Hidden Markov Model. March 12, 2013

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Hidden Markov Model. March 12, 2013"

Átírás

1 Hidden Markov Model Göbölös-Szabó Julianna March 12, 2013

2 Outline 1 Egy példa 2 Feladat formalizálása 3 Forward-algoritmus 4 Backward-algoritmus 5 Baum-Welch algoritmus 6 Skálázás 7 Egyéb apróságok 8 Alkalmazás

3 Példa elmúlt évek átlaghőmérsékletét, időjárását próbáljuk megbecsülni (adat nem áll rendelkezésre) ami megfigyelhető: fák évgyűrűi tudjuk, hogy hidegben kevésbé fejlődik a fa Meleg-hideg évek váltakozása: H C H C Hőmérséklet hatása az évgyűrűkre: S M L H C

4 Példa Állapotok: Hot, Cold Megfigyelés szimbólumai: Small, Medium, Large Állapotátmenet mátrix: [ 0.7 ] 0.3 A = Kibocsátási mátrix: [ ] 0.5 B = Megfigyelés: O = SMLS Feladat: határozzuk meg a legvalószínűbb állapotsorozatot, ami O-t generálta!

5 Mit jelent, hogy legvalószínűbb? Feladat: határozzuk meg a legvalószínűbb állapotsorozatot, ami O-t generálta! Dinamikus programozás: adott hosszúságú sorozatok közül megadja a legnagyobb valószínűségűt. HMM: olyan állapotsorozatot ad meg, ami a helyes állapotok várható számát maximalizálja

6 Emlékeztető Markov-lánc Egy X 1, X 2,..., X n valószínűségi változó sorozat, amire n-re teljesül: P(X n = x n X n 1 = x n 1, X n 1 = x n 1,..., X 1 = x 1 ) Egy lépéses átmenetvalószínűség: = P(X n = x n X n 1 = x n 1 ) p ij = P(X 1 = j X 0 = i)

7 Jelölések T : megfigyelt szekvencia hossza N: Markov-folyamat állapotainak száma M: megfigyelés szimbólumainak száma Q: Markov-folyamat állapotainak halmaza {q 0,..., q N 1 } V : megfigyelés szimbólumainak halmaza {0,..., M 1} A: állapotátmenet valószínűségek mátrixa B: megfigyelési valószínűségek mátrixa π: kezdeti eloszlás O: a megfigyelt szekvencia (O 0, O 1,..., O T 1,) λ = (A, B, π)

8 Jelölések Állapotátmenet valószínűségek mátrixa (A): a i,j = P(q j -ben vagyunk t + 1-ben q i -ben voltunk t-ben) stacionárius: t-től nem függ sorsztochasztikus, azaz j a i,j = 1 Megfigyelési valószínűségek mátrixa (B): b j (k) = P(O t = k t-ben q j -ben vagyunk) stacionárius: t-től nem függ sorsztochasztikus, azaz j b jk = 1

9 A három feladat 1 Adott a modell λ = (A, B, π) és egy O megfigyelés. Keressük P(O λ)-t! 2 Adott a modell λ = (A, B, π) és egy O megfigyelés. Keressük a háttérbeli Markov-folyamat legvalószínűbb állapotsorozatát! 3 Adott egy O megfigyelés, N és M dimenziók. Keressük λ = (A, B, π)-t, amire P(O λ) maximális!

10 1. feladat - Forward algoritmus Feladat: Adott a modell λ = (A, B, π) és egy O = (O 0, O 1,..., O T 1 ) megfigyelés. Keressük P(O λ)-t! (Állapotok a háttérben: X = (x 0, x 1,..., x T 1 )) P(O X, λ) = b x0 (O 0 ) b x1 (O 1 )... b xt 1 (O T 1 ) = T 2 P(X λ) = π x0 a x0,x 1 a x1,x 2 a xt 2,x T 1 = π x0 P(O X λ) Mivel P(O, X λ) = és P(λ) P(O X λ) P(X λ) P(O X, λ) P(X λ) = P(X λ) P(λ) A jobb oldalak egyenlőségéből adódik: i=0 = P(O, X λ) = P(O X, λ) P(X λ) T 1 i=0 a xi,x i+1 b xi (O i ) P(O X λ) P(λ)

