Dr. Fried Katalin Dr. Gerőcs László Számadó László

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dr. Fried Katalin Dr. Gerőcs László Számadó László"

Átírás

1 Dr Fried Katalin Dr Gerőcs László Számadó László MATEMATIKA 9 A tankönyv feladatai és a feladatk megldásai A megldásk lvasásáhz Acrbat Reader prgram szükséges, amely ingyenesen letölthető az internetről (például: adbelahu webldalról) A feladatkat fejezetenként külön-külön fájlba tettük A fejezet címmel elláttt fájl tartalmazza a fejezet leckéinek végén kitűzött feladatk részletes megldásait A feladatkat nehézségük szerint jelöltük: K = középszint, könnyebb; K = középszint, nehezebb; E = emelt szint, könnyebb; E = emelt szint, nehezebb feladat Lektrk: PÁLFALVI JÓZSEFNÉ KONCZ LEVENTE Tipgráfia: LŐRINCZ ATTILA Szakgrafika: DR FRIED KATALIN Dr Fried Katalin, Dr Gerőcs László, Számadó László, Nemzeti Tankönyvkiadó Zrt, 009 Nemzeti Tankönyvkiadó Zrt wwwntkhu Vevőszlgálat: Telefn: A kiadásért felel: Kiss Jáns Tamás vezérigazgató Raktári szám: RE 60 Felelős szerkesztő: Szlbda Tibrné Műszaki igazgató: Babicsné Vasvári Etelka Műszaki szerkesztő: Marcsek Ildikó Grafikai szerkesztő: Görög Istvánné, Mikes Vivien Terjedelem: 4,9 (A/5) ív kiadás, 00

2

3 MATEMATIKA Tartalm Jelmagyarázat 5 I Halmazk Halmazk, jelölések 7 Speciális halmazk, intervallumk 9 Halmazk uniója, metszete 4 Halmazk különbsége, kmplementer halmaz 5 A matematikai lgika elemei 4 II III IV Algebra és számelmélet A hatványzás és aznsságai 7 A hatványzás aznsságainak kiterjesztése 7 Gyakrlati számításk 8 4 Algebrai kifejezések összevnása, szrzása 9 5 Nevezetes szrzatk 0 6 Tvábbi nevezetes szrzatk (Emelt szint) 7 Összegek szrzattá alakítása 8 Algebrai törtek egyszerűsítése, összevnása 4 9 Algebrai törtek szrzása, sztása, összetett műveletek algebrai törtekkel 6 0 Oszthatóság 8 Prímszámk, a számelmélet alaptétele 9 Legnagybb közös sztó, legkisebb közös többszörös 0 Osztók száma, négyzetszámk (Emelt szint) 4 Számrendszerek Függvények, srzatk Hzzárendelések, függvények 5 Pnthalmazk a krdináta-rendszerben 7 A lineáris függvény 40 4 Az abszlútérték-függvény 4 5 Az f : 7 függvény 46 6 A másdfkú függvény összetett transzfrmációi 47 7 Tvábbi függvények 49 Bevezetés a gemetriába Pntk, egyenesek, síkk 55 Szakasz, félegyenes, szög 56 Hármszögek 58 4 Tvábbi összefüggések a hármszög alapadatai között 60 5 Összefüggés a derékszögű hármszög ldalai között 6 6 Gemetriai számításk 6 7 Gemetriai szerkesztések 64 8 Thalész-tétel 66 9 A hármszög ldalfelező merőlegesei és köré írt köre 67 0 A hármszög szögfelezői, beírt és hzzáírt körei 70 Skszögek 7

4 4 MATEMATIKA TARTALOM V Egyenletek, egyenletrendszerek Elsőfkú egyismeretlenes egyenletek 75 Szöveges feladatk megldása egyenletekkel 76 Egyenletek megldási módszerei 78 4 Egyenlőtlenségek 80 5 Abszlút értéket tartalmazó egyenletek, egyenlőtlenségek 8 6 Elsőfkú kétismeretlenes egyenletrendszerek és megldásuk behelyettesítő módszerrel 84 7 Elsőfkú kétismeretlenes egyenletrendszerek megldása egyenlő együtthatók módszerével 85 8 Elsőfkú kétismeretlenes egyenletrendszerek megldása grafikus módszerrel 86 9 Egyenletrendszerrel megldható szöveges feladatk 87 VI Gemetriai transzfrmációk Néhány gemetriai transzfrmáció 89 Egybevágósági transzfrmációk a síkn 9 Alakzatk egybevágósága 94 4 Szimmetria 96 5 Tvábbi nevezetes pntk és vnalak a hármszögben 97 6 Vektrk 98 7 Pnthalmazk 00 8 Szög, körív, körcikk 04 VII Kmbinatrika Srrendek 05 Leszámlálásk 06 VIII Statisztika Adatk gyűjtése, rendszerezése, jellemzése 09 Adatk szemléltetése 0 A kétarcú statisztika 5

5 MATEMATIKA 5 Jelmagyarázat Az A pnt és az e egyenes távlsága: d(a; e) vagy Ae Az A és B pnt távlsága: AB vagy AB vagy d(a; B) Az A és B pnt összekötő egyenese: e(a; B) Az f és f egyenesek szöge: ( f; f) B vagy A C csúcspntú szög, melynek egyik szárán az A, másik szárán a B pnt található: ACBB A C csúcspntú szög: CB Szög jelölése: a, b, c, f Az A, B és C csúcskkal rendelkező hármszög: ABC9 Az ABC9 területe: T(ABC) vagy T ABC Az a, b és c ldalú hármszög fél kerülete: s a b c = + + A derékszög jele: * Az e egyenes merőleges az f egyenesre: e= f Az e egyenes párhuzams az f egyenessel: e < f Egybevágóság:,; ABC9, AlBlCl9 A hasnlóság aránya: m Az A pntból a B pntba mutató vektr: AB Aznsan egyenlő: /; B ( f; f) Egyenlő, nem egyenlő: =,!; a =, b! 5 a+ b / 5 Közelítőleg egyenlő: ; a,; 8,54 8,5 Kisebb, kisebb vagy egyenlő: <, #; <, 5 # Nagybb, nagybb vagy egyenlő: >, $; 6 > 4, a $ A természetes számk halmaza: N; {0; ; ; } Az egész számk halmaza: Z; { ; ; ; 0; ; ; } A pzitív, a negatív egész számk halmaza: Z +, Z ; {; ; ; }, { ; ; ; } A racinális, az irracinális számk halmaza: Q, Q * A pzitív, a negatív racinális számk halmaza: Q +, Q A valós számk halmaza: R A pzitív, a negatív valós számk halmaza: R +, R Eleme, nem eleme a halmaznak:!, "; 5! N, - g Z + Részhalmaz, valódi részhalmaz:, ; A R, N Q Nem részhalmaza a halmaznak: j; Z Y Q Halmazk uniója, metszete:,, +; Halmazk különbsége: \; A \ B Üres halmaz: Q, { } Az A halmaz kmplementere: A Az A halmaz elemszáma: A ; Zárt intervallum: [a; b] Balról zárt, jbbról nyílt intervallum: [a; b[ Balról nyílt, jbbról zárt intervallum: ]a; b] Nyílt intervallum: ]a; b[ Az szám abszlút értéke: ; Az szám egész része, tört része: [], {}; [,] =, {,} = 0, Az a sztója b-nek: a b; 8 + A, B, A+ B " 0 ; ;, = -, =, Az a és b legnagybb közös sztója: (a, b); (4, 6) = Az a és b legkisebb közös többszöröse: [a, b]; [4, 6] = Az f függvény hzzárendelési szabálya: f: 7 f] g; f: 7 + vagy f ] g= y; f ] g= + Az f függvény helyettesítési értéke az 0 helyen: f0 ( ); f(5), ha 0 = 5

6

7 MATEMATIKA 7 I Halmazk Halmazk, jelölések K Döntsük el, hgy halmazt adtunk-e meg az alábbiakban! a) A párs természetes számk b) A barátságs emberek c) A kerek számk d) A kis törtek e) Az -nél kisebb pzitív törtek Halmaz: a), e) K Írjuk fel, hgy az alábbiak közül melyek az egyenlő halmazk! A = {a pzitív egyjegyű párs számk}; B = {a nem 0 párs számjegyek}; C = {a párs számjegyek}; D = {0,, 4, 6, 8}; E = {, 4, 6, 8}; F = { egyjegyű többszörösei} A = B = E, C = D = F K a) Adjuk meg elemei felsrlásával a következő halmazkat! A) a -nál nagybb, 0-nél nem nagybb egész számk; B) a 0 többszörösei; C) egyjegyű pzitív többszörösei; D) 0 pzitív sztói; E) a 8 és a 0 legkisebb közös többszöröse b) Szemléltessük a fenti halmazkat kétféle módn! a) A = " 4, 5, 6, 7, 8, 9, 0, ; B =! 0+ ; C = ", 4, 6, 8, ; D = ",,, 5, 6, 0, 5, 0, ; E =! 90+ b) Mindegyik halmazt szemléltethetjük Venn-diagramn és a számegyenes pntjaiként A) A 4, 5, 6, 7, 8, 9, B) B 0 0

8 8 MATEMATIKA I HALMAZOK C) C, 4, 6, D) D,,, 5, 6, 0, 5, E) E K Adjuk meg elemei egy közös tulajdnságával a következő halmazkat! A = {,, 5, 7,,, 7, 9}; B = {5, 0, 5, 0, 5, 0, 5, }; C = {, 9, 7, 8, 4, 79, }; D = {0, } A = {a legfeljebb kétjegyű pzitív prímszámk}; B = {az 5 pzitív többszörösei}; C = {a pzitív egész kitevőjű hatványai}; D = {a 0 és az } = {a -nél kisebb természetes számk} 5 E Igazljuk, hgy két racinális szám a) összege; b) különbsége; c) szrzata; d) hányadsa (ha van) is racinális szám! A racinális számk minden esetben felírhatók két egész szám hányadsaként a) Az összeadáshz közös nevezőre hzzuk a számkat Tvábbra is egész számk hányadsai lesznek Az összeg nevezője a közös nevező (egész szám), a számláló a két számláló összege (egész számk összege egész szám) Ezért az összeg két egész szám hányadsa, vagyis racinális szám lesz b) Ugyanezzel a gndlattal ldható meg, csak a számláló a két számláló különbsége, de tvábbra is egész szám lesz c) A szrzat számlálója a két szám számlálójának, a nevező a két szám nevezőjének a szrzata, tehát egész szám d) A hányads az sztandó és az sztó reciprkának (ha van) a szrzata, ami szintén racinális 6 E Lehet-e egy racinális és egy irracinális szám a) összege; b) különbsége; c) szrzata; d) hányadsa racinális, illetve irracinális szám? a) Irracinális biztsan lehet Ha például a racinális tag 0, akkr az összeg irracinális Ha az összeg racinális lenne, akkr a racinális tagt kivnva belőle mivel a különbség

9 szintén racinális, a másik tag is racinális lenne Ez az eset nem frdulhat elő Racinális tehát nem lehet b) Írjuk fel a racinális szám kivnását az ellentett hzzáadásával Ekkr ugyanazt kapjuk, mint az a) esetben: mindig irracinális c) Irracinális biztsan lehet Ha például a racinális tényező, akkr a szrzat irracinális Racinális is lehet, ha például a racinális tényező 0 Ekkr ugyanis a szrzat racinális, mert 0 Másképp aznban nem lehet racinális a szrzat, különben sztva a racinális tényezővel, racinális számt kapnánk, vagyis racinális lenne a másik tényező is d) Legyen a kérdéses hányads a b nem lehet 0 Ha a = 0, akkr 0 a = is racinális b b Ha sem a, sem b nem 0 és b racinális, akkr is az, ha b irracinális, akkr is az A c) feladat szerint akkr a $ b b irracinális b A hányads csak abban az esetben lehet racinális, ha a = 0 I HALMAZOK 7 E Lehet-e két irracinális szám a) összege; b) különbsége; c) szrzata; d) hányadsa racinális, illetve irracinális szám? MATEMATIKA 9 a) Mindkettő lehet r+ ]-rg= 0 racinális; r+ r = r irracinális b) Mindkettő lehet r- r = 0 racinális; r-- ] rg= r irracinális c) Mindkettő lehet $ = racinális; $ = 6 irracinális d) Mindkettő lehet : = racinális; 6 : = irracinális Speciális halmazk, intervallumk K Ábrázljuk számegyenesen a következő intervallumkat! a) ] 0; 6]; b) ] ; 0[; c) ] ; 5]; d) ]4,5; [; e) [,5; 7,5]; f) ] 6; [ a) b) c) d) e) f) ,5 0 7, ,5 K Adjuk meg és szemléltessük a következő egyenlőtlenségek megldáshalmazát, ha az alaphalmaz A) a természetes számk; B) az egész számk; C) a nemnegatív valós számk halmaza! a) < 0; b) > 5; c) $ ; d) < 0 a) A természetes számk alaphalmazán a megldáshalmaz " ,,,,,,,,,, Az egész számk halmazán a " f, -,-,-, 0,,,, 4, 5, 6, 7, 8, 9, A nemnegatív valós számk halmazán a 60;06 intervallum

10 0 MATEMATIKA I HALMAZOK A) B) C) b) Ha - 5, akkr -5 [Mindkét ldalhz hzzáadunk ] - 5g-öt] Eszerint ha egy alaphalmazn van megldása, az negatív A természetes számk halmazában nincs megldása Az egész számk halmazán a megldáshalmaz a " f, -0,-9,-8,-7,-6, A nemnegatív valós számk halmazában sincs megldása B) c) A természetes számk halmazán a megldáshalmaz: " 4567f,,,,,,, az egész számk halmazán " f, -8,-7,-6,-5,-4,-,, 4, 5, 6, f,, vagyis az egész számk halmazából elhagyva a "-,-, 0,,, halmazt A valós számk halmazán a ]-g-nál kisebb vagy egyenlő, illetve a -nál nagybb vagy egyenlő számk tartznak a megldáshalmazhz A) B) C) d) < 0, a természetes számk halmazán nincs megldás Az egész számk halmazában a 0-nál kisebb egész számk A valós számk halmazában a 0-nál kisebb valós számk B) C) E Az alábbi egyenlőtlenségek alaphalmaza a valós számhalmaz A megldáshalmazkat írjuk lyan srrendben, hgy mindegyik halmaz után következő halmaz részhalmaza legyen neki! a) > 5; b) 0 $ 5; c) < 0; d) 5 < ; e) - 5 a) A megldáshalmaz: A = " 5vagy -5, b) A megldáshalmaz: B =! $ 5+ c) A megldáshalmaz: C =! 0+ d) A megldáshalmaz: D =! 5+ e) A megldáshalmaz: E = " 7vagy -7, Ha szemléltetjük a megldáshalmazkat számegyenesen, akkr könnyen lelvashatjuk, hgy A E C B D 4 K Írjuk fel az ábrával adtt intervallumkat, illetve azt a halmazt, amely azn elemekből áll, amelyek nincsenek az adtt halmazban! a) 0

11 I HALMAZOK MATEMATIKA b) c) d) e) A halmazk és párjaik: a) -5, illetve #-5; b) - #, illetve " #-vagy, ; c),5, illetve $,5; d) 0, illetve # 0; e) -, illetve " #-vagy $, Halmazk uniója, metszete K Egy sprttagzats sztály létszáma 4 fő Az sztályban mindenki atletizál vagy ksárlabdázik 6-an atletizálnak, 4-en ksaraznak Hány lyan tanuló van az sztályban, aki csak ksarazik? Ha azknak a száma, akik mindkét sprtt űzik, akkr = 4, ahnnan = 6 Így azk száma, akik csak ksaraznak: 8 K Egy sztály minden tanulója elment a tanév hárm isklai kncertjének valamelyikére Az első kncerten -en vltak, a másdik kncerten ugyancsak -en vettek részt, a harmadik kncerten pedig -an Mindhárm kncerten diák vett részt Azk száma, akik csak egy kncerten vltak: 4 Mennyi az sztálylétszám? I() a y b z II() A feladat szövegének megfelelő halmazábra: a+ b+ c = ^+ y+ zh-6 = y+ z Innen + z+ y = 7 Tehát az sztálylétszám: = 4 c III() K Legyen A halmaz a -vel, B halmaz a -mal, C halmaz a 4-gyel sztható számk halmaza Készítsünk halmazábrát, és helyezzük el benne a következő számkat: 0, 4, 6, 8,, 5, 8, 7, 6, 00! A megfelelő halmazábra és a megadtt számk elhelyezése: A C B E Adjunk meg 5 halmazt úgy, hgy közülük bármely 4-nek a metszete ne legyen az üres halmaz, de az öt halmaz metszete az üres halmaz legyen! Legyenek a, b, c, d, e különböző valós számk A megfelelő halmazk: A= " abcd,,,,; Babce ",,,,; C= " abde,,,,; Dacde ",,,,; E= " bcde,,,, 5 K Egy zeneiskla egyik évflyamának 56 diákja hegedülni, zngrázni vagy csellózni tanul (Mindenki játszik valamelyik hangszeren) Azk száma, akik pntsan két hangszeren játszanak, négyszer, akik pedig pntsan egy hangszeren játszanak, kilencszer annyi, mint azk száma, akik mindhárm hangszeren játszanak Hányan vannak azk, akik csak egy hangszeren játszanak? Készítsünk egy halmazábrát! A feltételek szerint a+ b+ c+ + y+ z+ h = 56, + y+ z = 4 h, a+ b+ c = 9h H a y h c z b C Z

12 MATEMATIKA I HALMAZOK Ezek szerint h+ 4h+ 9h = 56, azaz 4h = 56, ahnnan h = 4 A csak egy hangszeren játszók száma: a+ b+ c = 9h = 6 I p a b h r c q III +5 II + 6 E Az isklai túraszaksztály mind a 4 tagja részt vett az idei hárm túra valamelyikén A másdik kirándulásn -gyel, a harmadikn pedig 5-tel többen vettek részt, mint az elsőn Azk száma, akik két túrán vettek részt, -szr, akik pedig egy túrán vettek részt, 0-szer annyi, mint azk száma, akik mindhárm túrán részt vettek Hányan vettek részt az első, a másdik, illetve a harmadik kirándulásn? a+ b+ c = h, p+ q+ r = 0h, tehát 0h+ h+ h = 4h = 4, azaz h = ] a+ b+ cg-h = 4, azaz = 5, ahnnan = 7 Tehát az első, a másdik, illetve a harmadik túrán részt vevők száma rendre 7, 8, 7 E Egy autójavító üzemben 49 szakmunkás dlgzik: autószerelők, lakatsk és autóvillamssági szerelők 5 lyan szakmunkás van közöttük, aki mindhárm szakmában jártas Azk az autószerelők, akik nem rendelkeznek a lakats szakmával is, hármszr annyian vannak, mint akik csak a lakats szakmával rendelkeznek Hét lyan szakmunkás van az összes között, akik az autószerelő és a lakats szakmát is tudják Azk a villamssági szerelők, akik nem értenek az autószereléshez, 4-gyel kevesebben vannak, mint azk az autószerelők, akik nem értenek a lakats munkáhz Hányan vannak, akik csak a lakats szakmával rendelkeznek? A a y 5 v z l V L Készítsünk egy halmazábrát, és tüntessünk fel mindent, amit tudunk A feltételek szerint a+ = l, y =, v+ z+ 4 = a+ Mivel a+ + l+ z+ v+ + 5 = 49, így l+ l+ l = 49, tehát 7l = 56, ahnnan l = 8 Vagyis a csak lakats szakmával rendelkezők száma: 8 4 Halmazk különbsége, kmplementer halmaz K Legyenek az A, B és C halmazk rendre a -mal, 6-tal, illetve 5-tel sztható számk halmaza Mely számk tartznak az alábbi halmazkba? a) (A \ B) + C; b) A \ B \ C a) ] A \ Bg+ C = {a 5-tel sztható páratlan számk} b) A \ B \ C = {a -mal sztható, de 5-tel nem sztható páratlan számk} E Adttak az U alaphalmazn az A, B és C halmazk Szemléltessük egy halmazábrán az alábbi halmazkat! a) ] A, Bg, C; b) ] A\ Bg, C a) b) A B A B U C U C U A B E Adttak az U alaphalmazn az A és B halmazk Igazljuk, hgy ] B+ Ag, ] A+ Bg= ] A, Bg\ ] A+ Bg! Az egyenlőség mindkét ldalának a bal ldali halmazábra felel meg

13 I HALMAZOK MATEMATIKA 4 K Írjuk fel az A, B, A + B és A \ B halmazk elemeit, ha A = {a, b, c, g, h, j}; B = {a, c, f, h, k}! A, B = {a, b, c, f, g, h, j, k}; A + B = {a, c, h}; A \ B = {b, g, j} 5 K Adtt hárm halmaz: A = {,, 4, 7, 8, 9, }; B = {,, 5, 6, 7,, }; C = {4, 5, 6, 7, 0, } Adjuk meg az alábbi halmazk elemeit! a) (A, B) \ C; b) (A + B), (B + C ); c) A + (B \ C ) A könnyebb áttekinthetőség kedvéért először készítsünk halmazábrát, és írjuk be a megfelelő számkat a megfelelő helyre a) ] A, Bg \ C = " 89,,,,,,,; b) ] A+ Bg, ] B+ Cg = " 567,,,,,; c) A+ ] B \ Cg = ",, 6 K Igazljuk halmazábrák segítségével az alábbi egyenlőségeket! a) A \ (B, C ) = (A \ B) + (A \ C ); b) A \ (B + C ) = (A \ B), (A \ C ) A C B a) Az egyenlőség mindkét ldala b) Az egyenlőség mindkét ldala a következő ábráhz vezet: a következő ábráhz vezet: A B A B C C 7 K Igazljuk, hgy nem minden esetben igaz az alábbi egyenlőség! A \ (B \ C ) = (A \ B) \ C Az egyenlőség mindkét ldaláhz ábrát készítünk, ami mutatja az állítást A B A B C C A \] B \ Cg ] A \ Bg\ C 8 K Legyen az alaphalmaz a valós számk halmaza Az A halmaz az $, a B halmaz az # 0, a C halmaz az # 6 valós számk halmaza Határzzuk meg az alábbi halmazkat! a) A, B; b) B\ A; c) A+ C

14 4 MATEMATIKA I HALMAZOK Szemléltessük az A, B, C halmazkat egy számegyenesen! C B A a) A, B =! -0+ ; b) B-A = " -0 vagy #, ; c) A+ C = R Ftó Bilógia Barlangász 5 évf évf évf évf Ftó (4) Bil (45) a q b p r c Barlang (44) 9 E Egy általáns iskla felső tagzatán hármféle szakkör működik: ftószakkör, bilógiaszakkör és barlangász szakkör E szakkörök létszámát a bal ldali ábra mutatja évflyamkra lebntva Azk száma, akik pntsan két szakkörre járnak, kétszer, akik pedig pntsan egy szakkörre járnak, hármszr annyi, mint azk száma, akik mindhárm szakkör munkájában részt vesznek Az iskla felső tagzata 6 diákjának kb hány százaléka nem jár semmilyen szakkörre? Ftószakkörre 4, bilógiaszakkörre 45, barlangász szakkörre pedig 44 diák jár A feltételek szerint: p+ q+ r = és a+ b+ c = Azknak a diákknak a száma, akik legalább egy szakkörre járnak: ^p+ q+ rh- = 0-4, vagyis 0-4 = 6, ahnnan = Tehát azknak a diákknak a száma, akik járnak legalább egy szakkörre, 6 = 78 Ez az iskla 6 diákjának kb 78 $ 00 6,% -a Azk száma, akik semmilyen szakkörre nem járnak a 6 felső tagzatn: 00% - 6,% = 6,9% 5 A matematikai lgika elemei K Írjuk fel a következő jelzők tagadását, valamint két különböző, jelentést kifejező ellenkezőjét! a) szép; b) nagy; c) ks; d) vastag; e) kerek; f) hmrú eredeti kifejezés a tagadása két különböző jelentésű ellenkezője a) szép nem szép csúnya gyönyörű b) nagy nem nagy kicsi hatalmas c) ks nem ks buta zseniális d) vastag nem vastag vékny átlags vastagságú e) kerek nem kerek szögletes vális f) hmrú nem hmrú dmbrú sík K Írjuk fel a következő kijelentések tagadását! Döntsük el, hgy melyik igaz; az állítás vagy a tagadás! a) Minden természetes szám nagybb, mint 0 b) Vannak páratlan egész számk c) Minden hármszögnek van legalább két hegyesszöge d) Minden tengelyesen szimmetrikus négyszögnek van két-két egyenlő szögpárja e) Van lyan síknégyszög, amelyben a derékszögek száma f) Bármely két nem párhuzams egyenes metszi egymást

15 I HALMAZOK MATEMATIKA 5 a) Hamis A tagadása: Van 0-nál nem nagybb természetes szám Igaz, például a 0 b) Igaz A tagadása: Nincsen páratlan egész szám Hamis, például az c) Igaz A tagadása: Van lyan síkbeli hármszög, amelynek nincs legalább két hegyesszöge (vagyis legfeljebb egy hegyesszöge van) Hamis d) Hamis (például egy lyan deltid, amely nem rmbusz) A tagadása: Van lyan szimmetrikus négyszög, amelynek nincs két-két egyenlő szögpárja Igaz e) Hamis A tagadása: Minden síknégyszögben a derékszögek száma -tól különböző (nem ) Igaz, hiszen ha derékszöge lenne, akkr 4 is lenne f) Nem igaz, mert lehetnek kitérő egyenespárk A tagadása: Van lyan egyenespár, amely nem párhuzams és nem is metsző Igaz K Tételezzük fel, hgy igaz az az állítás, hgy Ha füttyentesz, elhallgatk Mi következik abból, hgy a) nem hallgattam el; b) nem füttyentettél; c) elhallgattam; d) füttyentettél? a) Nem füttyentettél, hiszen ha füttyentettél vlna, elhallgattam vlna b) Semmi Lehet, hgy nem hallgattam el, de az is lehet, hgy csak úgy magamtól elhallgattam c) Semmi Lehet, hgy füttyentettél, és azért, de az is lehet, hgy csak úgy magamtól elhallgattam d) Elhallgattam, hiszen ha füttyentesz, elhallgatk 4 K Ha megnyitm a csapt, flyik a víz Az alábbiak közül melyik állítás fejezi pntsan ugyanezt? a) Ha nem nyitm meg a csapt, nem flyik a víz b) Ha flyik a víz, megnyitttam a csapt c) Ha nem flyik a víz, nem nyitttam meg a csapt A c) Hiszen ha megnyitttam vlna a csapt, akkr flyna a víz 5 K Írjuk fel a következő állításk megfrdítását! a) Ha havazik, akkr fagy b) Ha péntek van, akkr mziba megyek c) Ha nincs kifgásd ellene, akkr ablakt nyitk d) Ha ráérsz, akkr eljöhetsz a) Ha fagy, akkr havazik b) Ha mziba megyek, akkr péntek van c) Ha ablakt nyitk, akkr nincs kifgásd ellene d) Ha eljöhetsz, akkr ráérsz 6 K Döntsük el, hgy igazak-e az alábbi állításk! Írjuk fel az állításk megfrdítását, és azkról is döntsük el, hgy igazak-e! a) Ha egy egész szám párs, akkr -esre végződik b) Ha egy egész szám sztható 9-cel, akkr a számjegyeinek az összege 9 c) Ha egy hármszög derékszögű, akkr a két rövidebb ldalra emelt négyzet területösszege egyenlő a leghsszabb ldalra emelt négyzet területével a) Hamis Megfrdítva: Ha egy egész szám -esre végződik, akkr párs Igaz b) Hamis Megfrdítva: Ha egy egész szám számjegyeinek az összege 9, akkr a szám sztható 9-cel Igaz c) Igaz, ez a Pitagrasz-tétel Megfrdítva: Ha egy hármszögben a két rövidebb ldalra emelt négyzet területösszege egyenlő a leghsszabb ldalra emelt négyzet területével, akkr a hármszög derékszögű Igaz, ez a Pitagrasz-tétel megfrdítása Egy hármszög akkr és csak akkr derékszögű, ha a két rövidebb ldalra emelt négyzet területösszege egyenlő a leghszszabb ldalra emelt négyzet területével

16

17 MATEMATIKA 7 II Algebra és számelmélet A hatványzás és aznsságai K Mivel egyenlő? a) ; b) 5 5; c) 0 0; 5 = d) 79; e) 4 6; f) 6; 6 = g) 7 49; h) 6 6; i) 8; = = = = j) $ = 6; 0 k) 6 $ = 6; l) = K Mivel egyenlő? a) ]- g = -; b) ]-g = -8; c) ]-g 4 =6; d) ]-g 6 = 79; e) 4 = 64; f) ]-g 4 = 8; g) ]-5 g = 5; h) 5 = 5; i) ]-5 g = -5; j) 5 $ ]-5 g = 65; k) ]-g $ 0 = 0; l) ]- g 00 = K Írjuk fel hatvány alakban a következő számkat, ha lehet, többféleképpen is! a) 000 például: =0 ; 0 5 b) 04 például: = = 4 = ; 4 c) 8 például: = = 9 ; d) 00 például: =0 ; 0 0 e) például: = = = ; 4 f) 65 például: = 5 = 5 4 K Írjuk fel prímszámk hatványainak szrzataként a következő számkat! a) 0 = $ 5 ; b) = $ ; c) 60 = $ $ 5 ; d) 6 = $ ; e) 8 = 4 ; f) 54 = $ ; g) 4 = 7 ; h) 04 = 0 ; i) = $ 5 ; j) 54 = $ ; k) 60 = $ 5; l) 8 = 7 ; m) 60 = $ $ 5 $ 7; 4 4 n) = $ 5 ; 9 ) = $ 5 5 K Mely számk prímtényezős alakját írtuk fel? a) = 8; b) = 7; c) $ = 08; d) 4 = 6; e) $ = 7; f) 048 = 4 = 4 = = A hatványzás aznsságainak kiterjesztése K Mely számkat írtuk hatványalakban? a) ; b) ( ) ; c) 5 ; d) ( ) 5 ; e) b l - ; f) b- l - ; g) ; h) b l a) ; b) ; c) - ; d) -; 5 e) 5; f) -5; g) ; h) 6 9

18 8 MATEMATIKA II ALGEBRA ÉS SZÁMELMÉLET K Írjuk fel a megadtt számkat hatványalakban, ha lehet, többféleképpen is! a) 00; b) 0,; c) 0,5; d) ; e) 0,0; f) ; 8 g) 0,000; h) 0,00 Például: - a) = = = b l ; 0 b) 0, = 0 ; c) 0,5 = 0,5 = ; 0 d) = = ; - e) 0,0 0 = = b l ; 0 f) 4 = = ; 8 9 g) -4 0,0 = = ; h) 0,000 = 0, = 0 K Számítsuk ki a szrzásk eredményét! 7-4 a) $ ; - - b) b l $ ; c) b l 4 $ ; d) 4 $ b l ; 4 - e) ; f) ; g) - ; h) b l $ b l 5 $ b l $ 5 b l 4 $ 4 5 a) 8; b) 4; c) 6 ; 8 d) ; e) 56 ; f) ; g) 65 ; h) 8 4 K Számítsuk ki a műveletek eredményét! a) 4 : ; b) :5 ; c) 4 $ ; d) ] g : ; - e) - ]- g :]-g ; f) - 4 : ] 4 - g ; g) $ ; h) 7 : b l 7 a) 9 ; b) 5; c) 78; d) ; 6 6 e) ; f) ; g) ; h) K Állítsuk nagyság szerint növekvő srrendbe a következő számkat! a = ; b = ]-g ; c = ; d = ]-g ; e = ; f = ]-g; g = ; h = ]-g a = ; b ; c ; d ; e ; f ; g ; h = - = = - = = - = = - Eszerint: f b = d h a e = g c - - Gyakrlati számításk K Fejezzük ki a következő számkat nrmálalakban! a) ; b) 5 000; c) 560; d) ; e) 0,; f),5; g) 0,000 05; h) 0 000,000 0 a) 60 $ 6 ; b),5 $ 0 5 ; c),56 $ 0 ; d) 4,54 $ 0 6 ; - e) 0 $ ; f),5 $ 0 0 ; g) 5$ 0 6 ; h), $ 0 4 K Mennyi a) a 0 5%-a; b) a 5 0%-a; c) a 0 5%-a; d) az 5 0%-a? a) ; b) ; c) 0,5; d) 0,5

19 II ALGEBRA ÉS SZÁMELMÉLET K Mennyi a) egy szám 0%-ának 0%-a; b) egy szám 80%-ának 0%-a; c) egy szám 5%-ának 80%-a; d) egy szám 80%-ának a 0%-a? MATEMATIKA 9 a) A szám 4%-a; b) a szám 96%-a; c) a szám 00%-a, azaz maga a szám; d) a szám 8%-a 4 K Melyik szám 45%-a a) a 0; b) a 45; c) a 5; d) az,5? : a), 00 : = ; b) 00; c) 00; d), 0 = 9 5 K Tekintsük a Földet egy lyan gömbnek, amelynek a középpntján átmenő körök kerülete km! a) Megközelítőleg mekkra a Föld átmérője? b) Megközelítőleg mekkra a Föld sugara? c) Megközelítőleg mekkra a Föld térfgata? d) Megközelítőleg mekkra a Föld felszíne? e) A Föld felszínének körülbelül hány százalékát brítja víz, ha az összes vízfelület nagysága körülbelül,4 0 8 km? (Emlékeztetőül: Az r sugarú kör kerülete rr, területe r r Az r sugarú gömb felszíne 4r r, térfgata 4 r ) r 4 a) d,7 $ 0 km b) r 6,4 $ 0 km c) V, $ 0 km 8 d) A 5, $ 0 km e) Kb 67%-át 6 K a) Hány százaléka a Föld átmérője a Napénak? b) Hány százaléka a Föld tömege a Napénak? A szükséges adatk megtalálhatók a négyjegyű függvénytáblázatban a) A Nap átmérője:,4 $ 0 6 km; a Föld átmérője:,7 $ 0 4 km 6 4, $ 0 A kettő aránya: 7, $ 0 4, $ 0 Vagyis a Föld átmérője a Nap átmérőjének,%-a b) A Föld tömege: 60 $ 4 kg, a Nap tömege: 0 $ 0 kg 4 A kettő aránya: 60 $ -6-0 $ százaléka Ez 0,000% 0 = 0 $ 4 0 $ 4 Algebrai kifejezések összevnása, szrzása K Végezzük el az alábbi szrzáskat! 5 4 a) 4ac$ 5abc; b) 4 yz 5 $ yz; c) 5 pqs $ b- pqsl a) 0a bc; b) yz; c) - pqs 4 K Végezzük el az alábbi szrzáskat! a) ^ + yh_ -5y-6y i; b) a a b a ab 4 b - lb + - a bl 4 a) 6-0 y-y + 9 y-5y -8y = 6 - y-7y -8y ; b) 4 a 4 a b 8 a b 5 a b a b + a b 9 9 8

20 0 MATEMATIKA II ALGEBRA ÉS SZÁMELMÉLET K Végezzük el az alábbi szrzást! 4 5 ] a- g ^+ a+ a + a + a + a h a+ a + a + a + a + a --a-a -a -a -a = a - 4 K Végezzük el az alábbi szrzáskat! a) 4 a $ a; b) 4 5 pq$ _-6 pq i; c) y b- l$ b y l a) a; b) -p 5 q 8 ; c) - y 4 5 K A következő feladatkban egy többtagú összeget kell szrznunk egy taggal a) ^ - + 4h; b) 6ab^ ab + ab - 4a bh; c) y y 5 y 0 b - + yl a) ; b) ; c) 5 y ab+ 8ab- 4ab - y + y 0 6 E A következő feladatkban egy többtagú összeget kell szrznunk egy taggal a) 4 y _ y- y + 5yi; b) m n q p n m q p m- n+ q p 4 m+ n m-n b - + q p l 5 n+ k+ n+ k n+ k n+ k+ a) ; b) m+ n n+ m q p m- n+ q p 4 m+ n m+ n y - 8 y + 0 y - + q p K Az alábbi feladatkban több tagt kell több taggal szrznunk a) ] a+ g] a- g; b) ^ y -h _ y -y + yi; c) ] -g^ h a) a - 4 ; b) y -y + y -y + 4y-y = y -y -y + 4y-y; c) = E Az alábbi feladatkban több tagt kell több taggal szrznunk n k a) _ + y i^ + + yh; n+ k b) _ p - q i^p+ q+ pqh; c) k k+ -k y k k y k- b + lb - + y l 6 a) n n+ n k k k+ + + y+ y + y + y ; n+ n+ n+ k k+ k+ b) p + p q+ p q-pq -q -pq ; c) k k y k k- y 4 -k + k k k+ y y k y Nevezetes szrzatk K Végezzük el az alábbi műveleteket! a) ^5- yh ; b) ^ab + 4ab h ; c) _ 5y- yi a) 5-0y+ 9y ; b) 4ab+ 6ab+ 6ab; c) 5y- 0y+ 4y K Alakítsuk szrzattá az alábbi kéttagú összegeket! a) 49b - ; b) 6ab- 64ab; c) 6 4 p ab 6 5 a) ^7b + h^7b - h ; b) ^6ab+ 8abh^6ab- 8abh; c) p 4 ab p 4 b + lb - abl

21 II ALGEBRA ÉS SZÁMELMÉLET K Elvégeztük egy kéttagú összeg négyzetre emelését, és eredményül azt kaptuk: ] g = 4a - ab+ Sajns az utlsó tag elmsódtt a papírn Milyen összeget emeltünk négyzetre? ] a-bg = 4a -ab+ 9b vagy ]-a+ bg = 4a -ab+ 9b 4 K Számítsuk ki az alábbi kéttagú összegek köbét! a) a a ^ + h ; b) ^- yh ; c) k b - n kl a) a + 9a + 7a + 7a ; b) 8 - y+ 6y -y ; c) k k n n k n k K Két tag összegének, illetve különbségének a négyzetéről tanultak alapján végezzük el az alábbi négyzetre emeléseket! a) y ^ - h ; b) ^a - 4bh ; c) ^4p+ qh a) 4 - y+ 9y ; 4 b) a - 8a b+ 6b ; c) 6p + 4pq+ 9q 6 K Végezzük el az alábbi négyzetre emeléseket! a) ^ - h ; b) _ y + yi ; c) ^4a + abh a) - + ; 6 4 b) 4y + y + 9y ; 4 c) 6a + 4a b+ 9a b 7 K Két tag összegének, illetve különbségének a szrzatáról tanultak alapján végezzük el az alábbi szrzáskat! a) ^+ yh^- yh; b) _ + yi_ - yi; c) ^ 5a b + ab h^5a b - ab h a) - 9y ; 4 b) 4 - y ; 6 4 c) 5ab- 4ab 8 E Végezzük el a négyzetre emeléseket! a) b y- yl ; b) ab 5 b + abl ; c) 4 n y 5 n b - y l 5 5 a) 6 4 y y+ 4y; b) ab ab ab; c) 6 n 4 y 8 n+ n+ y 5 4 n y K Két tag négyzetét számltuk ki; mi lehet az eredmény hiányzó harmadik tagja? a) ] g = y ; b) ] g = 4a - a b ; c) ] g = 5p -0 p q a) ^4+ yh = 6 + 8y+ y ; b) ^a -abh = 4a -a b+ 9a b ; c) _ 5p -p qi = 5p -0p 5 q+ 4p q 0 K Két tag összegének, illetve különbségének harmadik hatványáról tanultak alapján végezzük el az alábbi köbre emeléseket! a) ] a + g ; b) ^+ yh ; c) ^k - kh a) 8a + a + 6a+ ; b) y+ 54y + 7y ; c) k -6k 5 + k -8k MATEMATIKA

22 MATEMATIKA II ALGEBRA ÉS SZÁMELMÉLET 6 Tvábbi nevezetes szrzatk (Emelt szint) E Végezzük el a négyzetre emeléseket! a) ^+ y+ zh ; b) ] a+ b- cg ; c) b a b - + abl a) + 4y + z + 4y+ z+ 4yz; b) 4a + 9b + c + ab-4ac-6bc; c) 4 a 9b 4 ab ab ab-4ab 4 9 E Alakítsuk szrzattá az alábbi kéttagú összegeket! a) ; b) p - q ; c) a ; d) 7k - y a) ] + g ^ h ; b) _ p i -q = _ p -qi_ p + p q+ q i; c) a + = ] a+ g^a -a + 4a -8a+ 6h 6 ; d) _ k- y i_ 9k + ky + y i E Igazljuk, hgy sztható 50-cal! ^ h = ^ -h$ K, ahl K egész szám Tehát ^ - h ^ + h $ K De + = 5 0, tehát a kifejezés sztható 5 0-cal 4 E Hármtagú összeg négyzetéről tanultak alapján végezzük el az alábbi négyzetre emeléseket! a) a b+ c ] - g ; b) ^-y-zh ; c) ^p+ q+ zh a) a + b + 4c -ab+ 4ac-4bc; b) 4 + 9y + z -y-4z+ 6yz; c) p + 4q + 9z + 4pq+ 6pz+ qz 5 E Hármtagú összeg négyzetéről tanultak alapján végezzük el az alábbi négyzetre emeléseket! a) ^a - ab+ b h ; b) p p q b + - q l ; c) ^ k k+ k k- a - b + a b h a) 4a + 9a b + b -a b+ 4a b -6ab ; b) 9 p pq q pq pq pq; k k+ k k- k k+ k k- k k c) 4a + 9b + a b -a b + 4a b -6a b 6 K Számítsuk ki az alábbi kifejezések megfelelő helyettesítési értékét! a) ^ a b a b a b a b, a,9, b - h -^ + h^ - h + = - = ; b) ^ 4, + + h - ^ + h- = - ; 5 c) ^6k -5nh^ 6k + 5nh -6 k ] + 0ng + ^6k + 5nh, k =, n = -,5 4 4 a) 4a a b 9b 4a 9b a b 8b = = $ = ; b) = + = ; 5 c) 6k 4-5n -7k -60k n+ 6k k n+ 5n = -7k = -7

MATEMATIKA C 12. évfolyam 5. modul Ismétlés a tudás anyja

MATEMATIKA C 12. évfolyam 5. modul Ismétlés a tudás anyja MATEMATIKA C. évflyam 5. mdul Ismétlés a tudás anyja Készítette: Kvács Kárlyné Matematika C. évflyam 5. mdul: Ismétlés a tudás anyja Tanári útmutató A mdul célja Időkeret Ajánltt krsztály Mdulkapcslódási

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

MATEMATIKA C 12. évfolyam 2. modul Telek és kerítés

MATEMATIKA C 12. évfolyam 2. modul Telek és kerítés MATEMATIKA C 1. évflyam. mdul Telek és kerítés Készítette: Kvács Kárlyné Matematika C 1. évflyam. mdul: Telek és kerítés Tanári útmutató A mdul célja Időkeret Ajánltt krsztály Mdulkapcslódási pntk Skszögekről

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

MATEMATIKA C 12. évfolyam 3. modul A mi terünk

MATEMATIKA C 12. évfolyam 3. modul A mi terünk MTEMTIK C 1. évflyam. mdul mi terünk Készítette: Kvács Kárlyné Matematika C 1. évflyam. mdul: mi terünk Tanári útmutató mdul célja Időkeret jánltt krsztály Mdulkapcslódási pntk térfgat- és felszínszámítási

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató 1. feladat: VII. Apáczai Matematika Kupa 7. osztály 011. Pontozási útmutató Egy szöcske ugrál a számegyenesen. Ugrásainak hossza egység. A számegyenesen a 10-et jelölő pontból a 1-et jelölő pontba ugrással

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 9 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Érettségi feladatok: Halmazok, logika

Érettségi feladatok: Halmazok, logika Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET C

MATEMATIKAI KOMPETENCIATERÜLET C MATEMATIKAI KOMPETENCIATERÜLET C Matematika 11. évflyam TANULÓK KÖNYVE Készítette: Kvács Kárlyné A kiadvány KHF/457-7/009. engedélyszámn 009.05.1. időpnttól tankönyvi engedélyt kaptt Educati Kht. Kmpetenciafejlesztő

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget! Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat.

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket! Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

3. Algebrai kifejezések, átalakítások

3. Algebrai kifejezések, átalakítások I Elméleti összefoglaló Műveletek polinomokkal Algebrai kifejezések, átalakítások Az olyan betűs kifejezéseket, amelyek csak valós számokat, változók pozitív egész kitevőjű hatványait, valamint összeadás,

Részletesebben

Halmazműveletek feladatok

Halmazműveletek feladatok Halmazműveletek feladatok Soroljuk fel a {a; b; c} halmaz összes részhalmazát! Határozza meg az A és B halmazokat, ha tudja, hogy A B ={1;2;3;4;5}; A B ={3;5}; A\B={1}; B\A={2;4 A={-1; 0; 1; 2; 5; 7; 8}

Részletesebben

Paraméteres és összetett egyenlôtlenségek

Paraméteres és összetett egyenlôtlenségek araméteres és összetett egyenlôtlenségek 79 6 a) Minden valós szám b) Nincs ilyen valós szám c) c < vagy c > ; d) d # vagy d $ 6 a) Az elsô egyenlôtlenségbôl: m < - vagy m > A második egyenlôtlenségbôl:

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Érettségi feladatok: Halmazok, logika

Érettségi feladatok: Halmazok, logika Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz:

1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz: 1.1. Halmazok 2009. május id. - 11. feladat (3 pont) A H halmaz elemei legyenek a KATALINKA szó betűi, a G halmaz elemei pedig a BICEBÓCA szó betűi. Írja fel a H U G halmaz elemeit! 2010. október - 1.

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

I. rész. x 100. Melyik a legkisebb egész szám,

I. rész. x 100. Melyik a legkisebb egész szám, Dobos Sándor, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: 005. november 1. feladat A 70-nek 80%-a mely számnak a 70%-a? I. rész. feladat Egy szabályos

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először

Részletesebben

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát! 1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

HALMAZOK TULAJDONSÁGAI,

HALMAZOK TULAJDONSÁGAI, Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI,. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A:= { a csoport tanulói b) B:= { Magyarország városai ma c) C:=

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93 . Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege?

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege? ! " # $ %& '()(* $ A táblára felírtuk a 0-tól 00-ig terjedő egész számokat (tehát összesen 004 db számot). Mekkora a táblán levő számjegyek összege? 0 0 0 0 0. 9 7. 9 9 9 + ')./ &,- $ Először a 0-tól 999-ig

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra 9-10. évfolyam felnőttképzés Heti óraszám: 3 óra Fejlesztési cél/ kompetencia lehetőségei: Gondolkodási képességek: rendszerezés, kombinativitás, deduktív következtetés, valószínűségi Tudásszerző képességek:

Részletesebben

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT MATMATIKA ÉRTTSÉGI 011. május 3. KÖZÉPSZINT 1) gyszerűsítse a következő törtet, ahol b 6 b b 36 6 I. Az egyszerűsítés utáni alak: b 6 Összesen: pont ) A, 4 és 5 számjegyek mindegyikének felhasználásával

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Az írásbeli eredménye 75%-ban, a szóbeli eredménye 25%-ban számít a végső értékelésnél.

Az írásbeli eredménye 75%-ban, a szóbeli eredménye 25%-ban számít a végső értékelésnél. Matematika A vizsga leírása: írásbeli és szóbeli vizsgarészből áll. A matematika írásbeli vizsga egy 45 perces feladatlap írásbeli megoldásából áll. Az írásbeli feladatlap tartalmi jellemzői az alábbiak:

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 Évi óraszá: 108 óra Heti óraszá: 3 óra 1. téa: Racionális száok, hatványozás 11 óra 2. téa: Algebrai kifejezések 12 óra 1. téazáró dolgozat 3. téa: Egyenletek,

Részletesebben

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz) 6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam 01/01 1. Ha egy kétjegyű szám számjegyeit felcseréljük, akkor a kapott kétjegyű szám értéke az eredeti szám értékénél 108 %-kal nagyobb. Melyik ez a kétjegyű szám? Jelölje a kétjegyű számot xy. 08 A feltételnek

Részletesebben

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19.

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19. Számelmélet 7 8. évfolyam Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György 2015. október 19. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás,

Részletesebben

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

3. MINTAFELADATSOR KÖZÉPSZINT

3. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK I. Témakör: feladatok 1 Huszk@ Jenő IX.TÉMAKÖR I.TÉMAKÖR HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK Téma A halmaz fogalma, alapfogalmak, elemek száma, üres halmaz, egyenlő halmazok, ábrázolás Venn-diagrammal

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

Kőszegi Irén MATEMATIKA. a nyelvi előkészítő osztály számára

Kőszegi Irén MATEMATIKA. a nyelvi előkészítő osztály számára Kőszegi Irén MATEMATIKA a nyelvi előkészítő osztály számára 2014 1 2 Tartalom 1. HALMAZOK... 5 2. SZÁMHALMAZOK... 8 3. HATVÁNYOK... 12 4. OSZTHATÓSÁG... 14 5. ALGEBRAI KIFEJEZÉSEK... 17 6. FÜGGVÉNYEK...

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben