NEURÁLIS HÁLÓZATOK 1. eloadás 1

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "NEURÁLIS HÁLÓZATOK 1. eloadás 1"

Átírás

1 NEURÁLIS HÁLÓZATOKH 1. eloadás 1

2 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága, - tanul. 2

3 Biológiai elozmények nyek: neuron A neuron az agy és az egész idegrendszer alapveto funkcionális egysége. 3

4 Az egyszeru processzáló elem (EPE) A neuront mintájának használva létrejott az egyszeru processzáló (számítási) elem. 4

5 Az EPE részei 1. Bemeneti kapcsolatok és a hozzá tartozó súlyok 2. Bemeneti fuggvény 3. Aktivációs fuggvény 4. Kimenet 5. Kimeneti kapcsolatok 5

6 Bemeneti kapcsolatok és a hozzá tartozó súlyok Minden neuronnak van n db bemenete melyek értékei rendre x 1, x 2,..., x n, (a bemenetek lehetnek más EPEk kimenetei is) és minden kapcsolatnak van egy súlya (w 1, w 2,..., w n ). A tanuláskor pont a súlyokat módosítjuk. 6

7 Bemeneti fuggvény A bemeneti fuggvény értékét a kovetkezo képpen számoljuk ki: n In=Σx i w i + bias i=1 a bias a kuszobot reprezentálja. 7

8 Aktiváci ciós fuggvény Ha a g aktivációs fuggvényként kulonbozo matematikai fuggvényeket alkalmazunk, akkor eltéro neurális modellekhez jutunk. A három leggyakrabban használt: ugrásfuggvény step(x) = 1, ha x > 0 0, máskulonben elojelfuggvény sign(x) = +1, if x > 0-1, if x 0 szigmoidfuggveny sigmoid(x) = 1/(1+e -x ) 8

9 Kimenet és a kimeneti kapcsolatok Az EPE egy univerális fuggvény aproximátor. Ez azt jelenti hogy miután megtanítjuk ot, a bemenetelekhez tartozo kimenetelt a helyes eredmenyhez aproximálja. A kimeneti kapcsolatok segítségével az eredményt(kimenetet) egy másik EPE bemenetelének használhatjuk. 9

10 Az elemi logikai fuggvények x 1 x 2 x 1 x 2 x AND W=1.5-1 W=0.5 OR NOT -1 W=-0.5 o(x 1,x 2 ) o(x 1,x 2 ) o(x 1,x 2 ) o(x1,x2) = 1 ha x1 + x2 > 0 = 0 máskulonben o(x1,x2) = 1 ha x1 + x2 > 0 = 0 máskulonben o(x1) = 1 ha x1 > 0 = 0 máskulonben 10

11 Perceptron A legegyszerubb neuralis hálózat. Egy neuronból áll, struktúráját nézve elorecsatolt. Használata a dichotomikus klaszifikáción alapul, ami két osztálybeli szétosztást jelent, melyeknek lineárisan szeparálhatónak kell lenniuk (Rosenblatt, 1960). N bemenetele és egy kimenetele van. 11

12 Perceptron - schéma Szenzor réteg x 1 Aszociatív réteg w 1 x 2 w 2 Kimenetel x n w n w 0 =0-1 12

13 Perceptron A perceptron bemenetele: n In(t)=Σwj(t)xj(t) + θ j=1 n az aszociatív rétegbeli neuronok száma wj(t) a súlyok az aszociatív réteg és a kimenetel kozott xj(t) j-edik neuron állapota és θ a bias. A perceptron kimenetele: Ou(t)= 1; in(t) >= 0, -1; in(t) < 0. 13

14 Perceptron Nevezzuk az osztályokat, melyekbe klaszifikálunk CL1 és CL2nek. A szeparációs sík a kovetkezo képpen van megadva: n In(t)=Σw j (t)x j (t) + θ = 0, j=1 w(t)=(w 0 (t)=θ, w 1 (t),..., w n (t)) vektor, x(t)=(x 0 (t)=-1, x 1 (t),..., x n (t)) is vektor és n a vektorok mérete vagyis az aszociatív réteg neuronainak száma. 14

15 Perceptron - tanulás A perceptron tanítása a megfelelo súlyok keresése: 1. A súlyok inicializálódnak 2. Ha a w(t) segítségével klaszifikált x(t) helyes, akkor w(t+1) súlyok nem változnak: w(t)=w(t+1) 3. Ha nem helyes, azaz x(t) є CL2 avagy CL1: ha w(t)x(t)<0 és x(t)єcl1, akkor w(t+1)=w(t)+ γ x(t) és ha w(t)x(t) 0 és x(t)єcl2, akkor w(t+1)=w(t)- γ x(t) ahol γ a tanítási parameter. 15

16 Perceptron Mit jelent ha a perceptron nem konvergál? - A két osztály lineárisan nem szeparálható. Alaptétel. Ha a minta lineárisan szeparálható, akkor a perceptron eljárás megoldásvektorhoz konvergál. 16

17 Hálózati struktúrák Nagyon sokféle létezik Eltéro számítási tulajdonságokat eredményeznek Legfontosabbak az elorecsatolt (feed-forward) és visszacsatolt (recullent) hálók 17

18 Elorecsatolt hálók A kapcsolatok egyirányúak Nincs hurok a hálóban Másképp mondva irányított, hurokmentes gráf Nincs kapcsolat az ugyanazon rétegbe tartozó egységekkel, visszafelé az elozo rétegbe tartozó egységekhez és a kapcsolatok enm ugornak át rétegeket. A számítás egyenletesen halad a bemeneti egységektol a kimenetelig A hálózatnak nincs más belso állapota, csak a súlyok. 18

19 Elorecsatolt hálók - schéma Bemeneti egységek 1. rejtett e. 2. rejtett e. Kimeneti e. 19

20 Visszacsatolt hálók A kapcsolatok által kialakított topológia tetszoleges Olyan belso állapottal rendelkeznek, amelyet az aktivációs értékek tárolnak Instabilan, kaotikusan mukodhetnek A tanulás nehezeb, hosszú idot vesz igénybe Képesek bonyolultabb feladatok medoldására. 20

21 Visszacsatolt hálók - schéma Bemeneti egységek 1.rejtett egységek 2. rejtett e. Kimeneti e. 21

22 Inteligens rendszerek Egy renszer, mely gépi inteligenciával rendelkezik a kovetkezo elemeket kell hogy tartalmazza: Tudás elraktározása tanulás Problémák megoldása Az inteligens rendszerek inteligens technológiákhoz vezetnek. 22

23 A tudás formái Deklaratív forma olvasható (tobbnyire simbolikus formában) Procedurális forma nem olvasható (tobbnyire numerikus formában). A neuron hálózatnak 2 életszakasza van: 1. A tanulás változnak a súlyok 2. Maga a létezés a súlyok már nem változnak. 23

24 Hálók tanulása A tanítás mindig példák alapján történik A tanítás a neurális hálózat súlyainak valamilyen algoritmus általi megfelelő beállítását jelenti Kontrolált Nem kontrolált 24

25 Nem kontrolált lt tanulás unsupervised learning A hálózatot, mely kontrolálás nélkul tanul, on organizálódó hálózatnak is hívjuk (selforganising NN) a hálózatnak csak a bemeneteket tudjuk megadni, a kimenetet onmaga dolgozza fel A tanulás akkor marad abba ha a súlyok változása a t. és a (t+1). Idoben elegendoen kicsi, azaz ΔW(t)-ΔW(t+1) ε. 25

26 Nem kontrolált lt tanulás Nagyon gyakran használt a konkurens tanulás Competitive learning), melyben érvényes a nyertes visz mindent torvény mely a kovetkezo lépésekbol áll: 1. A bemenet után a szignális a kovetkezo rétegbe halad 2. A neurón nelynek a legnagyobb az értéke, lesz a nyertes, értéke 1 lesz, míg a tobbi neuronnak 0. Csak azok a súlyok változnak melyek a nyerteshez vezetnek. A konkurens tanulás csoportosításhoz vezet. 26

27 Kontrolált lt tanulás A kontrolált tanulás filozófiája a tanár jelenlétén van megalapozva A bemeneteleken kívul a hálózatnak a bemenetelekhez tartozó kimeneteleket is meg kell adnunk. Tehát a kontrolált tanítást 3 csoportra osztjuk: 1. a hiba kijavítása alapján torténo tanulás (error correction learning) 2. stochasztikus (stochastic learning) 3. és a tevékenység kiértékelése alapján torténo tanulás (reinforcement learning) 27

28 Mire jó az inicializáci ció? A hálók tanulásánál az elso lépés tobbnyire a súlyok inicializálása Az értékek vélatlenszeruen vannak generálva tobbnyire (-1,1) intervalumból Az elso iteráció után a súlyok értéke a kovetkezo lesz: W(1)=w(0)+Δw(0). Ha hálózat túltanulta magát azaz konstáns eredményt produkál, újrainicializálhatjuk ot és újból próbálhatjuk tanítani. 28

29 Neurális hálózatok alkalmazásakor felmerilo kérdések Milyen hálózati architektúrát használjunk? Hogyan válasszuk meg a hálózat paramétereit? Hogyan válasszuk meg a bemeneti és kimeneti reprezentációt? Hogyan válasszuk meg a tanító halmazokat? Milyen tanító algoritmust válasszunk? Meddig tanítsuk a hálózatot? 29

30 Alkalmazási teruletek Függvény közelítés(aproximálására), méréstechnika (pl: prognózisok) Objektum felismerés, osztályozás Képfeldolgozás: kézírás, arcfelismerés, térképek elemzése Szöveg elemzés Signálisok transzformálására Aszociációs problémák megoldására Az emlékezet szimulációjára A neurális hálózatok aplikálása az alaptulajdonságaiból indul ki. A legfontosabb az, hogy a NH a fuggvény univerzális aproximálója. 30

31 Fejlodési irányok Hibrid rendszerek Neurális hálózatok, szabályalapú és hagyományos rendszerek egyuttes használata, a kulonbozo megkozelítések elonyeinek kihasználása Moduláris felépítés Feladatok részfeladatokra osztása Hierarchikus feldolgozás A felsobb szinteken az alsóbb szintek eredményeinek felhasználása. 31

32 Neurális hálózatok elonyei Egyszerű, és könnyen megérthető működési elv. Nem baj, ha nincs meg minden tulajdonsága a tanító példáknak Egymásnak ellentmondó példák esetén is működik Hatékonyan párhuzamosítható A hálózat a feladathoz alkalmazkodik, tanul Nincs szükség a hagyományos értelemben vett programozásra. 32

33 Neurális hálózatok hátrh trányai a tanuláshoz nagyon sok példára van szükség a tanítási folyamat hosszú időt is igénybe vehet a betanított hálózat súlyai nem mondanak semmit a tanulás hatékonysága nagyban függ a példák előfeldolgozottságától nincsenek kialakult módszerek (paraméterek próbálgatás útján). 33

34 Fuggvények kozelítését tanuló hálózat -1 napprox.html Rengeteg paramétert változtathatunk (a megtanulandó fuggvény, a neuronok száma, aktiválási fuggvény stb.), és figyelhetjuk a tanulás hibájának alakulását. Sajnos magát a neurális hálózatot nem tudja vizuálisan megjeleníteni. 34

35 Fuggvények kozelítését tanuló hálózat -2 Vegyunk például egy szigmoid fuggvényt és inicializáljuk a súlyokat: 35

36 Fuggvények kozelítését tanuló hálózat -3 Vagy 600 gyakorló ciklus után így fog aproximálni: 36

37 A klaszikus SNNS Stuttgart Neural Network Simulator- itt a programtól kezdve az User manual-ig minden megtalálható 37

38 Képtomorítés neurális hálózattal ecompression9plus/bp9plus.html Célja a képek méretének csokkentése, de nem az igazi: túlságosan lassan tanul, és a minoség is elég gyatra. A program surun kivételt dob, de azért elég látványos. 38

39 Képtomorítés neurális hálózattal - 2 Maga a program így néz ki: 39

40 Kézírást felismero program Mintákat kell neki megadni, és megmondani, hogy az milyen számjegy volt. Majd taníttatni kell, és lehet tesztelni a képességeit. 40

41 Itt a vége, fuss el véle Tehát ennyi a neurális hálózatokról. Kérdések?...koszonom a figyelmet 41

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)

Részletesebben

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Neurális hálózatok.... a gyakorlatban

Neurális hálózatok.... a gyakorlatban Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79

Részletesebben

Neurális hálózatok bemutató

Neurális hálózatok bemutató Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:

Részletesebben

Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.

Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

Intelligens orvosi műszerek VIMIA023

Intelligens orvosi műszerek VIMIA023 Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A

Részletesebben

I. LABOR -Mesterséges neuron

I. LABOR -Mesterséges neuron I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...

TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése... TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő

Részletesebben

FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE

FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét

Részletesebben

Hibadetektáló rendszer légtechnikai berendezések számára

Hibadetektáló rendszer légtechnikai berendezések számára Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Budapesti Műszaki és Gazdaságtudományi Egyetem Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Cselkó Richárd 2009. október. 15. Az előadás fő témái Soft Computing technikák alakalmazásának

Részletesebben

Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék

Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék Modellezés és szimuláció Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék Kvantitatív forradalmak a földtudományban - geográfiában 1960- as évek eleje: statisztika 1970- as évek eleje:

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Bevezetés a neurális számításokba Analóg processzortömbök,

Bevezetés a neurális számításokba Analóg processzortömbök, Pannon Egyetem Villamosmérnöki és Információs Tanszék Bevezetés a neurális számításokba Analóg processzortömbök, neurális hálózatok Előadó: dr. Tömördi Katalin Neurális áramkörök (ismétlés) A neurális

Részletesebben

Intelligens Rendszerek Elmélete

Intelligens Rendszerek Elmélete Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html

Részletesebben

Adatbányászati szemelvények MapReduce környezetben

Adatbányászati szemelvények MapReduce környezetben Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt

Részletesebben

E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes)

E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes) 6-7 ősz. gyakorlat Feladatok.) Adjon meg azt a perceptronon implementált Bayes-i klasszifikátort, amely kétdimenziós a bemeneti tér felett szeparálja a Gauss eloszlású mintákat! Rajzolja le a bemeneti

Részletesebben

Tanulás az idegrendszerben

Tanulás az idegrendszerben Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Funkcióvezérelt modellezés Abból indulunk ki, hogy milyen feladatot valósít meg a rendszer Horace Barlow: "A

Részletesebben

II. LABOR Tanulás, Perceptron, Adaline

II. LABOR Tanulás, Perceptron, Adaline II. LABOR Tanulás, Perceptron, Adaline A dolgozat célja a tanító algoritmusok osztályozása, a tanító és tesztel halmaz szerepe a neuronhálók tanításában, a Perceptron és ADALINE feldolgozó elemek struktúrája,

Részletesebben

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)

Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence) Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló

Részletesebben

Konvolúciós neurális hálózatok (CNN)

Konvolúciós neurális hálózatok (CNN) Konvolúciós neurális hálózatok (CNN) Konvolúció Jelfeldolgozásban: Diszkrét jelek esetén diszkrét konvolúció: Képfeldolgozásban 2D konvolúció (szűrők): Konvolúciós neurális hálózat Konvolúciós réteg Kép,

Részletesebben

Visszacsatolt (mély) neurális hálózatok

Visszacsatolt (mély) neurális hálózatok Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük

Részletesebben

Modellkiválasztás és struktúrák tanulása

Modellkiválasztás és struktúrák tanulása Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális

Részletesebben

Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök

Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök http://smartlab.tmit.bme.hu Deep Learning Híradó Hírek az elmúlt 168 órából Deep Learning Híradó Google

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 262/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák

Részletesebben

Gépi tanulás a gyakorlatban. Bevezetés

Gépi tanulás a gyakorlatban. Bevezetés Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis

Részletesebben

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs

Részletesebben

Gépi tanulás a gyakorlatban. Lineáris regresszió

Gépi tanulás a gyakorlatban. Lineáris regresszió Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják

Részletesebben

Stratégiák tanulása az agyban

Stratégiák tanulása az agyban Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com

Részletesebben

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok Debreceni Egyetem Informatikai Kar Fazekas István Neurális hálózatok Debrecen, 2013 Szerző: Dr. Fazekas István egyetemi tanár Bíráló: Dr. Karácsony Zsolt egyetemi docens A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0103

Részletesebben

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán

Részletesebben

Fordítás Kódoptimalizálás

Fordítás Kódoptimalizálás Fordítás Kódoptimalizálás Kód visszafejtés. Izsó Tamás 2016. október 20. Izsó Tamás Fordítás Kódoptimalizálás / 1 Aktív változók Angol irodalomban a Live Variables kifejezést használják, míg az azt felhasználó

Részletesebben

Teljesen elosztott adatbányászat pletyka algoritmusokkal. Jelasity Márk Ormándi Róbert, Hegedűs István

Teljesen elosztott adatbányászat pletyka algoritmusokkal. Jelasity Márk Ormándi Róbert, Hegedűs István Teljesen elosztott adatbányászat pletyka algoritmusokkal Jelasity Márk Ormándi Róbert, Hegedűs István Motiváció Nagyméretű hálózatos elosztott alkalmazások az Interneten egyre fontosabbak Fájlcserélő rendszerek

Részletesebben

Tisztelt Hallgatók! Jó tanulást kívánok, üdvözlettel: Kutor László

Tisztelt Hallgatók! Jó tanulást kívánok, üdvözlettel: Kutor László Tisztelt Hallgatók! Az alábbi anyaga arra ó, hogy lehessen tudni, mi tartozik egy-egy kérdéshez. Ami itt olvasható, az a éghegy csúcsa. Ha alapos tudást akarnak, a éghegy alát önállóan kell hozzá gyűteniük.

Részletesebben

Megerősítéses tanulás

Megerősítéses tanulás Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

KONVOLÚCIÓS NEURONHÁLÓK. A tananyag az EFOP pályázat támogatásával készült.

KONVOLÚCIÓS NEURONHÁLÓK. A tananyag az EFOP pályázat támogatásával készült. KONVOLÚCIÓS NEURONHÁLÓK A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. 1. motiváció A klasszikus neuronháló struktúra a fully connected háló Két réteg között minden neuron kapcsolódik

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

Fogalom értelmezések I.

Fogalom értelmezések I. Fogalom értelmezések I. Intelligencia értelmezések Köznapi értelmezése: értelem, ész, felfogó képesség, értelmesség, műveltség Boring szerint: amit az intelligencia teszt mér Wechsler szerint: Az intelligencia

Részletesebben

Hardver leíró nyelvek (HDL)

Hardver leíró nyelvek (HDL) Hardver leíró nyelvek (HDL) Benesóczky Zoltán 2004 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók 2. Előadó: Hullám Gábor Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki

Részletesebben

Intelligens Rendszerek Elmélete

Intelligens Rendszerek Elmélete Intellgens Rendszerek Elmélete Dr. Kutor László A mesterséges neuráls hálózatok alapfogalma és meghatározó eleme http://mobl.nk.bmf.hu/tantargyak/re.html Logn név: re jelszó: IRE07 IRE 7/1 Neuráls hálózatok

Részletesebben

Forgalmi modellezés BMEKOKUM209

Forgalmi modellezés BMEKOKUM209 BME Közlekedésüzemi és Közlekedésgazdasági Tanszék Forgalmi modellezés BMEKOKUM209 Szimulációs modellezés Dr. Juhász János A forgalmi modellezés célja A közlekedési igények bővülése és a motorizáció növekedése

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit

Részletesebben

Programozási nyelvek a közoktatásban alapfogalmak I. előadás

Programozási nyelvek a közoktatásban alapfogalmak I. előadás Programozási nyelvek a közoktatásban alapfogalmak I. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig)

Részletesebben

Algoritmizálás és adatmodellezés tanítása 2. előadás

Algoritmizálás és adatmodellezés tanítása 2. előadás Algoritmizálás és adatmodellezés tanítása 2. előadás Tartalom Összegzés vektorra, mátrixra Megszámolás vektorra, mátrixra Maximum-kiválasztás vektorra, mátrixra Eldöntés vektorra, mátrixra Kiválasztás

Részletesebben

5. Hét Sorrendi hálózatok

5. Hét Sorrendi hálózatok 5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL

A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL Dr. Ludányi Lajos mk. alezredes egyetemi adjunktus Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti Rendszerek Tanszék

Részletesebben

Összeállította Horváth László egyetemi tanár

Összeállította Horváth László egyetemi tanár Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011

Részletesebben

Mesterséges intelligencia

Mesterséges intelligencia Mesterséges intelligencia Botzheim János Budapesti Műszaki és Gazdaságtudományi Egyetem, Mechatronika, Optika és Gépészeti Informatika Tanszék Motivációk Hogyan lehetne automatikussá tenni azokat az összetett

Részletesebben

Gépi tanulás Gregorics Tibor Mesterséges intelligencia

Gépi tanulás Gregorics Tibor Mesterséges intelligencia Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat

Részletesebben

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9 ... 3 Előszó... 9 I. Rész: Evolúciós számítások technikái, módszerei...11 1. Bevezetés... 13 1.1 Evolúciós számítások... 13 1.2 Evolúciós algoritmus alapfogalmak... 14 1.3 EC alkalmazásokról általában...

Részletesebben

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BESZÉDTUDOMÁNY Az emberi kommunikáció egyik leggyakrabban használt eszköze a nyelv. A nyelv hangzó változta, a beszéd a nyelvi kommunikáció

Részletesebben

Összefoglalás és gyakorlás

Összefoglalás és gyakorlás Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 288/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák

Részletesebben

BASH SCRIPT SHELL JEGYZETEK

BASH SCRIPT SHELL JEGYZETEK BASH SCRIPT SHELL JEGYZETEK 1 TARTALOM Paraméterek... 4 Változók... 4 Környezeti változók... 4 Szűrők... 4 grep... 4 sed... 5 cut... 5 head, tail... 5 Reguláris kifejezések... 6 *... 6 +... 6?... 6 {m,n}...

Részletesebben

A digitális analóg és az analóg digitális átalakító áramkör

A digitális analóg és az analóg digitális átalakító áramkör A digitális analóg és az analóg digitális átalakító áramkör I. rész Bevezetésként tisztázzuk a címben szereplő két fogalmat. A számítástechnikai kislexikon a következőképpen fogalmaz: digitális jel: olyan

Részletesebben

Bevezetés a lágy számítás módszereibe. Neurális hálózatok Alapok

Bevezetés a lágy számítás módszereibe. Neurális hálózatok Alapok BLSZM-09 p. 1/29 Bevezetés a lágy számítás módszereibe Neurális hálózatok Alapok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-09 p. 2/29

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 8

Dr. Oniga István DIGITÁLIS TECHNIKA 8 Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával SAT probléma kielégíthetőségének vizsgálata masszív parallel mesterséges neurális hálózat alkalmazásával Tajti Tibor, Bíró Csaba, Kusper Gábor {gkusper, birocs, tajti}@aries.ektf.hu Eszterházy Károly Főiskola

Részletesebben

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje 1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt

Részletesebben

BASH script programozás II. Vezérlési szerkezetek

BASH script programozás II. Vezérlési szerkezetek 06 BASH script programozás II. Vezérlési szerkezetek Emlékeztető Jelölésbeli különbség van parancs végrehajtása és a parancs kimenetére való hivatkozás között PARANCS $(PARANCS) Jelölésbeli különbség van

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben

Biológiai és mesterséges neurális hálózatok

Biológiai és mesterséges neurális hálózatok Biológiai és mesterséges neurális hálózatok Szegedy Balázs 2018. október 10. Hasonlóságok és külömbségek A mesterséges neurális hálózatok története 1957-ben kezdődött: perceptron (Frank Rosenblatt). 400

Részletesebben

Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok.

Alkalmazott modul: Programozás 4. előadás. Procedurális programozás: iteratív és rekurzív alprogramok. Alprogramok. Alprogramok. Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 4. előadás Procedurális programozás: iteratív és rekurzív alprogramok Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek Sorozatszámítás tétele Például az X tömbben kövek súlyát tároljuk. Ha ki kellene számolni az összsúlyt, akkor az S = f(s, X(i)) helyére S = S + X(i) kell írni. Az f0 tartalmazza

Részletesebben

Google Summer of Code Project

Google Summer of Code Project Neuronhálózatok a részecskefizikában Bagoly Attila ELTE TTK Fizikus MSc, 2. évfolyam Integrating Machine Learning in Jupyter Notebooks Google Summer of Code Project 2016.10.10 Bagoly Attila (ELTE) Machine

Részletesebben

Programozási nyelvek 6. előadás

Programozási nyelvek 6. előadás Programozási nyelvek 6. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig) Számítási modell (hogyan

Részletesebben

Matematikai alapok. Dr. Iványi Péter

Matematikai alapok. Dr. Iványi Péter Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: 0 és 1 Byte: 8 bit 128 64 32 16 8 4 2 1 1 1 1 1

Részletesebben

Szoftver karbantartási lépések ellenőrzése

Szoftver karbantartási lépések ellenőrzése Szoftverellenőrzési technikák (vimim148) Szoftver karbantartási lépések ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/

Részletesebben

Kézzel írt szövegek feldolgozása tanuló algoritmusokkal

Kézzel írt szövegek feldolgozása tanuló algoritmusokkal Debreceni Egyetem Informatika Kar Kézzel írt szövegek feldolgozása tanuló algoritmusokkal Neurális hálózatok szerepe az optikai karakterfelismerésben Készítette: Szabó Csilla programtervező matematikus

Részletesebben

Statisztikai eljárások a mintafelismerésben és a gépi tanulásban

Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Varga Domonkos (I.évf. PhD hallgató) 2014 május A prezentáció felépítése 1) Alapfogalmak 2) A gépi tanulás, mintafelismerés alkalmazási

Részletesebben

Idegennyelv-tanulás támogatása statisztikai és nyelvi eszközökkel

Idegennyelv-tanulás támogatása statisztikai és nyelvi eszközökkel statisztikai és nyelvi eszközökkel Témalabor 2. beszámoló Témavezet : Vámos Gábor 2009. január 9. Mir l lesz szó? A cél: tesztelni és tanítani 1 A cél: tesztelni és tanítani Eszközök és célok Szókincs

Részletesebben

Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL

Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL TULICS@TMIT.BME.HU Példa X (tanult órák száma, aludt órák száma) y (dolgozaton elért pontszám) (5, 8) 80 (3, 5) 78 (5, 1) 82 (10, 2) 93 (4, 4)

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 9. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Neurális hálózatok MATLAB programcsomagban

Neurális hálózatok MATLAB programcsomagban Debreceni Egyetem Informatikai Kar Neurális hálózatok MATLAB programcsomagban Témavezető: Dr. Fazekas István Egyetemi tanár Készítette: Horváth József Programtervező informatikus Debrecen 2011 1 Tartalomjegyzék

Részletesebben

A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. INFORMATIKA II. (programozás) kategória

A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai 1. feladat: Repülők (20 pont) INFORMATIKA II. (programozás) kategória Ismerünk városok közötti repülőjáratokat.

Részletesebben

Orvosi diagnosztikai célú röntgenképfeldolgozás

Orvosi diagnosztikai célú röntgenképfeldolgozás Orvosi diagnosztikai célú röntgenképfeldolgozás Önálló labor zárójegyzkönyv Lasztovicza László VII. évf. vill. szakos hallgató 2002. Konzulens: dr. Pataki Béla docens Méréstechnika és Információs Rendszerek

Részletesebben

Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom.

Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom. Lépések 1. tanító és teszt halmaz összeállítása / megszerzése 2. jellemzők kinyerése 3. tanító eljárás választása Sok vagy kevés adat áll-e rendelkezésünkre? Mennyi tanítási idő/memória áll rendelkezésre?

Részletesebben

NEURONHÁLÓS HANGTÖMÖRÍTÉS. Áfra Attila Tamás

NEURONHÁLÓS HANGTÖMÖRÍTÉS. Áfra Attila Tamás NEURONHÁLÓS HANGTÖMÖRÍTÉS Áfra Attila Tamás Tartalom Bevezetés Prediktív kódolás Neuronhálós prediktív modell Eredmények Források Bevezetés Digitális hanghullámok Pulzus kód moduláció Hangtömörítés Veszteségmentes

Részletesebben

Bevezetés a programozásba I 3. gyakorlat. PLanG: Programozási tételek. Programozási tételek Algoritmusok

Bevezetés a programozásba I 3. gyakorlat. PLanG: Programozási tételek. Programozási tételek Algoritmusok Pázmány Péter Katolikus Egyetem Információs Technológiai Kar Bevezetés a programozásba I 3. gyakorlat PLanG: 2011.09.27. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította: Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:

Részletesebben

Intelligens képtömörítés 2.

Intelligens képtömörítés 2. Intelligens képtömörítés 2. Témalabor beszámoló Antal Áron Gyula Konzulens: dr Kovács Ilona BME, 2009. január 9. Mir l lesz szó? 1 Visszatekintés 2 3 A megvalósított kontrasztérzékenység mér program Tavalyi

Részletesebben

Kovács Ernő 1, Füvesi Viktor 2

Kovács Ernő 1, Füvesi Viktor 2 Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,

Részletesebben

Bevezetés a programozásba

Bevezetés a programozásba Bevezetés a programozásba 1. Előadás Bevezetés, kifejezések http://digitus.itk.ppke.hu/~flugi/ Egyre precízebb A programozás természete Hozzál krumplit! Hozzál egy kiló krumplit! Hozzál egy kiló krumplit

Részletesebben