11 1. feladat - Forward algoritmus A fentiekből: P(O λ) = X P(O, X λ) = X P(O X, λ) P(X λ) = X T 1 π x0 i=0 T 2 b xi (O i ) i=0 a xi,x i+1 Ennek a direkt kiszámítása: 2TN T lépés lenne. Hatékony kiszámitás: Forward-algoritmus

12 Forward algoritmus Rekurzív kiszámítás: 1 α 0 (i) = π i b i (O 0 ) α t (i) = P(O 0 O 1... O t, x t = q i λ) 2 t > 0 esetén: α t (i) = [ N 1 j=0 α t 1(j)a ji ] b i (O t ) 3 P(O λ) = N 1 j=0 α T 1(i) Lépésszám: N 2 T (Megjegyzés: A Viterbi-algoritmus ehhez nagyon hasonló, de helyett max van, és a legvalószínűbb szekvenciát adják meg. (ld. a korábban emĺıtett DP-feladat))

13 2. feladat - Backward algoritmus Feladat: Adott a modell λ = (A, B, π) és egy O megfigyelés. Keressük a levalószínűbb X = x 1 x 2... x T 1 állapotsorozatot! Legyen β t (i) = P(O t+1 O t+2... O T 1 x t = q i, λ) Rekurzív kiszámítás: 1 β T 1 (i) = 1, 0 i N 1 2 t < T 1 esetén: β t (i) = [ N 1 j=0 a ijb j (O t+1 β t+1 (j)) 3 Legyen γ t (i) = P(x t = q i O, λ) γ t (i) = α t(i)β t (i) P(O λ) 4 Legvalószínűbb állapot t-ben: argmax i γ t (i)

14 3. feladat - Modell tanítása Feladat: Adott O, N, M, keressük λ = (A, B, π)-t! Legyen γ t (i, j) == P(x t = q i, x t+1 = q j O, λ) = α t(i)a ij b j (t + 1)β t+1 (j) P(O λ) (azaz γ t (i, j) annak a valószínűsége, hogy t-kor az i állapotban vagyok, t + 1-ben pedig a j állapotban, ismerve az O szekvenciát és a modellt)

15 Modell tanítása 1 π i = γ 0 (i) 2 a ij = 3 b j (k) = T 2 t=0 γ t(i, j) T 2 t=0 γ t(i) t;o γ t=k t(j) t γ t(j) = q i q j átmenetek várható száma q i bármi átmenetek várható száma = q j -ben hányszor volt a megfigyelés k q j -ben hányszor jártunk

16 Modell tanítása Inicializálás: π i 1 N a ij 1 N b j (k) 1 M Algoritmus 1 Inicializálás 2 α, β, γ értékeinek számítása 3 λ = (A, B, π) becslése a fentiek alapján. 4 Ha P(O λ) növő, akkor iterálunk tovább

17 A relatív entrópiáról Legyenek X, Y diszkrét eloszlású valószínűségi változók! H(Y X ) = i y(i) log y(i) x(i) Álĺıtás Bizonyítás H(Y X ) = i H(Y X ) 0 y(i) log y(i) x(i) i y(i)( y(i) x(i) 1) = 0 (Felhasználtuk, hogy log x x 1)

18 Az eljárás helyes Cél: argmax λ P(O λ) = argmax λ X P(O, X λ) P(O, X λ) = P(X O, λ) P(O λ) λ: a modell paramétere, ezt próbálom közeĺıteni λ t : a modell paraméterének közeĺıtése Varázsolunk : szorozzunk be P(O, X λ t )-vel és összegezzünk X -re! P(O, X λ t ) log P(O, X λ) = X P(X O, λ t ) log P(X O, λ) + P(X O, λ t ) log P(O λ) X X

19 P(X O, λ t ) log P(O λ) = X P(X O, λ t )[log P(O, X λ) log P(X O, λ)] X A bal oldalon az X -től független tag kiemelhető (a megmaradt összeg értéke pedig 1), így: log P(O λ) = P(X O, λ t ) log P(O, X λ) P(X O, λ t ) log P(X O, λ) X X Jelölje: Q(λ λ t ) = X P(X O, λt ) log P(O, X λ) Cél: a következő iterációban ne csökkenjen a likelihood. log P(X λ t ) = X P(X O, λ t ) log P(O, X λ t ) X P(X O, λ t ) log P(X O, λ t )

