Variancia-analízis (folytatás)

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Variancia-analízis (folytatás)"

Átírás

1 Variancia-analízis (folytatás) 6. elıadás ( lecke) Szórás-stabilizáló transzformációk (folyt.), t-próbák 11. lecke További variancia-stabilizáló transzformációk Egy-mintás t-próba

2 Szórás-kiegyenlítı transzformációk (folyt.) Speciális esetek (3) Ha a mintabeli szórások tendenciában arányosak a mintabeli átlagok négyzetével (s c y 2 azaz s/ y c y, a relatív szórás (CV) arányos az átlaggal (ld. a következı diát), akkor a megfelelı szórás-kiegyenlítı transzformáció a reciprok transzformáció, vagyis az adatok reciprokaival célszerő dolgozni Indoklás: ha s c y 2, akkor y* = 1/(cy 2 ) = (-1/c)1/y, a -1/c konstans szorzó elhagyható

3 Ha a relatív szórás (CV) tendenciában arányos az átlaggal,akkor a reciprok-transzformáció (y* = 1/y) stabilizálja a szórást A CV% tendenciában arányos az átlaggal CV % y átlag ( )

4 Szórás-kiegyenlítı transzformációk (folyt.) Speciális esetek (4) Ha az y adatok relatív gyakoriságokat jelentenek (y=f i /n, mindegyiknél azonos n-nel), akkor a megfelelı szóráskiegyenlítı transzformáció az u.n. arkusz-szinusz transzformáció: y* = arcsin y Indoklás: a relatív gyakoriság szórása arányos {y(1-y)}- nal, és 1/ {y(1-y)} = 2arcsin y, a 2-es szorzó elhagyható

5 t-próbák (Student-próbák) - A t-próbák speciális variancia-analízisnek tekinthetık - Foglalkozunk egymintás t-próbával, amikoris egyetlen adatsor átlagát hasonlítjuk össze a feltételezett sokasági átlaggal - Foglalkozunk kétmintás t-próbával, ekkor két sokasági átlagot hasonlítunk össze minták alapján itt kitérünk párosított adatok eltérésének elemzésére valamint nem párosított adatok elemzésére, utóbbinál az egyenlı szórások és az eltérı szórások esetére is (az EXCELben mindhárom megtalálható) - A t-próbákban a t-statisztika mindig egy hányados, melynek számlálója a tesztelni kívánt mintabeli eltérés, nevezıje pedig ezen eltérés hibája (szórása)

6 Részletek az Excel menüsorokból Eszközök/Adatelemzés fx

7 Egymintás t-próba (A próba elvégezhetı az Excelben a kétmintás párosított t-próba alatt ügyeskedéssel (ld.késıbb)) Vizsgáljuk egy alapsokaság valamely mérhetı Y ismérvét, amelyrıl feltételezzük (elvárjuk), hogy sokasági átlaga adott a 0 érték, tehát a null-hipotézis, H 0 : µ = a 0 n-elemő mintát veszünk, képezzük a minta átlagát ( ) és szórását (s) Képezzük az alábbi t-statisztikát: t = ( y-a 0 )/s azaz t = (n)*( y y -a 0 )/s, az elıjelét nem vesszük figyelembe (vegyük észre, hogy t képletében az osztó (s y) a számlálónak, ( y-a 0 )-nak a szórása) y

8 Egymintás t-próba (folyt.) Feltéve, hogy az alapsokaság (közel) normális eloszlású, a t statisztika a mintavétel elıtt n-1 szabadságfokú t-eloszlást követ, ha H 0 igaz Táblázatból leolvashatjuk t kritikus értékét vagy az EXCELlel közvetlenül P értékét, a szignifikanciát megítélhetjük Megjegyzés: ha a sokasági szórás (σ) ismert, akkor t számításánál s helyére σ kerül, a szabadságfok, ilyenkor u próbáról (újabban z próbáról) beszélünk, t átmegy standard normális eloszlásba

9 Példa-vázlat egymintás t-próbára Egy sokaságban a hatóságilag megkövetelt átlag µ = a 0 = 20, tehát a null-hipotézis, H 0 : µ = 20 n=6 elemő mintából (amelyek nem mondanak ellent a normális eloszlásnak) a számolt átlag és szórás: y = 19,50 és s = 0,532 A számított t-érték: t = 6 *(19,50-20)/0,532 = -2,30 az elıjelet elhagyva, t=2,30

10 A példa-vázlat folytatása (egymintás t-próba) Kétoldali alternatív hiptézisnél, azaz H1: µ 20, a t- táblázatból leolvasható kritikus érték df = 5 szabadságfoknál és α = 5% szignifikancia szintnél 2,57, a számított t-érték (2,30) ennél kisebb, a null-hipotézist (µ = 20) elfogadjuk EXCEL pr.-mal a t=2,30-hoz tartozó P érték df=5-nél 2szélő próbánál P = 0,070 = 7% >5%, a null-hipotézist elfogadjuk

11 A példa-vázlat folytatása (egymintás t-próba) Egyoldali alternatív hipotézisnél, azaz itt H1: µ < 20, a t- táblázatból leolvasható kritikus érték df = 5 szabadságfoknál és α = 5% szignifikancia szintnél 2,01 a számított t-érték ennél nagyobb, a null-hipotézis helyett az alternatív hipotézist fogadjuk el (µ < 20) EXCEL-bıl leolvasva, a t=2,30-hoz tartozó P érték df=5- nél 1szélő próbánál P = 0,035 = 3,5% < 5%, az alternatív hipotézist fogadjuk el

12 KÖSZÖNÖM TÜRELMÜKET

13 12. lecke A minta szükséges elemszámáról Kétmintás t-próbák Egytényezıs VA feladata

14 A minta elemszámáról A mintanagyság (n) növelésével az átlag pontosabbá válik (hibája csökken), ennek következtében µ és a 0 kisebb eltérése is kimutatható Ha pl. µ és a 0 közötti legalább eltérést kívánunk kimutatni, akkor n-et legalább akkorára kell választani, hogy a t = (n)* /s érték meghaladja a kétoldali kritikus t értéket. Innen n > (t krit s/ ) 2 ahol s r-elemő elızetes tájékozódó felmérésbıl kapott szórás, t szabadságfoka r-1 Példa: =5,0; elızetes r=10 elemő felmérésbıl s=8,9; α= 5%-ra t krit =2,26. Így n> (2,26 8,9/5,0) 2 =16,1 (17 mintaelem elég) Megjegyzés: itt a µ-re megkívánt konfidencia intervallum fele

15 Kétmintás t-próba párosított adatokra (Excelben keresd: Adatelemzés: Kétmintás párosított t-próba Gyakran az egyedeken (megfigyelési egységeken) észlelt változások érdekelnek bennünket. Ilyenkor minden mintaegyedhez két összetartozó adat tartozik Az összetartozó adatok elıjeles eltérését, vagy arányát (%) képezve egyetlen adatsort kapunk, amelyre egymintás t-próbát alkalmazhatunk értelemszerően fogalmazott hipotézis ellenırzésére

16 Péda párosított t-próbára (az eltérésekkel) Értékpárok (Y1 és Y2) eltérését teszteljük n=6 mintapárral A d=y2-y1 eltérések sokasági átlaga legyen µ, a null-hipotézis H 0 : µ=a 0 (alapesetben a 0 =0, azaz nincs eltérés) Y1 Y2 d=y2-y1 Legyen a 0 = 0 5,4 5,6 0,2 5,9 6,3 0,4 t = (0,150 0)/0,072 = 2,087, df = 6-1 = 5 4,7 4,6-0,1 4,9 4,9 0,0 ehhez az Excelbıl 6,2 6,4 0,2 4,9 5,1 0,2, P(kétszélő) = 0,091>0,05 nem szign. átlag 0,150 P(egyszélő)= 0,046<0,05 szign. növekm. szórás 0,176 átlag szórása 0,072 Megj.: ha pl a 0 = 0,03 akkor az utóbbi sem szignifikáns

17 Az elıbbi példa megoldása Excelben Az Excel Adatelemzés, kétmintás párosított t-próba menüpontját alkalmazva bevisszük az Y1 és Y2 oszlopokat (az átlag és a szórás sorok nélkül). Az eredménytáblázat fontosabb sorai: Kétmintás párosított t-próba a várható értékre Megfigyelések 6 Feltételezett átlag (a 0 ) 0 df 5 t-érték 2,087 P(T<t) egyszélő 0,046 <5% P(T<t) kétszélő 0,091 >5% Megjegyzés: Ez a menüpont nem igazán felhasználó barát, inkább javasolható a Kéttényezıs VA ismétlések nélkül menüpont

18 Megjegyzések a párosított t-próbáról 1. Ha a q =Y2/Y1hányados tesztelése indokoltabb (mert pl. nagyobb Y1- hez nagyobb d eltérés tartozik), akkor alapesetben a 0 =1 (nincs változás) 2. Ha a mintabeli q értékek eloszlása nagyon nem szimmetrikus, akkor próbáljuk meg az elemzést a log(q) értékekkel - mivel log(q) = log(y2) - log(y1), az elemzést elvégezhetjük a kétmintás párosított t-próba menüponton az Excelben, az Y alapadatok helyett azok logaritmusát kell bevinnünk 3. Ha az egymintás t-próba nem szerepel az Excel menüsorában, az elemzés elvégezhetı a kétmintás párosított t-próba programmal is oly módon, hogy valamelyik oszlopot a feltételezett a 0 -lal töltjük fel

19 Kétmintás t-próba nem párosított adatokra Két alapsokaságot (Y1 és Y2) hasonlítunk össze, ismeretlen sokasági átlagaik µ 1 ill. µ 2, szórásaik б 1 ill. б 2. A két sokaságból n 1 ill. n 2 elemő mintát veszünk (nem párosíthatók), a minta-átlagok és szórások y 1, s 1 ill. y 2, s 2 A null-hipotézis (alapesetben) H 0 : µ 1 = µ 2,(de lehet µ 2 -µ 1 = a 0 is, ha azt várjuk, hogy µ 2 a 0 -lal nagyobb mint µ 1 ) A t-próba (alapesetben) itt is abból áll, hogy a két mintaátlag eltérését elosztjuk ezen eltérés szórásával, a hányados t-eloszlású vagy legalábbis közelítıleg az, a szabadságfok n 1 + n 2 2

20 Kétmintás t-próbák nem párosított adatokra: kiegészítések Elıször mindenképpen ellenırízni kell a két szórás hibahatáron belüli egyezését (Excel: kétmintás F-próba a szórásnégyzetekre ) Ha a szórások egyezése elfogadható, akkor a kétmintás t- próba egyenlı szórásokkal menüpontot választjuk az Excelben Ha a szórások szignifikánsan eltérnek, akkor a kétmintás t- próba nem egyenlı szórásokkal menüpontot választjuk vagy a Wilcoxon-Mann-Whitney féle rangpróbát alkalmazzuk (ld. késıbb)

21 Megjegyzés: elıfordul, hogy az alkalmazó nempárosított t-próbát használ párosított adatok elemzésekor, ez baj Ha párosított adatokra a nem-párosított kétmintás t-próbát alkalmazzuk, az egyedek közötti nagyságrendi eltérések figyelmen kívül maradnak, ezek beépülnek a hibaszórásba, azt növelik, a t-érték csökken, végülis az esetleges szignifikancia ködbe vész

22 Egytényezıs variancia-analízis A kétmintás t-próbával két sokasági átlag eltérését vizsgálhatjuk minták alapján Három, vagy több minta átlagának statisztikai összehasonlítását már Variancia Analízisnek nevezik, a kétmintás t-próba ennek speciális esete Az X kvalitatív befolyásoló, ható ismérv neve tényezı, ezt a továbbiakban célszerően A -val jelöljük (Y pedig a kvantitatív eredményváltozó) Az A tényezı változatai (szintjei) A 1, A 2, A 3,, A k, ezek lehetnek települések, évek, csoportok, kezelések stb.

23 KÖSZÖNÖM TÜRELMÜKET

Statisztikai alapismeretek (folytatás)

Statisztikai alapismeretek (folytatás) Statisztikai alapismeretek (folytatás) 3. elıadás (5-6. lecke) Az alapsokaság fıbb jellemzıi () 5. lecke Folytonos változó megoszlásának jellemzése A sokasági átlag és szórás Átlag és szórás tulajdonságai

Részletesebben

Statisztikai módszerek

Statisztikai módszerek Statisztikai módszerek A hibaelemzı módszereknél azt néztük, vannak-e kiugró, kritikus hibák, amelyek a szabályozás kivételei. Ezekkel foglalkozni kell; minıségavító szabályozásra van szükség. A statisztikai

Részletesebben

Statisztika, próbák Mérési hiba

Statisztika, próbák Mérési hiba Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:

Részletesebben

Variancia-analízis (VA)

Variancia-analízis (VA) Variancia-analízis (VA) 5. elıadás (9-10. lecke) VA lényege, alkalmazásának feltételei, adat-transzformációk 9. lecke Variancia-analízis lényege Szórások egyezésének ellenırzése A Variancia-Analízis (VA)

Részletesebben

Matematikai statisztikai elemzések 6.

Matematikai statisztikai elemzések 6. Matematikai statisztikai elemzések 6. Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós regresszió Prof. Dr. Závoti, József Matematikai statisztikai elemzések 6.: Regressziószámítás:

Részletesebben

1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba?

1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? Matematikai statisztika példák Matematikai statisztika példák Normális eloszlás 1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? 2. Majmok ébredését

Részletesebben

Definíció. Definíció. 2. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása. 2-5. fejezet. A variabilitás mér számai 3.

Definíció. Definíció. 2. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása. 2-5. fejezet. A variabilitás mér számai 3. . El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása -1 Áttekintés - Gyakoriság eloszlások -3 Az adatok vizualizációja -4 A centrum mérıszámai -5 A szórás mérıszámai -6 A relatív elhelyezkedés

Részletesebben

KVANTITATÍV MÓDSZEREK

KVANTITATÍV MÓDSZEREK KVANTITATÍV MÓDSZEREK Dr. Kövesi János Tóth Zsuzsanna Eszter 6 Tartalomjegyzék Kvantitatív módszerek. Valószínűségszámítási tételek. eltételes valószínűség. Események függetlensége.... 3.. eltételes valószínűség...

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

11. Matematikai statisztika

11. Matematikai statisztika 11. Matematikai statisztika 11.1. Alapfogalmak A statisztikai minta valamely valószínűségi változóra vonatkozó véges számú független kisérlet eredménye. Ez véges sok, azonos eloszlású valószínűségi változó

Részletesebben

Statisztikai módszerek gyakorlat - paraméteres próbák

Statisztikai módszerek gyakorlat - paraméteres próbák Statisztikai módszerek gyakorlat - paraméteres próbák A tanult paraméteres próbák: PRÓBA NEVE Egymintás U próba Kétmintás U próba Egymintás T próba Welch próba (Kétmintás T próba) F próba Grubbs próba

Részletesebben

II. A következtetési statisztika alapfogalmai

II. A következtetési statisztika alapfogalmai II. A következtetési statisztika alapfogalmai Tartalom Statisztikai következtetések A véletlen minta fogalma Pontbecslés és hibája Intervallumbecslés A hipotézisvizsgálat alapfogalmai A legegyszerűbb statisztikai

Részletesebben

Elméleti összefoglalók dr. Kovács Péter

Elméleti összefoglalók dr. Kovács Péter Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...

Részletesebben

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x.

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x. . Sugár Szarvas fgy., 86. o. S3. feladat Egy antikvárium könyvaukcióján árverésre került 9 könyv licitálási adatai alapján vizsgáljuk a könyvek kikiáltási és ún. leütési ára ezerft közötti sztochasztikus

Részletesebben

Alapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom

Alapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom Alapfogalmak áttekintése Pszichológiai statisztika, 1. alkalom Hipotézisek Milyen a jó null hipotézis?? H0: Léteznek kitőnı tanuló diszlexiások.? H1: Nem léteznek. Sokkal inkább: H0: Nincs diszlexiás kitőnı

Részletesebben

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Bevezetés A magas mérési szintű változók adataiból számolhatunk átlagot, szórást. Fontos módszerek alapulnak ezeknek a származtatott paramétereknek

Részletesebben

Kecskeméti Fıiskola GAMF Kar Informatika Tanszék. Johanyák Zsolt Csaba

Kecskeméti Fıiskola GAMF Kar Informatika Tanszék. Johanyák Zsolt Csaba Kecskeméti Fıiskola GAMF Kar Informatika Tanszék Johanyák Zsolt Csaba 003 Tartalomjegyzék. Bevezetés.... A megbízhatóság fogalmai..... A termék idıtıl függı képességei...... Használhatóság /Üzemkészség/

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

Eloszlás-független módszerek (folytatás) 15. elıadás (29-30. lecke)

Eloszlás-független módszerek (folytatás) 15. elıadás (29-30. lecke) Eloszlás-független módszerek (folytatás) 15. elıadás (29-30. lecke) Kétirányú osztályozás (függetlenség és homogenitás) Speciális eset: 2 2-es táblázatok Három-irányú osztályozás 29. lecke Függetlenség-

Részletesebben

A mintavétel bizonytalansága

A mintavétel bizonytalansága A mintavétel bizonytalansága Farkas Zsuzsa, Prof. Dr. Ambrus Árpád FarkasZs@nebih.gov.hu, AmbrusArp@nebih.gov.hu NÉBIH ÉKI A termék megfelelőség ellenőrzése - A mintavétel és az analitikai vizsgálati eredmények

Részletesebben

Adatok statisztikai feldolgozása

Adatok statisztikai feldolgozása Adatok statisztikai feldolgozása Kaszaki József Ph.D Szegedi Tudományegyetem Sebészeti Műtéttani Intézet Szeged A mérési adatok kiértékelése, statisztikai analízis A mért adatok konvertálása adatbázis

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

A.11. Nyomott rudak. A.11.1. Bevezetés

A.11. Nyomott rudak. A.11.1. Bevezetés A.. Nyomott rudak A... Bevezetés A nyomott szerkezeti elem fogalmat általában olyan szerkezeti elemek jelölésére használjuk, amelyekre csak tengelyirányú nyomóerő hat. Ez lehet speciális terhelésű oszlop,

Részletesebben

Komputer statisztika gyakorlatok

Komputer statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes

Részletesebben

Hipotézisvizsgálat. A sokaság valamely paraméteréről állítunk valamit,

Hipotézisvizsgálat. A sokaság valamely paraméteréről állítunk valamit, II. Hipotézisvizsgálat Lényege: A sokaság valamely paraméteréről állítunk valamit, majd az állításunk helyességét vizsgáljuk. A hipotézisvizsgálat eszköze: a statisztikai próba Menete: 1.Hipotézisek matematikai

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE

FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE 1. Egy alkalmassági vizsgálat adatai szerint a vizsgált személyeken 0,05 valószínűséggel mozgásszervi és 0,03 valószínűséggel érzékszervi

Részletesebben

1.9. A forgácsoló szerszámok éltartama

1.9. A forgácsoló szerszámok éltartama 1. oldal, összesen: 8 1.9. A forgácsoló szerszámok éltartama A forgácsoló szerszámok eredeti szabályos mértani alakjukat bizonyos ideig tartó forgácsolás után elvesztik. Ilyenkor a szerszámokat újra kell

Részletesebben

MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia

MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia MINİSÉGSZABÁLYOZÁS A GÉPIPARBAN Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia ISO 9000:2008 A STATISZTIKAI MÓDSZEREK HASZNÁLATÁRÓL A statisztikai módszerek

Részletesebben

Statisztikai programcsomagok

Statisztikai programcsomagok Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés

Részletesebben

Gyakorló feladatok Anyagmérnök hallgatók számára

Gyakorló feladatok Anyagmérnök hallgatók számára Gyakorló feladatok Anyagmérnök hallgatók számára. feladat Egy külkereskedelmi vállalat 7 ezer üvegből álló gyümölcskonzerv szállítmányt exportál. A nettó töltősúly ellenőrzése céljából egy 9 elemű véletlen

Részletesebben

Illeszkedésvizsgálat χ 2 -próbával

Illeszkedésvizsgálat χ 2 -próbával Illeszkedésvizsgálat χ -próbával Szalay Krisztina 1. feladat (tiszta illeszkedésvizsgálat) Négy pénzérmét 0-szor feldobunk. A kapott gyakoriságok: fejek száma 0 1 3 4 Összes gyakoriság 5 35 67 41 1 0 Elfogadható-e

Részletesebben

Valószínőségszámítás és statisztika elıadások Mérnök informatikus BSc szak MANB030, MALB030

Valószínőségszámítás és statisztika elıadások Mérnök informatikus BSc szak MANB030, MALB030 Valószínőségszámítás és statisztika elıadások Mérnök informatikus BSc szak MANB030, MALB030 2. téma Feltételes valószínőség, függetlenség Példák feltételes valószínőségekre. Feltételes valószínőség definíciója.

Részletesebben

Aprítás 2012.09.11. Ipari gyógyszertechnológiai laboratórium gyakorlatai I. félév. Az aprítást befolyásoló tényezők GYAKORLATOK

Aprítás 2012.09.11. Ipari gyógyszertechnológiai laboratórium gyakorlatai I. félév. Az aprítást befolyásoló tényezők GYAKORLATOK 0.09.. Ipari gyógyszertechnológiai laboratórium gyakorlatai I. félév KÖVETELMÉNYEK. A hallgató a gyakorlatra felkészülten érkezik. A művelet típusa. Eredményt befolyásoló paraméterek (általában idő, sebesség,

Részletesebben

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication

Részletesebben

Sztochasztikus folyamatok 1. házi feladat

Sztochasztikus folyamatok 1. házi feladat Sztochasztikus folyamatok 1. házi feladat 1. Egy borfajta alkoholtartalmának meghatározására méréseket végzünk. Az egyes mérések eredményei egymástól független valószínûségi változók, melyek normális eloszlásúak,

Részletesebben

Feladatok és megoldások a 6. heti eladshoz

Feladatok és megoldások a 6. heti eladshoz Feladatok és megoldások a 6. heti eladshoz Építőkari Matematika A3 1. Ha E(X = 1 és D 2 (X = 5, határozzuk meg (a E[(2 + X 2 ], (b D 2 (4 + 3X értékét. 2. Legyenek X 1, X 2,... független azonos eloszlású

Részletesebben

statisztikai menürendszere Dr. Vargha András 2007

statisztikai menürendszere Dr. Vargha András 2007 A statisztikai menürendszere Dr. Vargha András 2007 2 tartalomjegyzék 1. Alapok (egymintás elemzések Alapstatisztikák Részletesebb statisztikák számítása Gyakorisági eloszlás, hisztogram készítése Középértékekre

Részletesebben

Populációbecslések és monitoring 2. előadás tananyaga

Populációbecslések és monitoring 2. előadás tananyaga Populációbecslések és monitoring 2. előadás tananyaga 1. A becslések szerepe az ökológiában. (Demeter és Kovács 1991) A szabadon élő állatok egyedszámának kérdése csak bizonyos esetekben merül fel. De

Részletesebben

Monte Carlo módszerek

Monte Carlo módszerek 25 KULLANCSLÁRVA vizsgálata: Erős hideg hatására nézzük a túlélést. Eredmény: 6 elpusztult, 9 élve maradt Hipotézis: a pajzs hosszának variabilitása egy általános genetikai variabilitást tükröz, míg az

Részletesebben

Bemenet modellezése II.

Bemenet modellezése II. Bemenet modellezése II. Vidács Attila 2005. november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási

Részletesebben

SZAKDOLGOZAT. Takács László

SZAKDOLGOZAT. Takács László SZAKDOLGOZAT Takács László 2012 SZEGEDI TUDOMÁNYEGYETEM Természettudományi és Informatikai Kar Geometria Tanszék Matematika Bsc_LAK SZAKDOLGOZAT Kísérlettervezés latin négyzetek felhasználásával Készítette:

Részletesebben

SZENT ISTVÁN EGYETEM, GÖDÖLLŐ Gazdálkodás- és Szervezéstudományok Doktori Iskola. DOKTORI (PhD) ÉRTEKEZÉS TÉZISEI

SZENT ISTVÁN EGYETEM, GÖDÖLLŐ Gazdálkodás- és Szervezéstudományok Doktori Iskola. DOKTORI (PhD) ÉRTEKEZÉS TÉZISEI SZENT ISTVÁN EGYETEM, GÖDÖLLŐ Gazdálkodás- és Szervezéstudományok Doktori Iskola DOKTORI (PhD) ÉRTEKEZÉS TÉZISEI A TERMŐFÖLD KÖZGAZDASÁGI ÉRTÉKE ÉS PIACI ÁRA Készítette: Naárné Tóth Zsuzsanna Éva Gödöllő

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Csődvalószínűségek becslése a biztosításban

Csődvalószínűségek becslése a biztosításban Csődvalószínűségek becslése a biztosításban Diplomamunka Írta: Deák Barbara Matematikus szak Témavezető: Arató Miklós, egyetemi docens Valószínűségelméleti és Statisztika Tanszék Eötvös Loránd Tudományegyetem,

Részletesebben

Matematikai statisztikai elemzések 5.

Matematikai statisztikai elemzések 5. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések. MSTE modul Kapcsolatvizsgálat: asszociáció vegyes kapcsolat korrelációszámítás. Varianciaanalízis

Részletesebben

STATISZTIKA PRÓBAZH 2005

STATISZTIKA PRÓBAZH 2005 STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk

Részletesebben

STATISZTIKA I. Tantárgykódok. Oktatók. Időbeosztás. Tematika. http://www.agr.unideb.hu/~huzsvai. 1. Előadás Bevezetés, a statisztika szerepe

STATISZTIKA I. Tantárgykódok. Oktatók. Időbeosztás. Tematika. http://www.agr.unideb.hu/~huzsvai. 1. Előadás Bevezetés, a statisztika szerepe Tantárgykódok STATISZTIKA I. GT_APSN018 GT_AKMN021 GT_ATVN020 1. Előadás Bevezetés, a statisztika szerepe Oktatók Előadó: Dr. habil. Huzsvai László tanszékvezető Gyakorlatvezetők: Dr. Balogh Péter Dr.

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 6. MA3-6 modul A statisztika alapfogalmai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999.

Részletesebben

A kereslet elırejelzésének módszerei ÚTMUTATÓ 1

A kereslet elırejelzésének módszerei ÚTMUTATÓ 1 A kereslet elırejelzésének módszerei ÚTMUTATÓ 1 A programozást elvégezték és a hozzá tartozó útmutatót készítették: dr. Gelei Andrea és dr. Dobos Imre, egyetemi docensek, Budapesti Corvinus Egyetem, Logisztika

Részletesebben

Normál eloszlás. Gyakori statisztikák

Normál eloszlás. Gyakori statisztikák Normál eloszlás Átlag jól jellemzi az adott populációt folytonos eloszlás (pl. lottó minden szám egyszer fordul elő) kétkúpú eloszlás (IQ mindenki vagy zseni vagy félhülye, átlag viszont azt mutatja,

Részletesebben

Biostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Biostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Biostatisztika Bevezetés Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Az orvosi, biológiai kutatások egyik jellemzője, hogy a vizsgálatok eredményeként

Részletesebben

I. Általános információk az előadásokról, szemináriumokról, szak- vagy laborgyakorlatokról

I. Általános információk az előadásokról, szemináriumokról, szak- vagy laborgyakorlatokról BABEŞ BOLYAI TUDOMÁNYEGYETEM KOLOZSVÁR KÖZGAZDASÁG- ÉS GAZDÁLKODÁSTUDOMÁNYI KAR SZAKIRÁNY: KÖZÖS TÖRZS EGYETEMI ÉV: 2009/2010 FÉLÉV: IV I. Általános információk az előadásokról, szemináriumokról, szak-

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

Varga Tamás Matematikaverseny 8. osztályos feladatok megoldásai iskolai forduló 2010.

Varga Tamás Matematikaverseny 8. osztályos feladatok megoldásai iskolai forduló 2010. Varga Tamás Matematikaverseny 8. osztályos feladatok megoldásai iskolai forduló 2010. 1. feladat tengeren léket kapott egy hajó, de ezt csak egy óra múlva vették észre. Ekkorra már 3 m 3 víz befolyt a

Részletesebben

2013.03.11. Az SPC alapjai. Az SPC alapjai SPC 5. 5. Az SPC (Statistic Process Control) módszer. Dr. Illés Balázs

2013.03.11. Az SPC alapjai. Az SPC alapjai SPC 5. 5. Az SPC (Statistic Process Control) módszer. Dr. Illés Balázs SPC 5 5. Az SPC (Statistic Process Control) módszer Dr. Illés Balázs BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ELEKTRONIKAI TECHNOLÓGIA TANSZÉK Az SPC alapjai SPC (Statistical Process Controll) =

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: mintavételi vonatkozások és modelljellemzés Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Harmadik

Részletesebben

Az adatmátrix, az adatok átalakítása

Az adatmátrix, az adatok átalakítása 2 Az adatmátrix, az adatok átalakítása (Az elsõ bátortalan lépések... de még sok minden rejtve marad) A mintavételezés során, mint láttuk, a mintavételi egységeket változók segítségével írjuk le. A kapott

Részletesebben

Statisztika I. 6. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 6. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 6. előadás Előadó: Dr. Ertsey Imre GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE szorosan kapcsolódik a szóródás elemzéshez, elméleti

Részletesebben

SZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR EUROCODE SEGÉDLETEK A MÉRETEZÉS ALAPJAI C. TÁRGYHOZ

SZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR EUROCODE SEGÉDLETEK A MÉRETEZÉS ALAPJAI C. TÁRGYHOZ SZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR EUROCODE SEGÉDLETEK A MÉRETEZÉS ALAPJAI C. TÁRGYHOZ A segédlet nem helyettesíti az építmények teherhordó szerkezeteinek erőtani tervezésére vonatkozó

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

Valószín ségelmélet házi feladatok

Valószín ségelmélet házi feladatok Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott

Részletesebben

6. AZ EREDMÉNYEK ÉRTELMEZÉSE

6. AZ EREDMÉNYEK ÉRTELMEZÉSE 6. AZ EREDMÉNYEK ÉRTELMEZÉSE A kurzus anyagát felhasználva összeállíthatunk egy kitűnő feladatlapot, de még nem dőlhetünk nyugodtan hátra. Diákjaink teljesítményét még osztályzatokra kell átváltanunk,

Részletesebben

Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter

Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter Statisztikai módszerek alkalmazása az orvostudományban Szentesi Péter Az orvosi munkahipotézis ellenőrzése statisztikai módszerekkel munkahipotézis mérlegelés differenciáldiagnosztika mi lehet ez a más

Részletesebben

Reiczigel Jenő, 2006 1

Reiczigel Jenő, 2006 1 Reiczigel Jenő, 2006 1 Egytényezős (egyszempontos) varianciaelemzés k független minta (k kezelés vagy k csoport), a célváltozó minden csoportban normális eloszlású, a szórások azonosak, az átlagok vagy

Részletesebben

Vargha András PSZICHOLÓGIAI STATISZTIKA DIÓHÉJBAN 1. X.1. táblázat: Egy iskolai bizonyítvány. Magyar irodalom. Biológia Földrajz

Vargha András PSZICHOLÓGIAI STATISZTIKA DIÓHÉJBAN 1. X.1. táblázat: Egy iskolai bizonyítvány. Magyar irodalom. Biológia Földrajz Megjelent: Vargha A. (7). Pszichológiai statisztika dióhéjban. In: Czigler I. és Oláh A. (szerk.), Találkozás a pszichológiával. Osiris Kiadó, Budapest, 7-46. Mi az, hogy statisztika? Vargha András PSZICHOLÓGIAI

Részletesebben

Értelmezési szempontok

Értelmezési szempontok Értelmezési szempontok Értelmezési szempontok (Technikai és értelmező kézikönyv, 3. old.) Alapelv: a WSC-V fontos kvalitatív és kvantitatív információval szolgál a vsz. kognitív funkcióiról, ezek önmagukban

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoinformatikai Kar Ingatlanmenedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakirányú Továbbképzési Szak Ingatlanfinanszírozás és befektetés 5. Befektetések értékelése, ingatlanbefektetések

Részletesebben

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke? 5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,

Részletesebben

Sztochasztikus rákos folyamatok

Sztochasztikus rákos folyamatok Sztochasztikus rákos folyamatok A rákos sejtek szaporodásáról egyre többet tudunk, de nem eleget. A kóros betegségben szenvedők sejtjei szüntelenül harcban állnak egymással, mint azok az azonos fajhoz

Részletesebben

10. Valószínűségszámítás

10. Valószínűségszámítás . Valószínűségszámítás.. Események A valószínűségszámítás nagyon leegyszerűsítve események bekövetkezésének valószínűségével foglalkozik. Példák: Ha egy játékban egy dobókockával dobunk, akkor a kockadobás

Részletesebben

HomeManager - leírás. advix software solutions. http://www.advix.hu

HomeManager - leírás. advix software solutions. http://www.advix.hu by advix software solutions http://www.advix.hu Tartalomjegyzék Tartalomjegyzék... 2 Bevezető... 3 Áttekintés... 3 Felhasználási feltételek... 3 Első lépések... 4 Indítás... 4 Főképernyő... 4 Értesítés

Részletesebben

BARANYA MEGYEI TANULÓK TUDÁSSTRUKTÚRÁI. Takács Viola

BARANYA MEGYEI TANULÓK TUDÁSSTRUKTÚRÁI. Takács Viola BARANYA MEGYEI TANULÓK TUDÁSSTRUKTÚRÁI Takács Viola Iskolakultúra könyvek 20. Sorozatszerkesztõ: Géczi János Szerkesztõ: Sz. Molnár Szilvia BARANYA MEGYEI TANULÓK TUDÁSSTRUKTÚRÁI TAKÁCS VIOLA iskolakultúra

Részletesebben

STATISZTIKA. H 0 : Kefir zsírtartalma 3% hektolitertömege 80 kg. u = = = = Tesztelhetjük, hogy a valósz. konfidencia intervallum nagyságát t is.

STATISZTIKA. H 0 : Kefir zsírtartalma 3% hektolitertömege 80 kg. u = = = = Tesztelhetjük, hogy a valósz. konfidencia intervallum nagyságát t is. Egymiá u-róba STATISZTIKA 0. Előad adá Köéérék-öehaolíó eek Teelhejük, hogy a való íűégi váloók éréke megegyeik-e e egy kokré érékkel. Megválahajuk a kofidecia iervallum agyágá i. H 0 : µ µ 0 Feléel: el:

Részletesebben

PANNON EGYETEM GEORGIKON KAR

PANNON EGYETEM GEORGIKON KAR PANNON EGYETEM GEORGIKON KAR ÁLLAT- ÉS AGRÁR KÖRNYEZET-TUDOMÁNYI DOKTORI ISKOLA Környezettudományok Tudományág Iskolavezetı: Dr. habil. Anda Angéla Az MTA doktora Témavezetı: Dr. habil. Anda Angéla Az

Részletesebben

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus A véletlen nyomában Mi is az a véletlen? 1111111111, 1010101010, 1100010111 valószínűsége egyaránt 1/1024 Melyiket

Részletesebben

GAZDASÁGI STATISZTIKA

GAZDASÁGI STATISZTIKA GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK

Részletesebben

Matyusz Zsolt A 2009-ES VERSENYKÉPESSÉGI ADATFELVÉTEL VÁLLALATI MINTÁJÁNAK ALAPJELLEMZİI ÉS REPREZENTATIVITÁSA

Matyusz Zsolt A 2009-ES VERSENYKÉPESSÉGI ADATFELVÉTEL VÁLLALATI MINTÁJÁNAK ALAPJELLEMZİI ÉS REPREZENTATIVITÁSA BUDAPESTI CORVINUS EGYETEM VÁLLALATGAZDASÁGTAN INTÉZET VERSENYKÉPESSÉG KUTATÓ KÖZPONT Matyusz Zsolt A 2009-ES VERSENYKÉPESSÉGI ADATFELVÉTEL VÁLLALATI MINTÁJÁNAK ALAPJELLEMZİI ÉS REPREZENTATIVITÁSA TM1.

Részletesebben

Előadó: Dr. Bukovics Ádám

Előadó: Dr. Bukovics Ádám SZÉCHYI ISTVÁ GYT TARTÓSZRKZTK III. lőadó: Dr. Bukovics Ádám Az ábrák forrása: 6. LŐADÁS [] Dr. émeth Görg: Tartószerkezetek III., Acélszerkezetek méretezésének alapjai [2] Halász Ottó - Platth Pál: Acélszerkezetek

Részletesebben

konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14.

konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14. Valószínűség, pontbecslés, konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14. Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra

Részletesebben

Mátrixaritmetika. Tartalom:

Mátrixaritmetika. Tartalom: Mátrixaritmetika Tartalom: A vektor és mátrix fogalma Speciális mátrixok Relációk és műveletek mátrixokkal A mátrixok szorzása A diadikus szorzat. Hatványozás Gyakorlati alkalmazások Készítette: Dr. Ábrahám

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

4. A méréses ellenırzı kártyák szerkesztése

4. A méréses ellenırzı kártyák szerkesztése 4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.

Részletesebben

Analízis. Ha f(x) monoton nő [a;b]-n, és difható egy (a;b)-beli c helyen, akkor f'(c) 0

Analízis. Ha f(x) monoton nő [a;b]-n, és difható egy (a;b)-beli c helyen, akkor f'(c) 0 Analízis A differenciálszámítás középértéktételei: 1) Rolle-tétel: Ha f folytonos a korlátos és zárt [a;b] intervallumon, f diffható [a;b]-n és f(a) = f(b), akkor van egy a < c < b belső pont, ahol f'(c)

Részletesebben

ÖNJAVÍTÓ AGGREGÁLÁS SZENZORHÁLÓZATOKBAN ÉS AGGREGÁTOR NODE VÁLASZTÁS. Schaffer Péter. Tézisfüzet. Konzulens: Buttyán Levente, Ph.D.

ÖNJAVÍTÓ AGGREGÁLÁS SZENZORHÁLÓZATOKBAN ÉS AGGREGÁTOR NODE VÁLASZTÁS. Schaffer Péter. Tézisfüzet. Konzulens: Buttyán Levente, Ph.D. BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM HÍRADÁSTECHNIKAI TANSZÉK ÖNJAVÍTÓ AGGREGÁLÁS ÉS AGGREGÁTOR NODE VÁLASZTÁS SZENZORHÁLÓZATOKBAN Tézisfüzet Schaffer Péter Konzulens: Buttyán Levente, Ph.D.

Részletesebben

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák Statisztikai hipotézisvizsgálatok Paraméteres statisztikai próbák 1. Magyarországon a lakosság élelmiszerre fordított kiadásainak 2000-ben átlagosan 140 ezer Ft/fő volt. Egy kérdőíves felmérés során Veszprém

Részletesebben

KÍSÉRLET A STATISZTIKA II. TANTÁRGY SZÁMÍTÓGÉPPEL TÁMOGATOTT TÖMEGOKTATÁSÁRA BALOGH IRÉN VITA LÁSZLÓ

KÍSÉRLET A STATISZTIKA II. TANTÁRGY SZÁMÍTÓGÉPPEL TÁMOGATOTT TÖMEGOKTATÁSÁRA BALOGH IRÉN VITA LÁSZLÓ KÍSÉRLET A STATISZTIKA II. TANTÁRGY SZÁMÍTÓGÉPPEL TÁMOGATOTT TÖMEGOKTATÁSÁRA A szerzők rövid cikkükben amellett érvelnek, hogy a bevezető jellegű statisztikai kurzusokban célszerűbb az Excelt használni,

Részletesebben

Relációs algebra áttekintés és egy táblára vonatkozó lekérdezések

Relációs algebra áttekintés és egy táblára vonatkozó lekérdezések Relációs algebra áttekintés és egy táblára vonatkozó lekérdezések Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 2.4. Relációs algebra (áttekintés) 5.1.

Részletesebben

Az Ingatlanközvetítı szakképzés szakdolgozatának gyakran elıforduló hibái

Az Ingatlanközvetítı szakképzés szakdolgozatának gyakran elıforduló hibái Az Ingatlanközvetítı szakképzés szakdolgozatának gyakran elıforduló hibái A szakdolgozat témája: Lakóingatlan összehasonlító piaci értékbecslésének elkészítése 1. Az összegek hányadosa nem egyenlı a hányadosok

Részletesebben

PÉCSI NEMZETI SZÍNHÁZ NONPROFIT KFT

PÉCSI NEMZETI SZÍNHÁZ NONPROFIT KFT PÉCSI NEMZETI SZÍNHÁZ NONPROFIT KFT KIEGÉSZÍTŐ MELLÉKLET 2014. Pécs, 2015. március 31. Rázga Miklós ügyvezető igazgató Tartalom Tartalom:...2 I. ÁLTALÁNOS RÉSZ...3 A Társaság bemutatása...3 A Társaság

Részletesebben

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin

Részletesebben

Analízis lépésről - lépésre

Analízis lépésről - lépésre Analízis lépésről - lépésre interaktív tananyag Dr. Stettner Eleonóra Klingné Takács Anna Analízis lépésről - lépésre: interaktív tananyag írta Dr. Stettner Eleonóra és Klingné Takács Anna Tartalom Előszó...

Részletesebben

86 MAM112M előadásjegyzet, 2008/2009

86 MAM112M előadásjegyzet, 2008/2009 86 MAM11M előadásjegyzet, 8/9 5. Fourier-elmélet 5.1. Komplex trigonometrikus Fourier-sorok Tekintsük az [,], C Hilbert-teret, azaz azoknak a komplex értékű f : [,] C függvényeknek a halmazát, amelyek

Részletesebben

Esetelemzés az SPSS használatával

Esetelemzés az SPSS használatával Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét

Részletesebben

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények Korreláció és Regresszió (folytatás) 11. elıadás (21-22. lecke) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények 21. lecke Linearitás ellenırzésének egyéb lehetıségei Konfidencia

Részletesebben

WIL-ZONE TANÁCSADÓ IRODA

WIL-ZONE TANÁCSADÓ IRODA WIL-ZONE TANÁCSADÓ IRODA Berényi Vilmos vegyész, analitikai kémiai szakmérnök akkreditált minőségügyi rendszermenedzser regisztrált vezető felülvizsgáló Telefon és fax: 06-33-319-117 E-mail: info@wil-zone.hu

Részletesebben

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5 1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat

Részletesebben