A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában"

Átírás

1 A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában Horváth Gábor (Horváth András, Telek Miklós) - p. 1

2 Motiváció, problémafelvetés A Markovi Érkezési Folyamat (MAP) MAP illesztési megoldások MAP alapú sorbanállási hálózatok - p. 2

3 Motiváció Motiváció Aggregációs hálózatokban a legérdekesebb minőségi jellemzők a bufferekben "keletkeznek" Rendszerben lévő buffereket azonosítjuk és a bufferek hálózatát vizsgáljuk tovább - p. 3

4 Motiváció Motiváció Aggregációs hálózatokban a legérdekesebb minőségi jellemzők a bufferekben "keletkeznek" Rendszerben lévő buffereket azonosítjuk és a bufferek hálózatát vizsgáljuk tovább - p. 3

5 Motiváció Motiváció Aggregációs hálózatokban a legérdekesebb minőségi jellemzők a bufferekben "keletkeznek" Rendszerben lévő buffereket azonosítjuk és a bufferek hálózatát vizsgáljuk tovább - p. 3

6 Motiváció Motiváció Aggregációs hálózatokban a legérdekesebb minőségi jellemzők a bufferekben "keletkeznek" Rendszerben lévő buffereket azonosítjuk és a bufferek hálózatát vizsgáljuk tovább A bufferhálózat vizsgálata történhet szimulációval vagy analízissel - p. 3

7 Számos QoS jellemző gyorsan és pontosan kiszámolható, ha: Motiváció A csomagérkezési időközök exponenciális eloszlásúak (Poisson folyamat) A csomagméretek exponenciális eloszlásúak Ezzel szemben a gyakorlati vizsgálatok (mérések) tapasztalatai: A forgalom nem Poisson folyamat A csomagérkezési idők összefüggők LRD tulajdonság Fraktális viselkedés Kérdések: Milyen eszközzel modellezzük az ilyen összetett forgalmat? Hogy számítsuk a hálózat QoS jellemzőit? - p. 4

8 Markovi Érkezési Folyamatok Egy állapot-átmeneti rendszer (Markov lánc) modulálja az érkezéseket a háttérben Bizonyos átmenetek érkezést generálnak, mások nem: Markovi Érkezési Folyamatok MAP illesztés Statisztikai alapú MAP illesztés Érkezési időközök MAP illesztés, összefoglalás Validálás Az együttes momentumok Inverz karakterizáció együttes momentumokkal - p. 5

9 Markovi Érkezési Folyamatok Egy állapot-átmeneti rendszer (Markov lánc) modulálja az érkezéseket a háttérben Bizonyos átmenetek érkezést generálnak, mások nem: Markovi Érkezési Folyamatok MAP illesztés Statisztikai alapú MAP illesztés Érkezési időközök MAP illesztés, összefoglalás Validálás Az együttes momentumok Inverz karakterizáció együttes momentumokkal D 0 = 0 5 5, D 1 = p. 5

10 Markovi Érkezési Folyamatok Egy állapot-átmeneti rendszer (Markov lánc) modulálja az érkezéseket a háttérben Bizonyos átmenetek érkezést generálnak, mások nem: Markovi Érkezési Folyamatok MAP illesztés Statisztikai alapú MAP illesztés Érkezési időközök MAP illesztés, összefoglalás Validálás Az együttes momentumok Inverz karakterizáció együttes momentumokkal Előnyök: Könnyen szimulálható Hatékonyan megoldható sorbanállási rendszerek: M/M/1 MAP/MAP/1, M/G/1 MAP/G/1 - p. 5

11 MAP illesztés Markovi Érkezési Folyamatok MAP illesztés Statisztikai alapú MAP illesztés Érkezési időközök MAP illesztés, összefoglalás Validálás Az együttes momentumok Inverz karakterizáció együttes momentumokkal Hogyan lesz mérési eredményekből / adatsorból MAP? Két módszertan: Likelihood alapú: Olyan MAP-ot készít, ami a lehető legnagyobb valószínűséggel generálhatta az adatsort Az adatsor minden tagját figyelembe veszi Drasztikusan lassul az adatsor növelésével Statisztikai alapú: Az adatsorból jól megválasztott statisztikai mennyiségeket számolunk (momentumok, autokorreláció) Olyan MAP-ot keresünk, amely az adatsorral megegyező statisztikával bír Minél több az adat, annál pontosabb - p. 6