20 Képezzük a két egyenlet különbségét: log P(O λ) log P(X λ t ) = Q(λ λ t ) Q(λ t λ t ) X P(X O, λ t ) log P(X O, λ) P(X O, λ t ) A harmadik tag egy relatív entrópia (-1)-szerese, így log P(O λ) log P(X λ t ) 0-hoz elegendő: Q(λ λ t ) Q(λ t λ t ) 0 Használható az EM algoritmus: 1 Számold ki Q(λ λ t )! 2 λ t+1 = argmaxq(λ λ t )

21 Q(λ λ t ) = X P(X O, λ t ) log P(O, X λ) P(O, X λ) = N M N N b j (i) E j (i,x ) ( a k,l ) A k,l (X ) j=1 i=1 k=1 l=1 E j (i, X ): hányszor használtam a j állapotot i szimbólum kibocsátására A k,l (X ): hány k l ugrás volt az X útvonalon log P(O, X λ) = Ezt beírva Q-ba: X N M N N E j (i, X ) log b j (i)+ A k,l (X ) log a k,l ) j=1 i=1 j=1 i=1 Q(λ λ t ) = k=1 l=1 N M N N P(X O, λ t )( E j (i, X ) log b j (i)+ A k,l (X ) log a k,l ))) k=1 l=1

22 X j=1 i=1 Q(λ λ t ) = N M N N P(X O, λ t )( E j (i, X ) log b j (i)+ A k,l (X ) log a k,l ))) k=1 l=1 E j (i, X ) és A k,l (X ) : csak X -től függnek, λ-tól nem b j (i), a k,l : X -től függetlenek, ezeket kell update-elni Q(λ λ t ) = N j=1 i=1 M log b j (i) X P(X O, λ t )E j (i, X )+ N N log a k,l P(X O, λ t )A k,l (X ) k=1 l=1 X

23 Álĺıtás N k=1 l=1 N log a k,l E(A k,l (X )) maximális, ha a k,l = E(A k,l(λ t )) l E(A k,l (λt )) Bizonyítás N k=1 l=1 N E(A k,l (X )) log N k=1 l=1 Bővítsünk l E(A k,l (λt ))-vel! E(A k,l (λ t )) l E(A k,l (λt )) N E(A k,l (X )) log a k,l 0

24 N N k=1 l=1 l =1 N E(A k,l (λ t E(A k,l (λ t )) )) N l =1 E(A k,l (λt )) log E(A k,l (λ t )) N l =1 E(A k,l (λt )) N N k=1 l=1 l =1 k=1 l =1 N E(A k,l (λ t E(A k,l (λ t )) )) N l =1 E(A k,l (λt )) log a k,l N N N = [ E(A k,l (λ t )) log l=1 E(A k,l (X )) N l =1 E(A k,l (λt )) a k,l ] Relatív entrópia miatt ez tagonként 0 E(A k,l (λ t )) N l =1 E(A k,l (λt ))

25 Skálázás Valószínűségek szorzatával kell számolni alulcsordulás Megoldás: α, β értékek skálázása t = 0 - ra: α t (i) = α 0 (i) = α 0 (i) 1 c 0 = N 1 j=0 α 0(j) ˆα 0 (i) = c 0 α 0 N 1 j=0 α t 1 (j)a j,i b i (O t ) t > 0 - ra: α t (i) = N 1 j=0 ˆα t 1(j)a j,i b i (O t ) 1 c t = N 1 j=0 α t(j) ˆα t (i) = c t α t

26 Skálázás Álĺıtás ˆα t (i) = c 0 c 1... c t α t (i) Bizonyítás: indukcióval. t = 0 esetben triv. Tegyük fel, hogy t-re igaz, ekkor t + 1-re: ˆα t+1 (i) = c t+1 α t+1 = N 1 c t+1 j=0 Kihasználva az indukciós feltevést: ˆα t (j)a j,i b i (O t+1 ) N 1 = c 0 c 1... c t+1 α t (j)a j,i b i (O t+1 ) = c 0 c 1... c t+1 α t+1 (i) j=0

27 Skálázás Következmény:. Ennek felhasználásával: 1 = N 1 j=1 N 1 j=1 ˆα T 1 (j) = 1 N 1 ˆα T 1 (j) = c 0 c 1... c T 1 = c 0 c 1... c T 1 P(O λ) P(O λ) = 1 T 1 i=0 c i j=0 α T 1 (j) β-k skálázása ugyanígy megy: ˆβt (i) = c t β t (i) a modellben γ t (i) és γ t (i, j) számításához használhatóak a ˆβ t és ˆα t értékek

28 Egy állapotban maradás valószínűsége Az eddigiek alapján: p i (d) = (a ij ) d 1 (1 a ij ) = d-szer egymás után S i -ben vagyok (pontosan) exponenciálisan lecseng nem valósághű tipikus eset: eloszlásunk van arra, hogy az i-dik állapotban hány állapotot várakozik a modell, mielőtt továbblép Ekkor a modell így változik: 1 q 1 = S i -et kiválasztjuk π alapján 2 d 1 -et sorsoljuk p q1 (d) alapján 3 O 1 O 2... O d1 -et generáljuk b q1 (O 1 O 2... O d1 ) alapján (ez tipikusan d 1 t=1 b q 1 (O t )) 4 q 2 = S 2 -t kiválasztjuk az a q1,q 2 -k alapján

29 Egy állapotban maradás valószínűsége Természetesen ekkor az α, β formulája is módosul. Például: α t (i) = π q1 p q1 (d 1 )P(O 1 O 2... O d1 q 1 ) q d a q1,q 2 p q2 (d 2 )P(O d1 +1O d O d1 +d 2 q 2 )... a qr 1,q r p qr (d r )P(O d1 + +d r 1 +1O d1 + +d r O d1 + +d r q 2 )... A képletek is módosulnak, erre most itt nem térnék ki.

30 Egy szövegbányászati alkalmazás Adott egy hosszabb időszakot felölelő cikkgyűjtemény. Ebben szeretnénk automatikusan témákat találni, majd pedig a témák evolúcióját, alakulásait vizsgálni. A témákat nyelvmodellekkel jellemezzük. Feltételezzük, hogy van k darab téma (T 1,..., T k ) és egy általános nyelvmodellünk(b). Állapotok: témák A megfigyelés szimbólumai: a szavak

31 Egy szövegbányászati alkalmazás Ebből konstruálunk egy k + 1 állapotú HMM-et, ahol a Markov-folyamatban T i -ből T j -be közvetlenül nem léphetek, mindig csak B-n keresztül Amire szükségünk van: a háttérfolyamat legvalószínűbb állapotsorozata, később ezt tudjuk arra használni, hogy adott időszakok legjellemzőbb témáit és azok kapcsolatait feltárjuk

32 Köszönöm a figyelmet! Felhasznált irodalom: Mark Stamp: A Revealing Introduction to Hidden Markov Models Lawrence R. Rabiner: A tutorial on Hidden Markov Models and selected applications in speech recognition Miklós István: Sztochasztikus modellek a bioinformatikában, előadásjegyzet (2009.) Mei, Zhai: Discovering evolutionary theme patterns from text: an exploration of temporal text mining

Diszkrét idejű felújítási paradoxon

Diszkrét idejű felújítási paradoxon Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N

Részletesebben

(Diszkrét idejű Markov-láncok állapotainak

(Diszkrét idejű Markov-láncok állapotainak (Diszkrét idejű Markov-láncok állapotainak osztályozása) March 21, 2019 Markov-láncok A Markov-láncok anaĺızise főként a folyamat lehetséges realizációi valószínűségeinek kiszámolásával foglalkozik. Ezekben

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható folytonos idejű Markovláncok  segítségével. E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

i p i p 0 p 1 p 2... i p i

i p i p 0 p 1 p 2... i p i . vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma

Részletesebben

Markov modellek 2015.03.19.

Markov modellek 2015.03.19. Markov modellek 2015.03.19. Markov-láncok Markov-tulajdonság: egy folyamat korábbi állapotai a későbbiekre csak a jelen állapoton keresztül gyakorolnak befolyást. Semmi, ami a múltban történt, nem ad előrejelzést

Részletesebben

Rejtett Markov Modell

Rejtett Markov Modell Rejtett Markov Modell A Rejtett Markov Modell használata beszédfelismerésben Készítette Feldhoffer Gergely felhasználva Fodróczi Zoltán előadásanyagát Áttekintés hagyományos Markov Modell Beszédfelismerésbeli

Részletesebben

Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }.

Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }. . Markov-láncok. Definíció és alapvető tulajdonságok Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0,,,..., N}, {0,,,... }.. definíció. S értékű valószínűségi

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

KÖZELÍTŐ INFERENCIA II.

KÖZELÍTŐ INFERENCIA II. STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Véletlen szám generálás

Véletlen szám generálás 2. elıadás Véletlen szám generálás LCG: (0 < m, 0

Részletesebben

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31 Márkus László Véletlen bolyongás 2015. március 17. 1 / 31 Véletlen bolyongás Márkus László 2015. március 17. Modell Deníció Márkus László Véletlen bolyongás 2015. március 17. 2 / 31 Modell: Egy egyenesen

Részletesebben

Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.

Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1. Nagyságrendek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 018. február 1. Az O, Ω, Θ jelölések Az algoritmusok

Részletesebben

Statisztikai módszerek a skálafüggetlen hálózatok

Statisztikai módszerek a skálafüggetlen hálózatok Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Yule és Galton-Watson folyamatok

Yule és Galton-Watson folyamatok Dr. Márkus László Yule és ok 2015. március 9. 1 / 36 Yule és ok Dr. Márkus László 2015. március 9. Yule folyamat Dr. Márkus László Yule és ok 2015. március 9. 2 / 36 A független stacionárius növekmény

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

KÖZELÍTŐ INFERENCIA II.

KÖZELÍTŐ INFERENCIA II. STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Egy Markov modell alapú számjegy felismerési módszer

Egy Markov modell alapú számjegy felismerési módszer MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR TUDOMÁNYOS DIÁKKÖRI DOLGOZAT Egy Markov modell alapú számjegy felismerési módszer Forgács Attila programtervező informatikus hallgató Konzulens: Dr. Fegyverneki

Részletesebben

Mesterséges Intelligencia I.

Mesterséges Intelligencia I. Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt rövid kérdés megválaszolása egyenként 6 pontért, melyet minimum

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Diszkrét Matematika MSc hallgatók számára. 4. Előadás

Diszkrét Matematika MSc hallgatók számára. 4. Előadás Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét

Részletesebben

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07

Részletesebben

Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26

Rekurzív sorozatok. SZTE Bolyai Intézet   nemeth. Rekurzív sorozatok p.1/26 Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma. Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6.

Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6. Programkonstrukciók Definíció Legyen π feltétel és S program A-n. A DO A A relációt az S-ből a π feltétellel képezett ciklusnak nevezzük, és (π, S)-sel jelöljük, ha 1. a / [π] : DO (a) = { a }, 2. a [π]

Részletesebben

Kauzális modellek. Randall Munroe

Kauzális modellek. Randall Munroe Kauzális modellek Randall Munroe A kauzalitás reprezentációi Determinisztikus Sztochasztikus Feltételes valószínűség < > hipergráf Irányított gráf: több ok, egy okozat < > Bayes-háló Cirkuláris kauzalitás

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Differenciaegyenletek

Differenciaegyenletek Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2009/10 tanév, I. félév Losonczi László (DE) Differenciaegyenletek 2009/10 tanév, I. félév 1 / 11

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

4. Előadás: Erős dualitás

4. Előadás: Erős dualitás Optimalizálási eljárások/operációkutatás MSc hallgatók számára 4. Előadás: Erős dualitás Előadó: Hajnal Péter 2018. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét d

Részletesebben

Gauss-Seidel iteráció

Gauss-Seidel iteráció Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

Sztochasztikus temporális logikák

Sztochasztikus temporális logikák Sztochasztikus temporális logikák Teljesítmény és szolgáltatásbiztonság jellemzők formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 5. gyakorlat 013/14. tavaszi félév 1. Folytonos eloszlások Eloszlásfüggvény és sűrűségfüggvény Egy valószínűségi változó, illetve egy eloszlás eloszlásfüggvényének egy

