DOKTORANDUSZ FÓRUM, 1999 Miskolc, november. Megerősítő tanulási módszerek alkalmazása az informatikában

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "DOKTORANDUSZ FÓRUM, 1999 Miskolc, 1999. november. Megerősítő tanulási módszerek alkalmazása az informatikában"

Átírás

1 DOKTORANDUSZ FÓRUM, 1999 Miskolc, november Megerősítő tanulási módszerek alkalmazása az informatikában STEFÁN PÉTER Miskolci Egyetem, Alkalmazott Informatikai Tanszék 3515 Miskolc-Egyetemváros 1. BEVEZETÉS Napjainkban a gépipari, informatikai rendszereink komplexitása állandó ütemben nő. Ez a növekedés több különböző tényezőnek is betudható, többek között a számítógépes szoftver, illetve hardver erőforrások fejlődésének. A bonyolultság növekedése, és ezáltal a rendszerek átláthatóságának csökkenése arra ösztönzött számos kutatót, hogy a klasszikus mérnöki problémákhoz, a zárt matematikai formulákon túl, újabb, az emberi agy probléma-leegyszerűsítő megközelítéséhez hasonló módszereket dolgozzon ki. Ezeket az emberi információ-feldolgozó módszerek modelljeit a mesterséges intelligencia, mint tudományág foglalja össze. 2. MESTERSÉGES INTELLIGENCIA MÓDSZEREK A mesterséges intelligencia több, egymástól elkülönülő területből áll. E területek egy része megpróbálja az emberi agy működését előbb modellezni, majd megpróbál olyan szerkezetet létrehozni, amely mind jobban megközelíti az agy működését. A másik, talán szerényebb megközelítés, az, amikor megpróbáljuk az emberi gondolkodásmódot, az emberi intelligencia adaptív jellemvonását gépi környezetben megvalósítani. Ebbe a kategóriába tartoznak a tanuló, osztályozó módszerek, melyeket mind műszaki, mind gazdasági területeken is sikerrel hasznának. A tanulórendszerek osztályába számos eltérő irányvonal tartozik. Megkülönböztethetünk felügyel tanuló, illetve felügyelet nélkül tanuló rendszereket. Előbbi kategóriába például

2 az egyszerűbb neuron-hálók, vagy az osztályozó algoritmusok, míg utóbbiba az önszervező hálók tartoznak. Egy másik szempont szerint megkülönböztethetünk olyan tanulóeljárásokat, melyekre az ún. kétfázisú tanulás (betanítás előbb, majd használat) a jellemző, illetve olyanokat, amelyek egyszerre képesek tanulni illetve tudásukat kamatoztatni. Ezen utóbbi eljárások egyike a megerősítő tanulás. 3. A MEGERŐSÍTŐ TANULÁS A megerősítő tanulás egyfajta átmenetet képez a felügyelt és felügyelet-nélküli módszerek között. A felügyelt rendszerek esetén a környezet instruktív visszajelzésekkel korrigálja a tanulórendszer belső struktúráját, illetve paramétereit. Ez azt jelenti, hogy a módosítás iránya a rendszeren kívülről befelé haladó; azaz a környezet megmondja, a belső állapottól kvázi függetlenül, hogy melyek a rendszer helyes, megkívánt kimeneti jellemzői. A rendszer módosítása pedig éppen az előbbi állapotok elérése felé irányul. Koncepciójában különbözik ettől az a megoldás, amikor a tanulás belülről jövő. Ez azt jelenti, hogy a rendszer maga úgy van felépítve, hogy felfedezi, feltérképezi környezetét. Más kifejezéssel élve cselekvéseket, akciókat hajt végre, amelyek hatással vannak a környezetre, és aminek következtében a környezet visszajelzést ad, hogy a választott akciókat a környezet hogyan jutalmazta. A visszacsatolt érték, a megerősítő-jel, egy skaláris szám, melynek értéktartománya rendszerint problémafüggő. Általában egy nagy pozitív szám a környezet akcióra adott jutalmát, míg a nagy negatív szám büntetését szimbolizálja. A megerősítő tanulás sematikus rajza az 1. ábrán látható. Az ábrán két objektum található: az ágens, illetve annak környezete. Az ágens feladata egy célállapot elérése, mégpedig oly módon, hogy maximalizálja a környezetétől kapott megerősítő-jelek összegét. Ezt az egyes szituációkban, megfelelően megválasztott akciókkal éri el. A cél minden szituációban olyan akciókat választani, amelyek hosszútávon biztosítják a megerősítőjelek maximumát. Az ágens számára minden lehetséges akció előtt nyitva áll a kérdés: a

3 következő lépésben választott akcióval a már eddig elért tudását kívánja hasznosítani, vagy esetleg új megoldások reményében megpróbálja azokat az akciókat választani, amelyek nem közvetlenül a legjobb válaszreakciót adják, de lehetőséget nyújtanak más (esetleg kedvezőbb visszacsatolású) állapotok kiértékelésére is. 1. ábra: Az ágens-probléma A környezet feladata egyrészt ellátni a tanuló ágenst visszacsatolási információkkal, másrészt új állapotokat biztosítani a rendszer részére. Ez utóbbi gyakran a rendszeren belül, automatikusan is végbemehet, nem szükségszerű, hogy a környezet indukálja. A környezet gyakran helyettesíthető egy metrikával, ami automatikusan szolgáltatja a megerősítő jelet az ágens számára. A metrika, az ágens számára a környezeti modellt, a környezet viselkedését jelenti. Gyakran a tanulórendszer megalkotójának kell a metrikát definiálni, és az esetek többségében ez nem egy metrika kidolgozását jelenti, hanem egy metrika-halmazét. Érdemes megemlíteni, hogy a metrika rokon fogalom az operációkutatásban használt optimum kritériummal. 4. AZ ÁGENS-RENDSZER ÉPÍTŐKÖVEI Az ágens leírására formális nyelvi eszközöket használnak. Hogy az ágens összetevőiről beszélni lehessen, először szükséges definiálni a további tárgyalás alapját képző attribútumokat. Ezek az attribútumok a tanuló-rendszer állapotai, illetve az egyes

4 állapotok felvétele után választható akciók. A lehetséges állapotokat az állapot-halmaz, az akciókat pedig, az előbbitől függő, akcióhalmazok foglalják össze. Minden egyes állapothoz rendelhető egy akció-halmaz. Az állapotokon, illetve az akciókon kívül az ágens tartalmaz még három további függvényt. Az első a politika-függvény (policy function). Ez a függvény egyszerűbb esetben a rendszer aktuális állapotát képzi le a végrehajtandó akciók halmazára: azaz minden állapothoz hozzárendeli az ott eddig legjobbnak vélt akciót. Összetettebb esetben e függvény minden állapot-akció párhoz egy kiválasztási valószínűséget rendel. Ez a valószínűség akkor játszik szerepet, amikor nem a legkedvezőbb akciót választjuk (felderítési üzemmód esetén), és egy rossz alternatíva véletlenszerű kiválasztása nagy negatív tetszést váltana ki a környezettől. Az összetettebb politika-függvénnyel tehát súlyozzuk a lehetséges választásokat. Amikor minden állapotban a lehető legkedvezőbb akciót választjuk, azaz nem végzünk egyáltalán felderítést, mohó (greedy) algoritmusról beszélünk. A politika-függvény lehet determinisztikus, sztochasztikus, de lehet egy komplett kereső eljárás is. A második, az ágens számára szükséges elem az érték-függvény (value function). Az érték-függvény szoros kapcsolatban áll a környezet által visszaadott megerősítő-jel értékekkel. Az ágens számára minden állapotban elérhető kell, hogy legyen egy várható érték, hogy az egyes állapotokban meg tudja jósolni azt, hogy a környezet miként fogja jutalmazni egy új állapot felvételét. Illetve azt is meg kell mondani, hogy az egyes állapotokban az egyes akciók, milyen lesz a várható érték hozama. Ennek tükrében, megkülönböztethető állapot-értek (state-value) és akció-érték (action-value) függvény. Az érték függvény nemcsak azt jelöli, hogy az egyes állapotok, illetve akciók milyen várható megerősítő-jel értéket képviselnek, hanem azt is, hogy mely állapotok lesznek hosszú-távon akár sokkal jobban jutalmazva, mint bármely jelen állapotban választható akció által elért állapot. Tehát az érték-függvények funkciója az is, hogy a jól jövedelmező, de távoli, esetleg kevésbé jutalmazott állapotokat is kihangsúlyozza a jelen állapotbeli döntés számára.

5 A politika és az érték függvények céljukban is és számítási módjukban is különböznek egymástól. Míg az előbbi célja az, hogy a felfedező-ciklus esetén a véletlenszerű választást súlyozzák, utóbbi hosszabb távon befolyásolja az ágens felfedezés-felhasználás döntését. A harmadik függvény, amellyel a tanuló-rendszernek rendelkeznie kell a honoráriumfüggvény (reward function), amely állapot-akció párokat képez le a megerősítő jel lehetséges értékeinek halmazára. A metrika fogalmával analóg. A politika, illetve az érték függvények iterációs lépéseken keresztül határozhatók meg. 5. A MEGOLDHATÓ PROBLÉMÁK KÖRE A megerősítő tanulás, illetve az ágens-modell egymás segítségével definiálhatók. Megerősítő tanulási eljárásnak minden olyan eljárást nevezünk, ami az előzőekben ismertetett ágens-rendszer célja elérésének megoldásával foglalkozik. Az ágens-feladat megoldásai az alábbi csoportokba sorolhatók: dinamikus programozási eljárások (amelyek a teljes környezet ismeretét feltételezik), hőmérséklet kiegyenlítést modellező eljárások (Q-tanulás), illetve az ún. Monte Carlo eljárások (amelyek számára nem szükséges a teljes környezet ismerete). A megoldások túlnyomó többsége matematikai úton bizonyított, stabil eljárás. A megerősítő tanulás elsősorban a dinamikus feladatok megoldásában alkalmazható. Olyan környezetben, ahol például egy optimum-feladat feltételi rendszere állandó, a zárt matematikai modellek egyértelműen a leghatékonyabbak. Ellenben, ha a feltételrendszer időben változik, esetleg sztochasztikus jellegű, úgy a megerősítő tanulási módszerek, különösen nagyobb rendszer esetében, a matematikai modelleknél megvalósíthatóbbak, és jobb teljesítményt nyújtanak. 6. PÉLDA EGY MEGERŐSÍTŐ TANULÁSI ELJÁRÁSRA Jelölje S a tanuló-rendszer által felvehető állapotok halmazát, A(s) az s S állapotban választható akciókat. Legyen Q:S A [0,1] R az akció-érték függvény, π:s A a

6 politika függvény. A megerősítő tanulás egyik lehetséges algoritmusa az alábbi C-formájú algoritmus lehet: while (true) { p = véletlen szám; if (p < 0.8) {akció kiválasztása az adott politika szerint, a A} else {ennek alapján egy véletlenszeruen választott akció, a A} s új = az újonnan választott állapot felvétele (s new S); r = a környezettol kapott visszajelzett érték; hiba = r + γ*u(s new ) - Q(s,a); Q(s,a) = Q(s,a) + α*hiba; π(s) = max b A (Q(s,b)); U(s) = Q(s,π(s)); S = s új ; } 7. ÖSSZEFOGLALÁS A megerősítő tanulás egy iteratív módszer, amely a környezetével állandó kölcsönhatásban lévő, dinamikusan változó környezetbe helyezett ágens célkereső eljárását definiálja, illetve oldja meg. Az létrehozott modell keretei közé számos probléma helyezhető, mint például az Internet routing probléma, adaptív robot vezérlés, változó környezetben történő optimum-keresés, illetve logisztikai disztribúciós feladatok megoldása. 8. FELHASZNÁLT IRODALOM [1] P.STEFÁN, L.MONOSTORI, F.ERDÉLYI: Using symbolic and sub-symbolic methods for solving problems difficult to analyze, MicroCAD 99 University of Miskolc [2] Szimbolikus és szub-szimbolikus módszerek az analitikailag kezelhető problémák megoldásában, FMTÜ Kolozsvár [3] R.SUTTON, A.BARTO: Reinforcement learning

7 DOKTORANDUSZ FÓRUM, 1999 Miskolc, november Megerősítő tanulási módszerek alkalmazása az informatikában STEFÁN PÉTER Miskolci Egyetem, Alkalmazott Informatikai Tanszék 3515 Miskolc-Egyetemváros ABSTRACT Napjainkban a gépipari, informatikai rendszereink komplexitása állandó ütemben nő. A bonyolultság növekedése, és, éppen emiatt, a rendszerek átláthatóságának csökkenése arra ösztönzött számos kutatót, hogy újabb mesterséges intelligencia módszereket fejlesszen ki, illetve alkalmazzon informatikai, gazdasági, illetve műszaki problémák megoldásában. Egyik ilyen MI módszer a megerősítő tanulás, mely előnyös tulajdonságaira, illetve alkalmazási területeire a cikkben rámutatunk. FELHASZNÁLT IRODALOM [1] P.STEFÁN, L.MONOSTORI, F.ERDÉLYI: Using symbolic and sub-symbolic methods for solving problems difficult to analyze, MicroCAD 99 University of Miskolc [2] Szimbolikus és szub-szimbolikus módszerek az analitikailag kezelhető problémák megoldásában, FMTÜ Kolozsvár [3] R.SUTTON, A.BARTO: Reinforcement learning

8

A megerosítéses tanulás és a szimulált hutés kombinált használata: algoritmusok és alkalmazások

A megerosítéses tanulás és a szimulált hutés kombinált használata: algoritmusok és alkalmazások MISKOLCI EGYETEM DOKTORI (PH.D.) TÉZISFÜZETEI HATVANY JÓZSEF INFORMATIKAI TUDOMÁNYOK DOKTORI ISKOLA A megerosítéses tanulás és a szimulált hutés kombinált használata: algoritmusok és alkalmazások Készítette:

Részletesebben

OOP. Alapelvek Elek Tibor

OOP. Alapelvek Elek Tibor OOP Alapelvek Elek Tibor OOP szemlélet Az OOP szemlélete szerint: a valóságot objektumok halmazaként tekintjük. Ezen objektumok egymással kapcsolatban vannak és együttműködnek. Program készítés: Absztrakciós

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz)

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 6. oktatási hét csütörtöki

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

I. LABOR -Mesterséges neuron

I. LABOR -Mesterséges neuron I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,

Részletesebben

Objektumorientált paradigma és a programfejlesztés

Objektumorientált paradigma és a programfejlesztés Objektumorientált paradigma és a programfejlesztés Vámossy Zoltán vamossy.zoltan@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Ficsor Lajos (Miskolci Egyetem) prezentációja alapján Objektumorientált

Részletesebben

Objektumorientált paradigma és programfejlesztés Bevezető

Objektumorientált paradigma és programfejlesztés Bevezető Objektumorientált paradigma és programfejlesztés Bevezető Vámossy Zoltán vamossy.zoltan@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Ficsor Lajos (Miskolci Egyetem) prezentációja alapján

Részletesebben

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával

Részletesebben

Absztrakció. Objektum orientált programozás Bevezetés. Általános Informatikai Tanszék Utolsó módosítás:

Absztrakció. Objektum orientált programozás Bevezetés. Általános Informatikai Tanszék Utolsó módosítás: Objektum orientált programozás Bevezetés Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 03. 04. OOPALAP / 1 A program készítés Absztrakciós folyamat, amelyben a valós világban

Részletesebben

Matematikai modellezés

Matematikai modellezés Matematikai modellezés Bevezető A diasorozat a Döntési modellek című könyvhöz készült. Készítette: Dr. Ábrahám István Döntési folyamatok matematikai modellezése Az emberi tevékenységben meghatározó szerepe

Részletesebben

TERMÉK FEJLESZTÉS PANDUR BÉLA TERMÉK TERVEZÉSE

TERMÉK FEJLESZTÉS PANDUR BÉLA TERMÉK TERVEZÉSE TERMÉK TERVEZÉSE A termék fogalma: Tevékenységek, vagy folyamatok eredménye /folyamat szemlélet /. (Minden terméknek értelmezhető, amely gazdasági potenciált közvetít /közgazdász szemlélet /.) Az ISO 8402

Részletesebben

Megerősítéses tanulás 2. előadás

Megerősítéses tanulás 2. előadás Megerősítéses tanulás 2. előadás 1 Technikai dolgok Email szityu@eotvoscollegium.hu Annai levlista http://nipglab04.inf.elte.hu/cgi-bin/mailman/listinfo/annai/ Olvasnivaló: Sutton, Barto: Reinforcement

Részletesebben

Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet

Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet 1034 Budapest, Bécsi út 96/B Tel., Fax:1/666-5544,1/666-5545 http://nik.uni-obuda.hu/imri Az 2004-ben alakult IMRI (BMF)

Részletesebben

Adaptív menetrendezés ADP algoritmus alkalmazásával

Adaptív menetrendezés ADP algoritmus alkalmazásával Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet

Részletesebben

Neurális hálózatok bemutató

Neurális hálózatok bemutató Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:

Részletesebben

Minőségérték. A modellezés céljának meghat. Rendszer elemzés. Módszer kiválasztása. Modell megfelelőség elemzés. Működés szimuláció

Minőségérték. A modellezés céljának meghat. Rendszer elemzés. Módszer kiválasztása. Modell megfelelőség elemzés. Működés szimuláció Minőségérték. Műszaki minőségérték növelésére alkalmas módszerek: Cél: a termék teljes életciklusa során az előre látható, vagy feltételezett követelmények, teljes körű és kiegyensúlyozott kielégítése.

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

OPERÁCIÓKUTATÁS, AZ ELFELEDETT TUDOMÁNY A LOGISZTIKÁBAN (A LOGISZTIKAI CÉL ELÉRÉSÉNEK ÉRDEKÉBEN)

OPERÁCIÓKUTATÁS, AZ ELFELEDETT TUDOMÁNY A LOGISZTIKÁBAN (A LOGISZTIKAI CÉL ELÉRÉSÉNEK ÉRDEKÉBEN) OPERÁCIÓKUTATÁS, AZ ELFELEDETT TUDOMÁNY A LOGISZTIKÁBAN (A LOGISZTIKAI CÉL ELÉRÉSÉNEK ÉRDEKÉBEN) Fábos Róbert 1 Alapvető elvárás a logisztika területeinek szereplői (termelő, szolgáltató, megrendelő, stb.)

Részletesebben

Válogatott fejezetek a közlekedésgazdaságtanból

Válogatott fejezetek a közlekedésgazdaságtanból Válogatott fejezetek a közlekedésgazdaságtanból 2. Választási modellek Levelező tagozat 2015 ősz Készítette: Prileszky István http://www.sze.hu/~prile Fogalmak Választási modellek célja: annak megjósolása,

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

1. gyakorlat. Mesterséges Intelligencia 2.

1. gyakorlat. Mesterséges Intelligencia 2. 1. gyakorlat Mesterséges Intelligencia. Elérhetőségek web: www.inf.u-szeged.hu/~gulyasg mail: gulyasg@inf.u-szeged.hu Követelmények (nem teljes) gyakorlat látogatása kötelező ZH írása a gyakorlaton elhangzott

Részletesebben

Gépi tanulás a gyakorlatban. Bevezetés

Gépi tanulás a gyakorlatban. Bevezetés Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Az ISO 9001:2015 szabványban szereplő új fogalmak a tanúsító szemszögéből. Szabó T. Árpád

Az ISO 9001:2015 szabványban szereplő új fogalmak a tanúsító szemszögéből. Szabó T. Árpád Az ISO 9001:2015 szabványban szereplő új fogalmak a tanúsító szemszögéből. Szabó T. Árpád Bevezetés Az új fogalmak a TQM ből ismerősek? ISO 9001:2015 új fogalmainak az érdekelt felek általi értelmezése

Részletesebben

"A tízezer mérföldes utazás is egyetlen lépéssel kezdődik."

A tízezer mérföldes utazás is egyetlen lépéssel kezdődik. "A tízezert mérföldes utazás is egyetlen lépéssel kezdődik dik." A BINB INSYS Előadók: Kornafeld Ádám SYS PROJEKT Ádám MTA SZTAKI kadam@sztaki.hu Kovács Attila ELTE IK attila@compalg.inf.elte.hu Társszerzők:

Részletesebben

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával * Pannon Egyetem, M szaki Informatikai Kar, Számítástudomány

Részletesebben

Gyakorlatias tanácsok PLA fejlesztőknek

Gyakorlatias tanácsok PLA fejlesztőknek Gyakorlatias tanácsok PLA fejlesztőknek Beszédes Nimród Attiláné Békéscsabai Regionális Képző Központ Képzési igazgatóhelyettes 2007. november 28-30. A jogszabályi háttérről 2001. évi CI. törvény 24/2004.

Részletesebben

ÁRAMKÖRÖK SZIMULÁCIÓJA

ÁRAMKÖRÖK SZIMULÁCIÓJA ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg

Részletesebben

Bevezetés, a C++ osztályok. Pere László

Bevezetés, a C++ osztályok. Pere László Programozás módszertan II. p. Programozás módszertan II. Bevezetés, a C++ osztályok Pere László (pipas@linux.pte.hu) PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR INFORMATIKA ÉS ÁLTALÁNOS TECHNIKA TANSZÉK

Részletesebben

Integrált gyártórendszerek. Ágens technológia - ágens rendszer létrehozása Gyakorlat

Integrált gyártórendszerek. Ágens technológia - ágens rendszer létrehozása Gyakorlat IGYR p. 1/17 Integrált gyártórendszerek Ágens technológia - ágens rendszer létrehozása Gyakorlat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu IGYR

Részletesebben

C++ programozási nyelv

C++ programozási nyelv C++ programozási nyelv Gyakorlat - 13. hét Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2004. december A C++ programozási nyelv Soós Sándor 1/10 Tartalomjegyzék Objektumok

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

Mérés és modellezés Méréstechnika VM, GM, MM 1

Mérés és modellezés Méréstechnika VM, GM, MM 1 Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni

Részletesebben

Tisztán kivehetı tendencia: kommunikációs hálózatok egyre bonyolultabbakká válnak Hálózat bonyolultsága

Tisztán kivehetı tendencia: kommunikációs hálózatok egyre bonyolultabbakká válnak Hálózat bonyolultsága @ Budapest University of Technology and Economics Nagy hálózatok evolúciója Gulyás András, Heszberger Zalán High Speed Networks Laboratory Internet trendek Tisztán kivehetı tendencia: kommunikációs hálózatok

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

Kvantitatív módszerek

Kvantitatív módszerek Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció

Részletesebben

Számítógépes döntéstámogatás. Bevezetés és tematika

Számítógépes döntéstámogatás. Bevezetés és tematika SZDT-01 p. 1/18 Számítógépes döntéstámogatás Bevezetés és tematika Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-01 p. 2/18 SZDT-01

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BESZÉDTUDOMÁNY Az emberi kommunikáció egyik leggyakrabban használt eszköze a nyelv. A nyelv hangzó változta, a beszéd a nyelvi kommunikáció

Részletesebben

Modell alapú tesztelés mobil környezetben

Modell alapú tesztelés mobil környezetben Modell alapú tesztelés mobil környezetben Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék A terület behatárolása Testing is an activity performed

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József

Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken Dombi József Mesterséges intelligencia Klasszikus megközelítés (A*, kétszemélyes játékok, automatikus tételbizonyítás,

Részletesebben

Szakmai zárójelentés

Szakmai zárójelentés Szakmai zárójelentés A csoporttechnológia (Group Technology = GT) elvi és módszertani alapjaihoz, valamint a kapcsolódó módszerek informatikai alkalmazásaihoz kötődő kutatómunkával a Miskolci Egyetem Alkalmazott

Részletesebben

Mesterséges Intelligencia Elektronikus Almanach. MI Almanach projektismertetı rendezvény április 29., BME, I. ép., IB.017., 9h-12h.

Mesterséges Intelligencia Elektronikus Almanach. MI Almanach projektismertetı rendezvény április 29., BME, I. ép., IB.017., 9h-12h. Mesterséges Intelligencia Elektronikus Almanach Neurális hálózatokh 1 BME 1990: Miért neurális hálók? - az érdeklıdésünk terébe kerül a neurális hálózatok témakör - fıbb okok: - adaptív rendszerek - felismerési

Részletesebben

Intelligens ágensek. Mesterséges intelligencia február 28.

Intelligens ágensek. Mesterséges intelligencia február 28. Intelligens ágensek Mesterséges intelligencia 2014. február 28. Ágens = cselekvő Bevezetés Érzékelői segítségével érzékeli a környezetet Beavatkozói/akciói segítségével megváltoztatja azt Érzékelési sorozat:

Részletesebben

Problémamegoldás kereséssel. Mesterséges intelligencia március 7.

Problémamegoldás kereséssel. Mesterséges intelligencia március 7. Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési

Részletesebben

Számítógépes döntéstámogatás. Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer

Számítógépes döntéstámogatás. Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer SZDT-07 p. 1/20 Számítógépes döntéstámogatás Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Antreter Ferenc. Termelési-logisztikai rendszerek tervezése és teljesítményének mérése

Antreter Ferenc. Termelési-logisztikai rendszerek tervezése és teljesítményének mérése Antreter Ferenc Termelési-logisztikai rendszerek tervezése és teljesítményének mérése Doktori értekezés Témavezetők: Dr. Várlaki Péter egyetemi tanár Széchenyi István Egyetem, Műszaki Tudományi Kar, Logisztikai

Részletesebben

30 MB INFORMATIKAI PROJEKTELLENŐR

30 MB INFORMATIKAI PROJEKTELLENŐR INFORMATIKAI PROJEKTELLENŐR 30 MB DOMBORA SÁNDOR BEVEZETÉS (INFORMATIKA, INFORMATIAKI FÜGGŐSÉG, INFORMATIKAI PROJEKTEK, MÉRNÖKI ÉS INFORMATIKAI FELADATOK TALÁKOZÁSA, TECHNOLÓGIÁK) 2016. 09. 17. MMK- Informatikai

Részletesebben

C programozás. 6 óra Függvények, függvényszerű makrók, globális és

C programozás. 6 óra Függvények, függvényszerű makrók, globális és C programozás 6 óra Függvények, függvényszerű makrók, globális és lokális változók 1.Azonosítók A program bizonyos összetevőire névvel (azonosító) hivatkozunk Első karakter: _ vagy betű (csak ez lehet,

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Történet John Little (1970) (Management Science cikk)

Történet John Little (1970) (Management Science cikk) Információ menedzsment Szendrői Etelka Rendszer- és Szoftvertechnológia Tanszék szendroi@witch.pmmf.hu Vezetői információs rendszerek Döntéstámogató rendszerek (Decision Support Systems) Döntések információn

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű optimálásának általános és robosztus módszere A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere Kaposvári Egyetem, Informatika Tanszék I. Kaposvári Gazdaságtudományi Konferencia

Részletesebben

Rekurzió. Dr. Iványi Péter

Rekurzió. Dr. Iványi Péter Rekurzió Dr. Iványi Péter 1 Függvényhívás void f3(int a3) { printf( %d,a3); } void f2(int a2) { f3(a2); a2 = (a2+1); } void f1() { int a1 = 1; int b1; b1 = f2(a1); } 2 Függvényhívás void f3(int a3) { printf(

Részletesebben

Mesterséges Intelligencia Elektronikus Almanach. Konzorciumi partnerek

Mesterséges Intelligencia Elektronikus Almanach. Konzorciumi partnerek Mesterséges Intelligencia Elektronikus Almanach Konzorciumi partnerek 1 Konzorcium Budpesti Mőszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek

Részletesebben

Programozási alapismeretek 4.

Programozási alapismeretek 4. Programozási alapismeretek 4. Obejktum-Orientált Programozás Kis Balázs Bevezetés I. Az OO programozási szemlélet, egy merőben más szemlélet, az összes előző szemlélettel (strukturális, moduláris, stb.)

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

Egyetemi szintű Közgazdasági programozó matematikus szak nappali tagozat (GEEP)

Egyetemi szintű Közgazdasági programozó matematikus szak nappali tagozat (GEEP) Egyetemi szintű Közgazdasági programozó matematikus szak nappali tagozat (GEEP) Tárgykód Félév Tárgynév Ea. Gy. Köv. Kr. GEIAL211N 1 Programozás alapjai I. 2 2 G 5 - METES001GE1 1 Testnevelés 0 2 A 0 GEMAN151N

Részletesebben

A programozó matematikus szak kredit alapú szakmai tanterve a 2004/2005. tanévtől, felmenő rendszerben

A programozó matematikus szak kredit alapú szakmai tanterve a 2004/2005. tanévtől, felmenő rendszerben A programozó matematikus szak kredit alapú szakmai tanterve a 2004/2005. tanévtől, felmenő rendszerben Szak neve: programozó matematikus szak Tagozat: nappali Képzési idő: 6 félév Az oktatás nyelve: magyar

Részletesebben

Objektum orientált kiterjesztés A+ programozási nyelvhez

Objektum orientált kiterjesztés A+ programozási nyelvhez Szegedi Tudományegyetem Informatikai Tanszékcsoport Objektum orientált kiterjesztés A+ programozási nyelvhez Diplomamunka terve Készítette: Bátori Csaba programtervező matematikus hallgató Témavezető:

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,

Részletesebben

Mesterséges intelligencia 3. laborgyakorlat

Mesterséges intelligencia 3. laborgyakorlat Mesterséges intelligencia 3. laborgyakorlat Kétszemélyes játékok - Minimax A következő típusú játékok megoldásával foglalkozunk: (a) kétszemélyes, (b) determinisztikus, (c) zéróösszegű, (d) teljes információjú.

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

Java II. I A Java programozási nyelv alapelemei

Java II. I A Java programozási nyelv alapelemei Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 02. 19. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve az annak

Részletesebben

Az informatika tantárgy fejlesztési feladatait a Nemzeti alaptanterv hat részterületen írja elő, melyek szervesen kapcsolódnak egymáshoz.

Az informatika tantárgy fejlesztési feladatait a Nemzeti alaptanterv hat részterületen írja elő, melyek szervesen kapcsolódnak egymáshoz. INFORMATIKA Az informatika tantárgy ismeretkörei, fejlesztési területei hozzájárulnak ahhoz, hogy a tanuló az információs társadalom aktív tagjává válhasson. Az informatikai eszközök használata olyan eszköztudást

Részletesebben

Programozási nyelvek a közoktatásban alapfogalmak I. előadás

Programozási nyelvek a közoktatásban alapfogalmak I. előadás Programozási nyelvek a közoktatásban alapfogalmak I. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig)

Részletesebben

Programozási módszertan

Programozási módszertan 1 Programozási módszertan 1. Alapfogalmak Feldhoffer Gergely 2012 Féléves tananyag terve 2 Program helyességének bizonyítása Reprezentáció Logikai-matematikai eszköztár Programozási tételek bizonyítása

Részletesebben

Mesterséges Intelligencia I. (I602, IB602)

Mesterséges Intelligencia I. (I602, IB602) Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely

Részletesebben

INFORMATIKA OKTATÁS A KLTE-N 1

INFORMATIKA OKTATÁS A KLTE-N 1 INFORMATIKA OKTATÁS A KLTE-N 1 Juhász István, pici@math.klte.hu KLTE, Matematikai és Informatikai Intézet, Információ Technológia Tanszék Abstract The Institute of Mathematics and Informatics of Kossuth

Részletesebben

Költségbecslési módszerek a szerszámgyártásban. Tartalom. CEE-Product Groups. Költségbecslés. A költségbecslés szerepe. Dr.

Költségbecslési módszerek a szerszámgyártásban. Tartalom. CEE-Product Groups. Költségbecslés. A költségbecslés szerepe. Dr. Gépgyártástechnológia Tsz Költségbecslési módszerek a szerszámgyártásban Szerszámgyártók Magyarországi Szövetsége 2003. december 11. 1 2 CEE-Product Groups Tartalom 1. Költségbecslési módszerek 2. MoldCoster

Részletesebben

A programozó matematikus szak kredit alapú szakmai tanterve a 2003/2004. tanévtől, felmenő rendszerben

A programozó matematikus szak kredit alapú szakmai tanterve a 2003/2004. tanévtől, felmenő rendszerben A programozó matematikus szak kredit alapú szakmai tanterve a 2003/2004. tanévtől, felmenő rendszerben Szak neve: programozó matematikus szak Tagozat: levelező Képzési idő: 6 félév Az oktatás nyelve: magyar

Részletesebben

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART ))

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Döntési fák (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Rekurzív osztályozó módszer, Klasszifikációs és regressziós fák folytonos, kategóriás, illetve túlélés adatok

Részletesebben

Szkriptnyelvek. 1. UNIX shell

Szkriptnyelvek. 1. UNIX shell Szkriptnyelvek 1. UNIX shell Szkriptek futtatása Parancsértelmez ő shell script neve paraméterek shell script neve paraméterek Ebben az esetben a szkript tartalmazza a parancsértelmezőt: #!/bin/bash Szkriptek

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Operációkutatás I. 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Számítógépes Optimalizálás Tanszék 6. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát

Részletesebben

Szoftverarchitektúrák 3. előadás (második fele) Fornai Viktor

Szoftverarchitektúrák 3. előadás (második fele) Fornai Viktor Szoftverarchitektúrák 3. előadás (második fele) Fornai Viktor A szotverarchitektúra fogalma A szoftverarchitektúra nagyon fiatal diszciplína. A fogalma még nem teljesen kiforrott. Néhány definíció: A szoftverarchitektúra

Részletesebben

C++ programozási nyelv Konstruktorok-destruktorok

C++ programozási nyelv Konstruktorok-destruktorok C++ programozási nyelv Konstruktorok-destruktorok Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2004. szeptember A C++ programozási nyelv Soós Sándor 1/20 Tartalomjegyzék

Részletesebben

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Informatika. készült. a 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 5-8./2.2.15.

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Informatika. készült. a 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 5-8./2.2.15. 1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Informatika készült a 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 5-8./2.2.15. alapján 5-8. évfolyam 2 5-8. évfolyam Az informatika tantárgy ismeretkörei,

Részletesebben

Osztálytervezés és implementációs ajánlások

Osztálytervezés és implementációs ajánlások Osztálytervezés és implementációs ajánlások Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2006. 04. 24. Osztálytervezés és implementációs kérdések OTERV / 1 Osztály tervezés Egy nyelv

Részletesebben

2. A példahalmazban n = 3 negatív és p = 3 pozitív példa van, azaz a példahalmazt képviselő döntési fa információtartalma: I = I(1/2, 1/2) = 1 bit.

2. A példahalmazban n = 3 negatív és p = 3 pozitív példa van, azaz a példahalmazt képviselő döntési fa információtartalma: I = I(1/2, 1/2) = 1 bit. Példa 1. Döntési fa számítása/1 1. Legyen a felhasználandó példahalmaz: Példa sz. Nagy(x) Fekete(x) Ugat(x) JóKutya(x) X1 Igen Igen Igen Nem X2 Igen Igen Nem Igen X3 Nem Nem Igen Nem X4 Nem Igen Igen Igen

Részletesebben

Osztálytervezés és implementációs ajánlások

Osztálytervezés és implementációs ajánlások Osztálytervezés és implementációs ajánlások Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2006. 04. 24. Osztálytervezés és implementációs kérdések OTERV / 1 Osztály tervezés Egy nyelv

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

INFORMATIKA 1-4. évfolyam

INFORMATIKA 1-4. évfolyam INFORMATIKA 1-4. évfolyam Célok - A számítógépes munkaszabályainak és a legfontosabb balesetvédelmi előírások megismerése. - A számítógép és perifériáinak kezelési tudnivalóinak megismerése. - Az életkoruknak

Részletesebben

közötti együttműködések (például: közös, több tantárgyat átfogó feladatok), továbbá az aktív részvétel a kulturális, társadalmi és/vagy szakmai

közötti együttműködések (például: közös, több tantárgyat átfogó feladatok), továbbá az aktív részvétel a kulturális, társadalmi és/vagy szakmai Informatika Az informatika tantárgy ismeretkörei, fejlesztési területei hozzájárulnak ahhoz, hogy a tanuló az információs társadalom aktív tagjává válhasson. Az informatikai eszközök használata olyan eszköztudást

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.

Részletesebben

IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata

IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata IKP-9010 Számítógépes számelmélet 1. EA IK Komputeralgebra Tsz. IKP-9011 Számítógépes számelmélet 2. EA IK Komputeralgebra Tsz. IKP-9021 Java technológiák IK Prog. Nyelv és Ford.programok Tsz. IKP-9030

Részletesebben

PHP5 Új generáció (2. rész)

PHP5 Új generáció (2. rész) PHP5 Új generáció (2. rész)...avagy hogyan használjuk okosan az osztályokat és objektumokat PHP 5-ben. Cikksorozatom elõzõ részében képet kaphattunk arról, hogy valójában mik is azok az objektumok, milyen

Részletesebben

IV. A munkaköri leírás és elemzése

IV. A munkaköri leírás és elemzése BBTE, Politika-, Közigazgatás- és Kommunikációtudományi kar, Szatmárnémeti egyetemi kirendeltség IV. A munkaköri leírás és elemzése Emberi Erőforrás Menedzsment 2012 Október 20 Gál Márk PhD Közigazgatási

Részletesebben

Dr. habil. Maróti György

Dr. habil. Maróti György infokommunikációs technológiák III.8. MÓDSZER KIDOLGOZÁSA ALGORITMUSOK ÁTÜLTETÉSÉRE KIS SZÁMÍTÁSI TELJESÍTMÉNYŰ ESZKÖZÖKBŐL ÁLLÓ NÉPES HETEROGÉN INFRASTRUKTÚRA Dr. habil. Maróti György maroti@dcs.uni-pannon.hu

Részletesebben

OTKA Zárójelentés 2006-2010. Publikációk 2009-2010.

OTKA Zárójelentés 2006-2010. Publikációk 2009-2010. OTKA Zárójelentés 2006-2010. Publikációk 2009-2010. ZÁRÓJELENTÉS szakmai beszámoló OTKA-azonosító: 63591 Típus: K Szakmai jelentés: 2010. 04. 02. Vezető kutató: Illés Béla Kutatóhely: Anyagmozgatási és

Részletesebben

KÖZGAZDASÁGTAN GAZDASÁGI INFORMATIKUSOKNAK. Elérhetőség

KÖZGAZDASÁGTAN GAZDASÁGI INFORMATIKUSOKNAK. Elérhetőség KÖZGAZDASÁGTAN GAZDASÁGI INFORMATIKUSOKNAK Oktatók Csongrádi Gyöngyi Kiss Gabriella Dr. Nagy András Elérhetőség Hivatalos honlap http://www.bgf.hu/pszk /szervezetiegysegeink/oktatasiszervezetiegysegek

Részletesebben

STRATÉGIAALKOTÁS, ÜZLETI TERVEZÉS A VÁLLALKOZÁS KREATÍV RÉSZE

STRATÉGIAALKOTÁS, ÜZLETI TERVEZÉS A VÁLLALKOZÁS KREATÍV RÉSZE STRATÉGIAALKOTÁS, ÜZLETI TERVEZÉS A VÁLLALKOZÁS KREATÍV RÉSZE Mi az üzleti tervezés A józan ész diadala az önámítás felett A tervezés tisztán matematika Nagy számok törvénye Egy egész szám felírható néhány

Részletesebben

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben