremse Kutatási és s Fejlesztési si Központ, Budapest 2004. November 17. Knorr-Bremse 19.11.2004 Huba Németh 1 Tartalom Motiváció
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9
... 3 Előszó... 9 I. Rész: Evolúciós számítások technikái, módszerei...11 1. Bevezetés... 13 1.1 Evolúciós számítások... 13 1.2 Evolúciós algoritmus alapfogalmak... 14 1.3 EC alkalmazásokról általában...
A Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
A Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer
Gépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)
Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás
A megerosítéses tanulás és a szimulált hutés kombinált használata: algoritmusok és alkalmazások
MISKOLCI EGYETEM DOKTORI (PH.D.) TÉZISFÜZETEI HATVANY JÓZSEF INFORMATIKAI TUDOMÁNYOK DOKTORI ISKOLA A megerosítéses tanulás és a szimulált hutés kombinált használata: algoritmusok és alkalmazások Készítette:
10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai
Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál
A megerősítéses tanulás alkalmazása az Othello játékban
Debreceni Egyetem Informatikai Kar A megerősítéses tanulás alkalmazása az Othello játékban Témavezető: Dr. Várterész Magda Egyetemi docens Készítette: Andorkó Gábor Programtervező informatikus (B.Sc.)
Ambiens szabályozás problémája Kontroll és tanulás-1
Ambiens szabályozás problémája Kontroll és tanulás-1 Ambiens (fizikai) tér Ambiens Intelligencia szenzorok beavatkozók Ágens szervezet AmI - megfigyelés, elemzés - tervezés, megtanulás AmI - statikus -
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
JAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN
JAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN Supporting Top-k item exchange recommendations in large online communities Barabás Gábor Nagy Dávid Nemes Tamás Probléma Cserekereskedelem
Mesterséges intelligencia 2. laborgyakorlat
Mesterséges intelligencia 2. laborgyakorlat Keresési módszerek A legtöbb feladatot meg lehet határozni keresési feladatként: egy ún. állapottérben, amely tartalmazza az összes lehetséges állapotot fogjuk
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Számításelmélet. Második előadás
Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi
A mesterséges intelligencia alapjai, alapelvek
Források: Stanford University Artifical Intelligence course: www.ai-class.com Alison Cawsey: Mesterséges Intelligencia, Panem könyvkiadó 2002, ISBN 9635452853 Stuart Russel és Peter Norvig: Mesterséges
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?
Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,
Mesterséges Intelligencia I.
Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a
Közgazdaságtan I. Számolási feladat-típusok a számonkérésekre 6. hét. 2018/2019/I. Kupcsik Réka
Közgazdaságtan I. Számolási feladat-típusok a számonkérésekre 6. hét 2018/2019/I. Témakörök I. Jelenérték-számítás 1. II. Jelenérték-számítás 2. III. Intertemporális választás 1. IV. Intertemporális választás
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten
4. Laplace transzformáció és alkalmazása
4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - csak lokális információra alapozva Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Lokálisan
Függvények növekedési korlátainak jellemzése
17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6.
Programkonstrukciók Definíció Legyen π feltétel és S program A-n. A DO A A relációt az S-ből a π feltétellel képezett ciklusnak nevezzük, és (π, S)-sel jelöljük, ha 1. a / [π] : DO (a) = { a }, 2. a [π]
ÉPÜLETEK TŰZVÉDELME A TERVEZÉSTŐL A BEAVATKOZÁSIG TUDOMÁNYOS KONFERENCIA A BIM és a tűzvédelem The BIM and the fire protection
ÉPÜLETEK TŰZVÉDELME A TERVEZÉSTŐL A BEAVATKOZÁSIG TUDOMÁNYOS KONFERENCIA Budapest 2019. 04. 10. Nemzeti Közszolgálati Egyetem 1083 Budapest, Ludovika tér 2. Érces Gergő tű. őrnagy, egyetemi tanársegéd
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
Számelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA
BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BESZÉDTUDOMÁNY Az emberi kommunikáció egyik leggyakrabban használt eszköze a nyelv. A nyelv hangzó változta, a beszéd a nyelvi kommunikáció