Részletesebben

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15. ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.cs.ubbcluj.ro/~kasa/formalis.html Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezet ), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában Horváth Gábor ghorvath@hit.bme.hu (Horváth András, Telek Miklós) - p. 1 Motiváció, problémafelvetés

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós

MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós MBNK12: Permutációk el adásvázlat 2016 április 11 Maróti Miklós 1 Deníció Az A halmaz permutációin a π : A A bijektív leképezéseket értjünk Tetsz leges n pozitív egészre az {1 n} halmaz összes permutációinak

Részletesebben

Megerősítéses tanulási módszerek és alkalmazásaik

Megerősítéses tanulási módszerek és alkalmazásaik MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc, 2017. szeptember 15. Tartalom

Részletesebben

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) Javítási értékelési útmutató 1. Melyek azok a pozitív p és q prímek, amelyekre a számok mindegyike

Részletesebben

Osztott algoritmusok

Osztott algoritmusok Osztott algoritmusok A benzinkutas példa szimulációja Müller Csaba 2010. december 4. 1. Bevezetés Első lépésben talán kezdjük a probléma ismertetésével. Adott két n hosszúságú bináris sorozat (s 1, s 2

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

Függvények növekedési korlátainak jellemzése

Függvények növekedési korlátainak jellemzése 17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,

Részletesebben

Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel p. 1/29. Ábele-Nagy Kristóf BCE, ELTE

Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel p. 1/29. Ábele-Nagy Kristóf BCE, ELTE Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel Ábele-Nagy Kristóf BCE, ELTE Bozóki Sándor BCE, MTA SZTAKI 2010. november 4. Nem teljesen kitöltött páros

Részletesebben

GPK M1 (BME) Interpoláció / 16

GPK M1 (BME) Interpoláció / 16 Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának

Részletesebben

Mátrixhatvány-vektor szorzatok hatékony számítása

Mátrixhatvány-vektor szorzatok hatékony számítása Mátrixhatvány-vektor szorzatok hatékony számítása Izsák Ferenc ELTE TTK, Alkalmazott Analízis és Számításmatematikai Tanszék & ELTE-MTA NumNet Kutatócsoport munkatárs: Szekeres Béla János Alkalmazott Analízis

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

JAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN

JAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN JAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN Supporting Top-k item exchange recommendations in large online communities Barabás Gábor Nagy Dávid Nemes Tamás Probléma Cserekereskedelem

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

5. előadás - Regressziószámítás

5. előadás - Regressziószámítás 5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat

Részletesebben

1. ábra ábra

1. ábra ábra A kifejtési tétel A kifejtési tétel kimondásához először meg kell ismerkedni az előjeles aldetermináns fogalmával. Ha az n n-es A mátrix i-edik sorának és j-edik oszlopának kereszteződésében az elem áll,

Részletesebben

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén

Részletesebben

SHk rövidítéssel fogunk hivatkozni.

SHk rövidítéssel fogunk hivatkozni. Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,

Részletesebben

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés) Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Szindbád mellett, egyszerre csak egy háremhölgy jelenik meg. Szindbád. hogy a kalifának hány háremhölgye van, viszont semmit nem tud arról,

Szindbád mellett, egyszerre csak egy háremhölgy jelenik meg. Szindbád. hogy a kalifának hány háremhölgye van, viszont semmit nem tud arról, A Szindbád probléma. Optimális választás megtalálása. Rendkívül népszerű és egyben tanulságos a következő valószínűségi, optimalizációs probléma, mely Magyarországon Szindbád problémája néven vált ismertté.

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Magyary Zoltán Posztdoktori beszámoló előadás

Magyary Zoltán Posztdoktori beszámoló előadás Magyary Zoltán Posztdoktori beszámoló előadás Tengely Szabolcs 2007. november 9. Számelméleti Szeminárium tengely@math.klte.hu slide 1 Eredmények Eredmények Chabauty (T.Sz.): On the Diophantine equation

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben