Mátrixhatvány-vektor szorzatok hatékony számítása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mátrixhatvány-vektor szorzatok hatékony számítása"

Átírás

1 Mátrixhatvány-vektor szorzatok hatékony számítása Izsák Ferenc ELTE TTK, Alkalmazott Analízis és Számításmatematikai Tanszék & ELTE-MTA NumNet Kutatócsoport munkatárs: Szekeres Béla János Alkalmazott Analízis és Számításmatematikai Tanszék Szemináriuma Budapest, március 5.

2 A törtrendű diffúzió egyenlete A vizsgált feladat { t u(t, x) = ( D ) α u(t, x) x Ω, t (0, T ) u(0, x) = u 0 x Ω, (1) ahol

3 A törtrendű diffúzió egyenlete A vizsgált feladat { t u(t, x) = ( D ) α u(t, x) x Ω, t (0, T ) u(0, x) = u 0 x Ω, (1) ahol Ω R d, u 0 L 2 (Ω), α > 0 adottak,

4 A törtrendű diffúzió egyenlete A vizsgált feladat { t u(t, x) = ( D ) α u(t, x) x Ω, t (0, T ) u(0, x) = u 0 x Ω, (1) ahol Ω R d, u 0 L 2 (Ω), α > 0 adottak, D az Ω-n értelmezett Dirichlet-Laplace operátor.

5 A törtrendű diffúzió egyenlete A vizsgált feladat { t u(t, x) = ( D ) α u(t, x) x Ω, t (0, T ) u(0, x) = u 0 x Ω, (1) ahol Ω R d, u 0 L 2 (Ω), α > 0 adottak, D az Ω-n értelmezett Dirichlet-Laplace operátor. ( D ) α értelmes.

6 A törtrendű diffúzió egyenlete A vizsgált feladat { t u(t, x) = ( D ) α u(t, x) x Ω, t (0, T ) u(0, x) = u 0 x Ω, (1) ahol Ω R d, u 0 L 2 (Ω), α > 0 adottak, D az Ω-n értelmezett Dirichlet-Laplace operátor. ( D ) α értelmes. Ez egy lehetséges "jó" modell (SZB, IF; AML 17).

7 Numerikus megoldás: egy ötlet Mártixtranszformációs módszer (MTM):

8 Numerikus megoldás: egy ötlet Mártixtranszformációs módszer (MTM): Ha D A, akkor ( D ) α A α.

9 Numerikus megoldás: egy ötlet Mártixtranszformációs módszer (MTM): Ha D A, akkor ( D ) α A α. Ez jónak látszik (VD és VE disztkretizációra is). [Ilić,.. 05, 06]

10 Numerikus megoldás: egy ötlet Mártixtranszformációs módszer (MTM): Ha D A, akkor ( D ) α A α. Ez jónak látszik (VD és VE disztkretizációra is). [Ilić,.. 05, 06] VD eset: Ez valóban h szerint másodrendű konzisztenciát biztosít, időben implicit Euler módszerrel pedig O(δ) + O(h 2 ) konvergenciát L 2 -normában minden α R + és max-normában minden α 1 esetén (Sz.B., I.F., CAMWA 16).

11 Numerikus megoldás: egy ötlet Mártixtranszformációs módszer (MTM): Ha D A, akkor ( D ) α A α. Ez jónak látszik (VD és VE disztkretizációra is). [Ilić,.. 05, 06] VD eset: Ez valóban h szerint másodrendű konzisztenciát biztosít, időben implicit Euler módszerrel pedig O(δ) + O(h 2 ) konvergenciát L 2 -normában minden α R + és max-normában minden α 1 esetén (Sz.B., I.F., CAMWA 16). VE eset: Az f = ( D ) α elliptikus peremérték feladatra L 2 -normában optimális rendben (szuper) konvergál (Sz.B., I.F., JCAM 16).

12 Numerikus megoldás formulákkal - példa Az eredeti (1) feladatra térben MTM, időben explicit Euler:

13 Numerikus megoldás formulákkal - példa Az eredeti (1) feladatra térben MTM, időben explicit Euler: un+1 u n δ A α u n u n+1 = u n δa α u n, ahol

14 Numerikus megoldás formulákkal - példa Az eredeti (1) feladatra térben MTM, időben explicit Euler: un+1 u n δ A α u n u n+1 = u n δa α u n, ahol δ - időlépés, u n - numerikus közelítés nδ-ban.

15 Numerikus megoldás formulákkal - példa Az eredeti (1) feladatra térben MTM, időben explicit Euler: un+1 u n δ A α u n u n+1 = u n δa α u n, ahol δ - időlépés, u n - numerikus közelítés nδ-ban. Bírálat: nagyon lassú A α nehezen kiszámítható.

16 Numerikus megoldás formulákkal - példa Az eredeti (1) feladatra térben MTM, időben explicit Euler: un+1 u n δ A α u n u n+1 = u n δa α u n, ahol δ - időlépés, u n - numerikus közelítés nδ-ban. Bírálat: nagyon lassú A α nehezen kiszámítható. Igen: A ritka, A α telt mátrix.

17 Numerikus megoldás formulákkal - példa Az eredeti (1) feladatra térben MTM, időben explicit Euler: un+1 u n δ A α u n u n+1 = u n δa α u n, ahol δ - időlépés, u n - numerikus közelítés nδ-ban. Bírálat: nagyon lassú A α nehezen kiszámítható. Igen: A ritka, A α telt mátrix. Ötlet: de a fentihez A α nem is kell, számoljunk A α w szorzatokat közvetlenül.

18 Első próbálkozások Írjuk fel A α értékét Taylor sorral:

19 Első próbálkozások Írjuk fel A α értékét Taylor sorral: ( ) σ(a) α ( ) 2A α ( ) σ(a) α ( ) ( ) α 2A j A α = = 2 σ(a) 2 j σ(a) I. j=0

20 Első próbálkozások Írjuk fel A α értékét Taylor sorral: ( ) σ(a) α ( ) 2A α ( ) σ(a) α ( ) ( ) α 2A j A α = = 2 σ(a) 2 j σ(a) I. j=0 Közelítsünk, írjuk be tagonként w-t: ( ) σ(a) α K ( ) ( ) α 2A j A α w 2 j σ(a) I w. j=0

21 Első próbálkozások Írjuk fel A α értékét Taylor sorral: ( ) σ(a) α ( ) 2A α ( ) σ(a) α ( ) ( ) α 2A j A α = = 2 σ(a) 2 j σ(a) I. j=0 Közelítsünk, írjuk be tagonként w-t: ( ) σ(a) α K ( ) ( ) α 2A j A α w 2 j σ(a) I w. j=0

22 Első próbálkozások Írjuk fel A α értékét Taylor sorral: ( ) σ(a) α ( ) 2A α ( ) σ(a) α ( ) ( ) α 2A j A α = = 2 σ(a) 2 j σ(a) I. j=0 Közelítsünk, írjuk be tagonként w-t: ( ) σ(a) α K ( ) ( ) α 2A j A α w 2 j σ(a) I w. j=0 Az egyes tagok gyorsan számíthatók: ( ) ( ) α 2A j+1 j + 1 σ(a) I w = α j j + 1 ( 2A σ(a) I )( ) ( ) α 2A j j σ(a) I

23 Első próbálkozások Írjuk fel A α értékét Taylor sorral: ( ) σ(a) α ( ) 2A α ( ) σ(a) α ( ) ( ) α 2A j A α = = 2 σ(a) 2 j σ(a) I. j=0 Közelítsünk, írjuk be tagonként w-t: ( ) σ(a) α K ( ) ( ) α 2A j A α w 2 j σ(a) I w. j=0 Az egyes tagok gyorsan számíthatók: ( ) ( ) α 2A j+1 j + 1 σ(a) I w = α j j + 1 ( 2A σ(a) I azaz új tag az összegben: egy ritka mátrix-vektor szorzás. )( ) ( ) α 2A j j σ(a) I

24 Első próbálkozások Írjuk fel A α értékét Taylor sorral: ( ) σ(a) α ( ) 2A α ( ) σ(a) α ( ) ( ) α 2A j A α = = 2 σ(a) 2 j σ(a) I. j=0 Közelítsünk, írjuk be tagonként w-t: ( ) σ(a) α K ( ) ( ) α 2A j A α w 2 j σ(a) I w. j=0 Az egyes tagok gyorsan számíthatók: ( ) ( ) α 2A j+1 j + 1 σ(a) I w = α j j + 1 ( 2A σ(a) I azaz új tag az összegben: egy ritka mátrix-vektor szorzás. )( ) ( ) α 2A j j σ(a) I Izsák Ferenc ELTE De sok TTK, tag kell. Alkalmazott Analízis Mátrixhatvány-vektor és Számításmatematikai szorzatok hatékony számítása Tanszék &

25 A hiba, javítandó részletek A hiba mérése minden esetben err = Aw A 0.7 A 0.3 w max.

26 A hiba, javítandó részletek A hiba mérése minden esetben err = Aw A 0.7 A 0.3 w max. A: másodrendű közelítése

27 A hiba, javítandó részletek A hiba mérése minden esetben err = Aw A 0.7 A 0.3 w max. A: másodrendű közelítése (0, π) as felosztásán

28 A hiba, javítandó részletek A hiba mérése minden esetben err = Aw A 0.7 A 0.3 w max. A: másodrendű közelítése (0, π) as felosztásán homogén Dirichlet- (D) és Neumann-peremfeltétellel (N )

29 A hiba, javítandó részletek A hiba mérése minden esetben err = Aw A 0.7 A 0.3 w max. A: másodrendű közelítése (0, π) as felosztásán homogén Dirichlet- (D) és Neumann-peremfeltétellel (N ) K err, N , 28 0, 51 0, 0515 err, D , 57 0, idő[s] 0, 005 0, , , 99 9, 87

30 A hiba, javítandó részletek A hiba mérése minden esetben err = Aw A 0.7 A 0.3 w max. A: másodrendű közelítése (0, π) as felosztásán homogén Dirichlet- (D) és Neumann-peremfeltétellel (N ) K err, N , 28 0, 51 0, 0515 err, D , 57 0, idő[s] 0, 005 0, , , 99 9, 87 Nagy és kicsi sajátértékek okozzák: sp A [ 1, 1]

31 A hiba, javítandó részletek A hiba mérése minden esetben err = Aw A 0.7 A 0.3 w max. A: másodrendű közelítése (0, π) as felosztásán homogén Dirichlet- (D) és Neumann-peremfeltétellel (N ) K err, N , 28 0, 51 0, 0515 err, D , 57 0, idő[s] 0, 005 0, , , 99 9, 87 Nagy és kicsi sajátértékek okozzák: sp A [ 1, 1] Neumann-peremfeltétel:

32 Ötlet javításra Válasszuk le a nagy és kicsi sajátértékeket, -vektorokat:

33 Ötlet javításra Válasszuk le a nagy és kicsi sajátértékeket, -vektorokat: Az általuk kifeszített altérben közvetlen hatványozás.

34 Ötlet javításra Válasszuk le a nagy és kicsi sajátértékeket, -vektorokat: Az általuk kifeszített altérben közvetlen hatványozás. A kiegészítő altérben a Taylor-közelítés hatékonyabb lesz.

35 Ötlet javításra Válasszuk le a nagy és kicsi sajátértékeket, -vektorokat: Az általuk kifeszített altérben közvetlen hatványozás. A kiegészítő altérben a Taylor-közelítés hatékonyabb lesz. Formálisan a Q k : R N span { } v 1,..., v j, v N k j+1,..., v N vetítéssel: ( ) σ(a) α (( ) 2A α ( ) 2A α A α w = Q k w + (w Q k w)). 2 σ(a) σ(a)

36 Az algoritmus A-hoz a legkisebb j db és legnagyobb k j db sajátérték, sajátvektor kiszámítása.

37 Az algoritmus A-hoz a legkisebb j db és legnagyobb k j db sajátérték, sajátvektor kiszámítása. Q k meghatározása (egy mátrix-összeállítás).

38 Az algoritmus A-hoz a legkisebb j db és legnagyobb k j db sajátérték, sajátvektor kiszámítása. Q k meghatározása (egy mátrix-összeállítás). A α Q k w meghatározása: Q k w = a 1 v a N v N A α Q k w = a 1 λ α 1 v a N λ α N v N.

39 Az algoritmus A-hoz a legkisebb j db és legnagyobb k j db sajátérték, sajátvektor kiszámítása. Q k meghatározása (egy mátrix-összeállítás). A α Q k w meghatározása: Q k w = a 1 v a N v N A α Q k w = a 1 λ α 1 v a N λ α N v N. A α (w Q k w) közelítése: ( ) σ(a) α K ( ) ( ) α 2A j A α (w Q k w) 2 j σ(a) I (w Q k w). j=0

40 Az algoritmus A-hoz a legkisebb j db és legnagyobb k j db sajátérték, sajátvektor kiszámítása. Q k meghatározása (egy mátrix-összeállítás). A α Q k w meghatározása: Q k w = a 1 v a N v N A α Q k w = a 1 λ α 1 v a N λ α N v N. A α (w Q k w) közelítése: ( ) σ(a) α K ( ) ( ) α 2A j A α (w Q k w) 2 j σ(a) I (w Q k w). j=0 A α w = A α Q k w + A α (w Q k w)

41 Numerikus kísérletek I. Mi legyen K, k, j értéke adott pontossághoz?

42 Numerikus kísérletek I. Mi legyen K, k, j értéke adott pontossághoz? Milyen pontosság kell? Milyen A struktúrája?

43 Numerikus kísérletek I. Mi legyen K, k, j értéke adott pontossághoz? Milyen pontosság kell? Milyen A struktúrája? Az analitikus becslés nagyon pesszimista.

44 Numerikus kísérletek I. Mi legyen K, k, j értéke adott pontossághoz? Milyen pontosság kell? Milyen A struktúrája? Az analitikus becslés nagyon pesszimista. j = k/2 javasolható.

45 Numerikus kísérletek I. Mi legyen K, k, j értéke adott pontossághoz? Milyen pontosság kell? Milyen A struktúrája? Az analitikus becslés nagyon pesszimista. j = k/2 javasolható. Sajátrendszer legyen pontos!

46 Numerikus kísérletek I. Mi legyen K, k, j értéke adott pontossághoz? Milyen pontosság kell? Milyen A struktúrája? Az analitikus becslés nagyon pesszimista. j = k/2 javasolható. Sajátrendszer legyen pontos! eigs.m - beépített MATLAB-szubrutin: gyenge.

47 Numerikus kísérletek I. Mi legyen K, k, j értéke adott pontossághoz? Milyen pontosság kell? Milyen A struktúrája? Az analitikus becslés nagyon pesszimista. j = k/2 javasolható. Sajátrendszer legyen pontos! eigs.m - beépített MATLAB-szubrutin: gyenge. jdcg.m - ez egész jó

48 Numerikus kísérletek I. Mi legyen K, k, j értéke adott pontossághoz? Milyen pontosság kell? Milyen A struktúrája? Az analitikus becslés nagyon pesszimista. j = k/2 javasolható. Sajátrendszer legyen pontos! eigs.m - beépített MATLAB-szubrutin: gyenge. jdcg.m - ez egész jó chdav.m - ez a nyerő (jó paraméterrel)

49 Numerikus kísérletek II. táblázat: Kísérleti eredmények: d = 2, N, N = 60 α = 0.3. k K számítási idő [s] err r

50 Numerikus kísérletek III. - a lényeg táblázat: A α w kiszámítása a régi és az új módszerrel: d = 3, N, j = 8, α = 0.3; mértékegységek: idő[s], mem[mb]. mpower(a, α)w új módszer N idő:a α idő: w mem err idő:a α w mem err >36h?? > 10 4??

51 Megfigyelések - MATLAB Ritka mátrix számmal való szorzása lassú.

52 Megfigyelések - MATLAB Ritka mátrix számmal való szorzása lassú. Volna mit finomítani a sajátrendszerek közelítésén.

53 Megfigyelések - MATLAB Ritka mátrix számmal való szorzása lassú. Volna mit finomítani a sajátrendszerek közelítésén. Nem érdemes 8-10-nél több sajátértéket meghatározni.

54 Megfigyelések - MATLAB Ritka mátrix számmal való szorzása lassú. Volna mit finomítani a sajátrendszerek közelítésén. Nem érdemes 8-10-nél több sajátértéket meghatározni. 3 dimenzióban pontosabb a közelítés, mint 2-ben.

55 Köszönöm a figyelmet!

I. Fejezetek a klasszikus analízisből 3

I. Fejezetek a klasszikus analízisből 3 Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9

Részletesebben

Tartalomjegyzék. Typotex Kiadó, 2010

Tartalomjegyzék. Typotex Kiadó, 2010 Tartalomjegyzék 15. Elliptikus egyenletek 7 15.1. Bevezetés: Elliptikus egyenletek alkalmazott feladatokban... 7 15.2. Elméleti háttér.......................... 9 15.3. Véges dierencia eljárások II...................

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák

Részletesebben

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,

Részletesebben

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek 10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2. Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

CSATOLT REZGÉSEK Kedves barátom, Skrapits Lajos tanár úr emlékére

CSATOLT REZGÉSEK Kedves barátom, Skrapits Lajos tanár úr emlékére CSATOLT REZGÉSEK Kedves barátom, Skrapits Lajos tanár úr emlékére Schipp Ferenc ELTE IK umerikus Analízis Tanszék A szabadon esô rugó fizikája Húsz évvel ezelôtt az ELTE Általános Fizika Tanszék hagyományos

Részletesebben

Strukturált Generátorrendszerek Online Tanulása és Alk-ai

Strukturált Generátorrendszerek Online Tanulása és Alk-ai Strukturált Generátorrendszerek Online Tanulása és Alkalmazásai Problémamegoldó Szeminárium 2010. nov. 5 Tartalomjegyzék Motiváció, példák Regressziós feladatok (generátorrendszer fix) Legkisebb négyzetes

Részletesebben

Problémás regressziók

Problémás regressziók Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

7. gyakorlat megoldásai

7. gyakorlat megoldásai 7. gyakorlat megoldásai Komple számok, sajátértékek, sajátvektorok F1. Legyen z 1 = + i és z = 1 i. Számoljuk ki az alábbiakat: z 1 z 1 + z, z 1 z, z 1 z,, z 1, z 1. z M1. A szorzásnál használjuk, hogy

Részletesebben

Peremérték-feladatok numerikus megoldása Galjorkin-módszerekkel

Peremérték-feladatok numerikus megoldása Galjorkin-módszerekkel Peremérték-feladatok numerikus megoldása Galjorkin-módszerekkel Habilitációs dolgozat Izsák Ferenc adjunktus Alkalmazott Analízis és Számításmatematikai Tanszék Eötvös Loránd Tudományegyetem, Természettudományi

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Tasnádi Tamás 2014. szeptember 11. Kivonat A tárgy a BME Fizika BSc szak kötelező, alapozó tárgya a képzés 1. félévében. A tárgy

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc

Részletesebben

Példa: Háromszög síkidom másodrendű nyomatékainak számítása

Példa: Háromszög síkidom másodrendű nyomatékainak számítása Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH) Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc Karátson, János Horváth, Róbert Izsák, Ferenc numerikus módszerei számítógépes írta Karátson, János, Horváth, Róbert, és Izsák, Ferenc Publication date 2013 Szerzői jog 2013 Karátson János, Horváth Róbert,

Részletesebben

Példa keresztmetszet másodrendű nyomatékainak számítására

Példa keresztmetszet másodrendű nyomatékainak számítására Példa keresztmetszet másodrendű nyomatékainak számítására Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. február 22. Tekintsük az alábbi keresztmetszetet. 1. ábra. A vizsgált

Részletesebben

Numerikus módszerek. 9. előadás

Numerikus módszerek. 9. előadás Numerikus módszerek 9. előadás Differenciálegyenletek integrálási módszerei x k dx k dt = f x,t; k k ' k, k '=1,2,... M FELADAT: meghatározni x k t n x k, n egyenletes időlépés??? t n =t 0 n JELÖLÉS: f

Részletesebben

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris

Részletesebben

Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel p. 1/29. Ábele-Nagy Kristóf BCE, ELTE

Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel p. 1/29. Ábele-Nagy Kristóf BCE, ELTE Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel Ábele-Nagy Kristóf BCE, ELTE Bozóki Sándor BCE, MTA SZTAKI 2010. november 4. Nem teljesen kitöltött páros

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

Bevezetés az algebrába 2 Vektor- és mátrixnorma

Bevezetés az algebrába 2 Vektor- és mátrixnorma Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

Fourier transzformáció

Fourier transzformáció a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos

Részletesebben

Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások

Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A

Részletesebben

Diszkrét idej rendszerek analízise az id tartományban

Diszkrét idej rendszerek analízise az id tartományban Diszkrét idej rendszerek analízise az id tartományban Dr. Horváth Péter, BME HVT 06. október 4.. feladat Számítuk ki a DI rendszer válaszát, ha adott a gerjesztés és az impulzusválasz! u[k = 0,6 k ε[k;

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben

A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben Faragó István 1, Havasi Ágnes 1, Zahari Zlatev 2 1 ELTE Alkalmazott Analízis és Számításmatematikai Tanszék és MTA-ELTE Numerikus Analízis

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

Robotok inverz geometriája

Robotok inverz geometriája Robotok inverz geometriája. A gyakorlat célja Inverz geometriai feladatot megvalósító függvények implementálása. A megvalósított függvénycsomag tesztelése egy kétszabadságfokú kar előírt végberendezés

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,

Részletesebben

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei

Részletesebben

Végeselem modellezés alapjai 1. óra

Végeselem modellezés alapjai 1. óra Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,

Részletesebben

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál

Részletesebben

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 11. előadás: A Newton-módszer és társai Lócsi Levente ELTE IK 2013. november 25. Tartalomjegyzék 1 A Newton-módszer és konvergenciatételei 2 Húrmódszer és szelőmódszer 3 Általánosítás

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk

Részletesebben

Lineáris algebra numerikus módszerei

Lineáris algebra numerikus módszerei Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Differencia- és differenciálegy.-rsz. H607 2017-04-05

Részletesebben

Mátrix-exponens, Laplace transzformáció

Mátrix-exponens, Laplace transzformáció 2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények

Részletesebben

YBL - SGYMMAT2012XA Matematika II.

YBL - SGYMMAT2012XA Matematika II. YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Parciális differenciálegyenletek numerikus módszerei február 5.

Parciális differenciálegyenletek numerikus módszerei február 5. Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Horváth Róbert, Izsák Ferenc, Karátson János 013. február 5. Tartalomjegyzék Bevezetés 6 I. Elliptikus parciális differenciálegyenletek

Részletesebben

Saj at ert ek-probl em ak febru ar 22.

Saj at ert ek-probl em ak febru ar 22. Sajátérték-problémák 2016. február 22. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre az egyenlet

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Gauss-Seidel iteráció

Gauss-Seidel iteráció Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS

Részletesebben

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28 Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

Az impulzusnyomatékok általános elmélete

Az impulzusnyomatékok általános elmélete Az impulzusnyomatékok általános elmélete November 27, 2006 Az elemi kvantummechanika keretében tárgyaltuk már az impulzusnyomatékot. A továbbiakban általánosítjuk az impulzusnyomaték fogalmát a kvantummechanikában

Részletesebben

1 Lebegőpontos számábrázolás

1 Lebegőpontos számábrázolás Tartalom 1 Lebegőpontos számábrázolás... 2 2 Vektornormák... 4 3 Indukált mátrixnormák és tulajdonságaik... 5 4 A lineáris rendszer jobboldala hibás... 6 5 A kondíciószám és tulajdonságai... 7 6 Perturbációs

Részletesebben

Egyesített funkcionális renormálási csoport egyenlet

Egyesített funkcionális renormálási csoport egyenlet Egyesített funkcionális renormálási csoport egyenlet Nándori István MTA-DE Részecskefizikai Kutatócsoport, MTA-Atomki, Debrecen Magyar Fizikus Vándorgyűles, Debrecen, 2013 Kvantumtérelmélet Részecskefizika

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

A Poisson-egyenletre alkalmazott multigrid mo dszer

A Poisson-egyenletre alkalmazott multigrid mo dszer A Poisson-egyenletre alkalmazott multigrid mo dszer Szakdolgozat I rta: Klimaj Bettina Matematika BSc Alkalmazott matematikus szakira ny Te mavezeto : Dr. Ga spa r Csaba egyetemi tana r Numerikus Analı

Részletesebben

Normák, kondíciószám

Normák, kondíciószám Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus

Részletesebben

Mátrixok, mátrixműveletek

Mátrixok, mátrixműveletek Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 13. Előadás

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 13. Előadás Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 13. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2009. december 7. Gráfok sajátértékei Definíció. Egy G egyszerű gráf sajátértékei az A G

Részletesebben

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25) I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =

Részletesebben

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1

Részletesebben

ACM Snake. Orvosi képdiagnosztika 11. előadás első fele

ACM Snake. Orvosi képdiagnosztika 11. előadás első fele ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x

Részletesebben

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35 Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek

Részletesebben

1. Transzformációk mátrixa

1. Transzformációk mátrixa 1 Transzformáiók mátrixa Lineáris transzformáiók Definíió T test Az A : T n T n függvény lineáris transzformáió, ha tetszőleges v,w T n vektorra és λ skalárra teljesül, hogy A(v + w) A(v) + A(w) és A(λv)

Részletesebben

Szinguláris érték felbontás Singular Value Decomposition

Szinguláris érték felbontás Singular Value Decomposition Szinguláris érték felbontás Singular Value Decomposition Borbély Gábor 7. április... Tétel (teljes SVD. Legyen A C m n mátrix (valósra is jó, ekkor léteznek U C m m és V C n n unitér mátrixok (valósban

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15. ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

Numerikus módszerek 2.

Numerikus módszerek 2. Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák

Részletesebben

Geometria II gyakorlatok

Geometria II gyakorlatok Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2012. május 8. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés

Részletesebben

Diplomamunkám felépítése

Diplomamunkám felépítése Üregek távolhatása gránitos kőzetkörnyezetben Tóth Szilvia Konzulensek: Dr. Török Ákos, BME Építőanyagok és Mérnökgeológia Tanszék Poromb Péter, Mott MacDonald Magyarország Kft. Diplomamunkám felépítése

Részletesebben

A DIFFÚZIÓ MATEMATIKAI MODELLJEI

A DIFFÚZIÓ MATEMATIKAI MODELLJEI A DIFFÚZIÓ MATEMATIKAI MODELLJEI BSc szakdolgozat Írta: Tóth Beáta Matematika BSc - alkalmazott matematikus szakirány Témavezető: Izsák Ferenc, adjunktus Alkalmazott Analízis és Számításmatematikai Tanszék

Részletesebben