12 Statisztikai alapú MAP illesztés Markovi Érkezési Folyamatok MAP illesztés Statisztikai alapú MAP illesztés Érkezési időközök MAP illesztés, összefoglalás Validálás Az együttes momentumok Inverz karakterizáció együttes momentumokkal Hatékony MAP illesztés kulcsa: 2 lépcsős megoldás 1. Érkezési idők eloszlásának 2. Összefüggőségi jellemzők A hatékonyság oka: két egymást követő optimalizálási feladat sokkal hatékonyabb, mint egy dupla annyi változós optimalizálási feladat - p. 7

13 Érkezési időközök A független mintákra való Markovi eloszlásillesztés sokat vizsgált terület, sok eredménnyel. Markovi Érkezési Folyamatok MAP illesztés Statisztikai alapú MAP illesztés Érkezési időközök MAP illesztés, összefoglalás Validálás Az együttes momentumok Inverz karakterizáció együttes momentumokkal - p. 8

14 Összefüggőségi jellemzők Tipikusan autokorrelációval jellemzik az összefüggőséget: Markovi Érkezési Folyamatok MAP illesztés Statisztikai alapú MAP illesztés Érkezési időközök MAP illesztés, összefoglalás Validálás Az együttes momentumok Inverz karakterizáció együttes momentumokkal Tulajdonságok: ρ = E[(X 0 E(X))(X 1 E(X))] σ 2 pozitív: átlag feletti időket várhatóan átlag feletti követi és vice versa negatív: átlag feletti időket várhatóan átlag alatti követi és vice versa - p. 9

15 Összefüggőségi jellemzők Markovi Érkezési Folyamatok MAP illesztés Statisztikai alapú MAP illesztés Érkezési időközök MAP illesztés, összefoglalás Validálás Az együttes momentumok Inverz karakterizáció együttes momentumokkal Kiterjesztés: a k távolságra lévő érkezési időközök korrelációja: ρ k = E[(X 0 E(X))(X k E(X))] σ 2 Példa: LBL-TCP adatsor (Lawrence Berkeley Laboratory forgalma, 2 óra hosszú) Lag-k korr Lag trace Lag-k korr e-05 1e-06 trace 1e Lag - p. 10

16 MAP illesztés, összefoglalás Markovi Érkezési Folyamatok MAP illesztés Statisztikai alapú MAP illesztés Érkezési időközök MAP illesztés, összefoglalás Validálás Az együttes momentumok Inverz karakterizáció együttes momentumokkal 1. Érkezési időközök : Adott: az adatsor Cél: az érkezési időközök eloszlásának Eszköz: momentumillesztés, vagy optimalizálás Eredmény: egy MAP (D 0, D 1 ), mely még független érkezéseket generál 2. Összefüggőség : Adott: az adatsorból kinyert autokorrelációs fv., és a független MAP (D 0, D 1 ) Cél: az érkezési időközök eloszlásának megtartása mellett az összefüggőség Eszköz: nemlineáris optimalizálás Eredmény: a kész MAP (D 0, D 1 ) - p. 11

17 Validálás Markovi Érkezési Folyamatok MAP illesztés Statisztikai alapú MAP illesztés Érkezési időközök MAP illesztés, összefoglalás Validálás Az együttes momentumok Inverz karakterizáció együttes momentumokkal 2 sorbanállási rendszer, determinisztikus kiszolgálással: Tapasztalat: +sorhossz eloszlások összehasonlítása Relatíve rossz eredmények akkor is, ha jól sikerült a MAP Tanulság: Az autokorrelációs függvény illesztésére törekedés tévút! ρ k = E[(X 0 E(X))(X k E(X))] σ 2 = 1 σ 2 (E(X 0X k ) +...) Más összefüggőségi jellemzők is vannak - p. 12

18 Az együttes momentumok Markovi Érkezési Folyamatok MAP illesztés Statisztikai alapú MAP illesztés Érkezési időközök MAP illesztés, összefoglalás Validálás Az együttes momentumok Inverz karakterizáció együttes momentumokkal Az együttes momentumok fogalma: Tulajdonságok: η i,j = E(X i 0X j 1 ) Csak a szomszédos érkezésekre vonatkoznak, de ez elegendő, mert a magasabb fokú együttes momentumok meghatározzák a MAP összefüggőségét Adatsorból is könnyen előállítható: η i,j = 1 N 1 N 1 k=1 x i k x j k+1 - p. 13

19 Inverz karakterizáció együttes momentumokkal Markovi Érkezési Folyamatok MAP illesztés Statisztikai alapú MAP illesztés Érkezési időközök MAP illesztés, összefoglalás Validálás Az együttes momentumok Inverz karakterizáció együttes momentumokkal Fő eredmény: MAP inverz karakterizáció n 2 egyszerű statisztikai mennyiséggel 1. 2n 1 momentumból előállítjuk az érkezési időközök eloszlását 2. (n 1) 2 együttes momentumból összefüggővé tesszük a MAP-ot Eljárásunk tulajdonságai: Egyértelmű Gyors (azonnali válasz) De adhat rossz MAP-ot: ezeket addig kell transzformálni, amíg érvényes MAP-ot nem kapunk - p. 14

20 MAP alapú sorbanállási hálózatok Poisson helyett MAP bemenő forgalom: MAP alapú sorbanállási hálózatok MAP alapú sorbanállási hálózatok - p. 15

21 MAP alapú sorbanállási hálózatok Poisson helyett MAP bemenő forgalom: MAP alapú sorbanállási hálózatok MAP alapú sorbanállási hálózatok - p. 15

22 MAP alapú sorbanállási hálózatok Poisson helyett MAP bemenő forgalom: MAP alapú sorbanállási hálózatok MAP alapú sorbanállási hálózatok A MAP osztály zárt: Elágazásra Szuperpozícióra A kimenőforgalomra? - p. 15

23 MAP alapú sorbanállási hálózatok Legyen a csomag kiszolgálási folyamat is MAP: MAP alapú sorbanállási hálózatok MAP alapú sorbanállási hálózatok - p. 16

24 MAP alapú sorbanállási hálózatok Legyen a csomag kiszolgálási folyamat is MAP: MAP alapú sorbanállási hálózatok MAP alapú sorbanállási hálózatok - p. 16

25 MAP alapú sorbanállási hálózatok Legyen a csomag kiszolgálási folyamat is MAP: MAP alapú sorbanállási hálózatok MAP alapú sorbanállási hálózatok A kimenőfolyamat egy állapotterű MAP! n állapotú MAP közelítés: A MAP/MAP/1 rendszer kimenőfolyamatának n 2 paraméterének kiszámolása (pontos!) Az n 2 paraméteréből MAP előállítása (általában pontos) Minél nagyobb n, annál több összefüggőségi jellemzőt veszünk figyelembe egyre pontosabb a közelítés - p. 16

26 Tandem hálózat Topológia: Node A Node B Tandem hálózat Tandem hálózat, eredmények Tandem hálózat, eredmények Összetett példa Összetett példa 3 vizsgált eset: a) exponenciális eloszlású csomagméretek b) nem exponenciális, de független csomagméretek c) összefüggő csomagméretek - p. 17

27 Tandem hálózat, eredmények Tandem hálózat Tandem hálózat, eredmények Tandem hálózat, eredmények Összetett példa Összetett példa #Áll. a. eset #Áll. b. eset c. eset Szimuláció n/a n/a momentum n= alapú n= ETAQA n= n= n= n= Level n= prob. n= based n= n= p. 18

28 Tandem hálózat, eredmények Tandem hálózat Tandem hálózat, eredmények Tandem hálózat, eredmények Összetett példa Összetett példa Probability Case c.: Queue length distribution of Node B Simulation MAP(2) MAP(3) Buffer size - p. 19

29 Tandem hálózat, eredmények Tandem hálózat Tandem hálózat, eredmények Tandem hálózat, eredmények Összetett példa Összetett példa Autocorrelation Case c.: Autocorrelation of departures of Node A Simulation MAP(2) MAP(3) Lag - p. 19

30 Összetett példa Topológia: Tandem hálózat Tandem hálózat, eredmények Tandem hálózat, eredmények Összetett példa Összetett példa Node D Node A Node B Node C A csomagérkezési időközök és a kiszolgálási idők is összefüggők. - p. 20

31 Összetett példa Topológia: Tandem hálózat Tandem hálózat, eredmények Tandem hálózat, eredmények Összetett példa Összetett példa Node D Node A Node B Node C A csomagérkezési időközök és a kiszolgálási idők is összefüggők. Node D Node A Node B Node C Szimuláció MAP(2) Rel. hiba -0.06% -0.1% -0.5% -4% MAP(3) Rel. hiba -0.06% 0.05% -0.2% -3.6% - p. 20

32 Összetett példa Node C, a legrosszabbul közelített csomópont: Tandem hálózat Tandem hálózat, eredmények Tandem hálózat, eredmények Összetett példa Összetett példa Probability Queue length distribution of Node C Simulation MAP(3) Buffer size - p. 21

33 Összetett példa Node C, a legrosszabbul közelített csomópont: Tandem hálózat Tandem hálózat, eredmények Tandem hálózat, eredmények Összetett példa Összetett példa Autocorrelation Autocorrelation of the arrivals of Node C Simulation MAP(3) Lag - p. 21

34 Kifejlesztettük az együttes momentum alapú MAP illesztést Megoldást javasoltunk sorbanállási hálózatok megoldására MAP alapokon - p. 22

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható folytonos idejű Markovláncok  segítségével. E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

VIHIMA07 Mobil és vezeték nélküli hálózatok. Forgalmi modellezés és tervezés

VIHIMA07 Mobil és vezeték nélküli hálózatok. Forgalmi modellezés és tervezés Forgalmi modellezés és tervezés 2016. május 17. Budapest Telek Miklós Hálózati Rendszerek és Szolgáltatások Tanszék I.L.117, telek@hit.bme.hu 2 Tartalom Elemi összefüggések és intuitív méretezési módszerek

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése

Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése 62. Vándorgyűlés, konferencia és kiállítás Siófok, 2015. 09. 16-18. Farkas Csaba egyetemi tanársegéd Dr. Dán András professor

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Megkülönböztetett kiszolgáló routerek az

Megkülönböztetett kiszolgáló routerek az Megkülönböztetett kiszolgáló routerek az Interneten Megkülönböztetett kiszolgálás A kiszolgáló architektúrák minősége az Interneten: Integrált kiszolgálás (IntServ) Megkülönböztetett kiszolgálás (DiffServ)

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Bemenet modellezése (III.), forgalommodellezés

Bemenet modellezése (III.), forgalommodellezés Bemenet modellezése (III.), forgalommodellezés Vidács Attila 2007. október 31. Hálózati szimulációs technikák, 2007/10/31 1 Modellválasztás A modellezés kedvez esetben leegyszer södik a megfelel eloszlás

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Rádiós hozzáférő hálózatok elemzése és méretezése analitikus módszerekkel Rákos Attila Nokia Siemens Networks

Rádiós hozzáférő hálózatok elemzése és méretezése analitikus módszerekkel Rákos Attila Nokia Siemens Networks Rádiós hozzáférő hálózatok elemzése és méretezése analitikus módszerekkel Rákos Attila Nokia Siemens Networks 1 Nokia Siemens Networks Rádiós hozzáférő hálózatok szerepe Biztosítják a felhasználóknak a

Részletesebben

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket! 1. Név:......................... Egy szabályos pénzérmét feldobunk, ha az els½o FEJ az i-edik dobásra jön, akkor a játékos nyereménye ( 1) i i forint. Vizsgálja szimulációval a játékot, különböz½o induló

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása. Február 19

2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása. Február 19 2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása Az óra rövid vázlata kapacitás, szabad sávszélesség ping, traceroute pathcar, pcar pathload pathrate pathchirp BART Sprobe egyéb

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Csapadékmaximum-függvények változása

Csapadékmaximum-függvények változása Csapadékmaximum-függvények változása (Techniques and methods for climate change adaptation for cities /2013-1-HU1-LEO05-09613/) Dr. Buzás Kálmán, Dr. Honti Márk, Varga Laura Elavult mértékadó tervezési

Részletesebben

Sztochasztikus temporális logikák

Sztochasztikus temporális logikák Sztochasztikus temporális logikák Teljesítmény és szolgáltatásbiztonság jellemzők formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Megújuló energiaforrásokkal kapcsolatos hallgatói és oktatói kutatások a BME Villamos Energetika Tanszékének Villamos Művek és Környezet Csoportjában

Megújuló energiaforrásokkal kapcsolatos hallgatói és oktatói kutatások a BME Villamos Energetika Tanszékének Villamos Művek és Környezet Csoportjában Megújuló energiaforrásokkal kapcsolatos hallgatói és oktatói kutatások a BME Villamos Energetika Tanszékének Villamos Művek és Környezet Csoportjában Nap- és szélenergia kutatás és oktatás 2014. május

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

DSL hozzáférési hálózatokban alkalmazott csomagütemezôk sorbanállási modellezése és analízise

DSL hozzáférési hálózatokban alkalmazott csomagütemezôk sorbanállási modellezése és analízise DSL hozzáférési hálózatokban alkalmazott csomagütemezôk sorbanállási modellezése és analízise KÔRÖSI ATTILA, SZÉKELY BALÁZS BME Matematikai Intézet, Sztohasztika Tanszék, {akorosi, szbalazs}@math.bme.hu

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Fine-Grained Network Time Synchronization using Reference Broadcast

Fine-Grained Network Time Synchronization using Reference Broadcast Fine-Grained Network Time Synchronization using Reference Broadcast Ofszet Az indítás óta eltelt idıt mérik Az ofszet változása: skew Az órák sebességének különbsége Oka: Az óra az oszcillátor pontatlanságát

Részletesebben

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J.

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J. Vagyoneloszlás a társadalmakban - egy fizikus megközelítése Néda Zoltán Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár Hegyi Géza Babeş-Bolyai Tudományegyetem Filozofia és Történelem Kar, Kolozsvár

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

HETEROGÉN MOBILHÁLÓZATOK, MOBIL BACKHAUL ÉS GERINC HÁLÓZAT GYAKORLAT

HETEROGÉN MOBILHÁLÓZATOK, MOBIL BACKHAUL ÉS GERINC HÁLÓZAT GYAKORLAT HETEROGÉN MOBILHÁLÓZATOK, MOBIL BACKHAUL ÉS GERINC HÁLÓZAT GYAKORLAT Mobil és vezeték nélküli hálózatok (BMEVIHIMA07) 2015. április 3., Budapest Jakó Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék

Részletesebben

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS 1. Kihasználva a hosszasan elhúzódó jó időt, kirándulást szeretnénk tenni az ország tíz legmagasabb csúcsa közül háromra az elkövetkezendő

Részletesebben

Összefoglalás és gyakorlás

Összefoglalás és gyakorlás Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)

Részletesebben

Hálózati réteg. WSN topológia. Útvonalválasztás.

Hálózati réteg. WSN topológia. Útvonalválasztás. Hálózati réteg WSN topológia. Útvonalválasztás. Tartalom Hálózati réteg WSN topológia Útvonalválasztás 2015. tavasz Szenzorhálózatok és alkalmazásaik (VITMMA09) - Okos város villamosmérnöki MSc mellékspecializáció,

Részletesebben

1. Név:... Neptun Kód:... Feladat: Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt

1. Név:... Neptun Kód:... Feladat: Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt 1. Név:......................... Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt a gyártmányt készítik. Egy gyártmány összeszerelési ideje normális eloszlású valószín½uségi változó

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

Programozható vezérlő rendszerek KOMMUNIKÁCIÓS HÁLÓZATOK 2.

Programozható vezérlő rendszerek KOMMUNIKÁCIÓS HÁLÓZATOK 2. KOMMUNIKÁCIÓS HÁLÓZATOK 2. CAN busz - Autóipari alkalmazásokhoz fejlesztették a 80-as években - Elsőként a BOSCH vállalat fejlesztette - 1993-ban szabvány (ISO 11898: 1993) - Később fokozatosan az iparban

Részletesebben

10. Exponenciális rendszerek

10. Exponenciális rendszerek 1 Exponenciális rendszerek 1 Egy boltba exponenciális időközökkel átlagosan percenként érkeznek a vevők két eladó, ndrás és éla, átlagosan 1 illetve 6 vevőt tud óránként kiszolgálni mennyiben egy vevő

Részletesebben

Acélszerkezetek korszerű tűzvédelmének néhány kérdése

Acélszerkezetek korszerű tűzvédelmének néhány kérdése Acélszerkezetek korszerű tűzvédelmének néhány kérdése A viselkedés-alapú tervezés elemei Dr. Horváth László PhD, egyetemi docens 1 Tartalom Viselkedés-alapú tervezés fogalma Alkalmazási lehetőségei Acélszerkezetek

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata

Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata Lutz András Gábor Kutatási beszámoló 2015, Budapest Feladat A mikrohullámú non reciprok eszközök paramétereit döntően meghatározzák a bennük

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

www.pwc.com Felsővezetői Javadalmazási Felmérés Minta riport

www.pwc.com Felsővezetői Javadalmazási Felmérés Minta riport www.pwc.com Felsővezetői Javadalmazási Felmérés Minta riport Felmérés áttekintése A e a hazai versenyszféra nagy- és középvállalatainak, valamint az állami szféra több jelentős vállalatának felsővezetői

Részletesebben

Több komponensű brikettek: a még hatékonyabb hulladékhasznosítás egy új lehetősége

Több komponensű brikettek: a még hatékonyabb hulladékhasznosítás egy új lehetősége Több komponensű brikettek: a még hatékonyabb hulladékhasznosítás egy új lehetősége Készítette: az EVEN-PUB Kft. 2014.04.30. Projekt azonosító: DAOP-1.3.1-12-2012-0012 A projekt motivációja: A hazai brikett

Részletesebben

Darabárus raktárak készletezési folyamatainak vizsgálata szimulációs eljárás segítségével

Darabárus raktárak készletezési folyamatainak vizsgálata szimulációs eljárás segítségével Bóna Krisztián: Darabárus raktárak készletezési folyamatainak vizsgálata szimulációs eljárás segítségével 1. Bevezető Napjaink kedvelt módszerei közé tartoznak a számítógépes operációkutatási módszerek,

Részletesebben

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés) Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Operációs rendszerek II. Folyamatok ütemezése

Operációs rendszerek II. Folyamatok ütemezése Folyamatok ütemezése Folyamatok modellezése az operációs rendszerekben Folyamatok állapotai alap állapotok futásra kész fut és várakozik felfüggesztett állapotok, jelentőségük Állapotátmeneti diagram Állapotátmenetek

Részletesebben

Intelligens adatelemzés

Intelligens adatelemzés Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Értékáram elemzés szoftveres támogatással. Gergely Judit 2013. 03. 01. Lean-klub

Értékáram elemzés szoftveres támogatással. Gergely Judit 2013. 03. 01. Lean-klub Értékáram elemzés szoftveres támogatással Gergely Judit 2013. 03. 01. Lean-klub Tartalom Az Értékáram és elemzésének szerepe a Leanben Értékáram modellezés és elemzés Esetpélda: termelő folyamat Képzeletbeli

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

Dr. Kalló Noémi. Termelésszervezés, Termelési és szolgáltatási döntések elemzése. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék

Dr. Kalló Noémi. Termelésszervezés, Termelési és szolgáltatási döntések elemzése. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelésszervezés, Termelési és szolgáltatási döntések elemzése egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelésszervezés 17.Ismertesse az anyagszükséglet-tervezés input információit,

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta

Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Világító diódák emissziójának szimulációja Monte Carlo sugárkövetés módszerével

Világító diódák emissziójának szimulációja Monte Carlo sugárkövetés módszerével Világító diódák emissziójának szimulációja Monte Carlo sugárkövetés módszerével Borbély Ákos, Steve G. Johnson Lawrence Berkeley National Laboratory, CA e-mail: ABorbely@lbl.gov Az előadás vázlata Nagy

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Hibadetektáló rendszer légtechnikai berendezések számára

Hibadetektáló rendszer légtechnikai berendezések számára Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő

Részletesebben

Hálózat hidraulikai modell integrálása a Soproni Vízmű Zrt. térinformatikai rendszerébe

Hálózat hidraulikai modell integrálása a Soproni Vízmű Zrt. térinformatikai rendszerébe Hálózat hidraulikai modell integrálása a térinformatikai rendszerébe Hálózathidraulikai modellezés - Szakmai nap MHT Vízellátási Szakosztály 2015. április 9. Térinformatikai rendszer bemutatása Működési

Részletesebben

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén

Részletesebben

Hálózati szolgáltatások biztosításának felügyeleti elemei

Hálózati szolgáltatások biztosításának felügyeleti elemei Budai Károly IT architekt 2012. október 11. Hálózati szolgáltatások biztosításának felügyeleti elemei Szolgáltatás biztosítás általános modellje FELHASZNÁLÓ szolgáltató ügyfélszolgálat szolgáltató üzemeltetői

Részletesebben

Csank András ELMŰ Hálózati Kft. Dunay András Geometria Kft. 2010.

Csank András ELMŰ Hálózati Kft. Dunay András Geometria Kft. 2010. Csank András ELMŰ Hálózati Kft. Dunay András Geometria Kft. Fuzzy-alapú döntéstámogató rendszer bevezetése az ELMŰ-ÉMÁSZ ÉMÁSZ-nál 2010. Tartalom - Előzmények - Fuzzy logika - Modell bemutatása - Modell-hitelesítés

Részletesebben

Doktori disszertáció. szerkezete

Doktori disszertáció. szerkezete Doktori disszertáció tézisfüzet Komplex hálózatok szerkezete Szabó Gábor Témavezető Dr. Kertész János Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2005 Bevezetés A tudományos

Részletesebben

Logisztikai szimulációs módszerek

Logisztikai szimulációs módszerek Üzemszervezés Logisztikai szimulációs módszerek Dr. Juhász János Integrált, rugalmas gyártórendszerek tervezésénél használatos szimulációs módszerek A sztochasztikus külső-belső tényezőknek kitett folyamatok

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Diszkrét idejű felújítási paradoxon

Diszkrét idejű felújítási paradoxon Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N

Részletesebben

A könyv. meglétét. sgálat

A könyv. meglétét. sgálat Benyó Balázs Benyó Zoltán Paláncz Béla Szilágyi László Ferenci Tamás Műszaki és biológiai rendszerek elmélete A könyv interdiszciplináris jellegű, műszaki és biológiai rendszerek működésének modellezésére

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás. Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

Validálás és bizonytalanságok a modellekben

Validálás és bizonytalanságok a modellekben Validálás és bizonytalanságok a modellekben Hálózattervezési Dr. Berki Zsolt Tel.: 06-20-3516879, E-mail: berki@fomterv.hu Miért modellezünk? Mert előírás Nem! "It is impossible to predict the future but

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

pacitási kihívások a mikrohullámú gerinc- és lhordó-hálózatokban nkó Krisztián

pacitási kihívások a mikrohullámú gerinc- és lhordó-hálózatokban nkó Krisztián pacitási kihívások a mikrohullámú gerinc- és lhordó-hálózatokban nkó Krisztián rtalomjegyzék Technológia bemutatása Tervezési megfontolások Tesztelési protokollok Értékelés, kihívások az üzemeltetés terén

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

A HŐMÉRSÉKLET ÉS A CSAPADÉK HATÁSA A BÜKK NÖVEKEDÉSÉRE

A HŐMÉRSÉKLET ÉS A CSAPADÉK HATÁSA A BÜKK NÖVEKEDÉSÉRE A HŐMÉRSÉKLET ÉS A CSAPADÉK HATÁSA A BÜKK NÖVEKEDÉSÉRE Manninger M., Edelényi M., Jereb L., Pödör Z. VII. Erdő-klíma konferencia Debrecen, 2012. augusztus 30-31. Vázlat Célkitűzések Adatok Statisztikai,

Részletesebben