Injektív függvények ( inverz függvény ).

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Injektív függvények ( inverz függvény )."

Átírás

1 04 október 6 3 Függvényábrázolások, Függvények kompozíciója ( összetett üggvény ), Bev Mat BME Injektív üggvények ( inverz üggvény ) ( ) ( ) Ábrázolás Függvénytranszormációval : 3 y y 5 ( tengely mentén eltolás balra 5-tel ) 0 y 5 ( y tengely mentén 0-szeresre nyújtás ) 0 4 y 5 ( y tengely mentén eltolás leelé -gyel ) Ábrázolás Koordinátatranszormációval : 0 y 5 y 0 5 y ( ) 0 ( 5) Az új koordinátarendszer origója ( 0, y0 ) ( 5, ), az új tengelyeken az egységek a régi egységek A ill 0 B -szeresei Ebben az új koordinátarendszerben az η ξ graikont kell ábrázolnunk Megj: 0 > 0 > 0 < 5 < 0 5 < < ( ) ( ) ( ) ( ) y 5 0 alakban is megadhattuk volna az egyenletet, ekkor a vizszintes tengelyen 0-szereződött volna az új rendszerbeli egység, a üggőleges tengelyen változatlan maradt volna Az ábrázolt graikon ua Károlyi Katalin : 04_03_Fuggvenyek o :53

2 Rajzoljuk el az ) : 3 ( és a Adjuk meg az ( a ) ( a ) g( ) : 3 hozzárendelésekkel deiniált üggvények graikonjait! és a g ( a ) g( a ) értékeket! ( R Határozzuk meg az ( g( )) a ) a és az a g( ) összetett üggvényeket! ( o g és g o üggvénykompozíciók ) g () 3 () 3 ( a ) ( a ) a 3 a a a a ( ) 3 80 a 80 3 ( ( a ) ) g ( a ) g( a ) ( a ) ( a ) a a a 3 3 ( ) 3 a 80 ( g( a) ) ( g( )) ( ) 3 g 3 3 ( R ) és g ( ) ( R ) 3 Rajzoljuk el az sin a, sin, ( ) sin g, h ) π Ezek közül melyik üggvény lesz szigorúan monoton növő a ( 0, π ) intervallumon? ( üggvények graikonjait! Függvénytranszormációval : az itt szereplő üggvények közül csak az a sin üggvény ( 0, π intervallumon szig mon növő a ) Adjuk meg az alábbi üggvények zérushelyeit és értelmezési tartományát : 4 ( ) ( ) D 4 R \ { } ( ) 0 ( ) ( ( ) ) ( ) ( ) ( ) ( ) 0 nullhelyei : 0,, Károlyi Katalin : 04_03_Fuggvenyek o :53

3 5 3 4 ( ) 3 ( ) D R \ { 0 } 6 0 ( ) ( 4 3 ( ) ) ( ) ( 3 ) 0 nullhelyei :,, 6 ( 4) ( 4) 3 D 4 R \ {, } ( 4) 0 ( 4) ( ( 4) 3 ) ( 4) ( 4 4 ) 8 ( 4) ( ) 0 nullhelyei : 0,, ( 3) ( ) (3 ) ( ) D 4 R \ {, 3 } ( 3) ( ) 0 3 ( 3) ( ) ( ( 3) ( ) ) 0 nullhelye : 0 3 ( 3) ( ) ( ( ) ) 0 Függvények kompozíciója ( Összetett üggvény ) : o g g o 8 ln ( ), 3 3 g ( ) ( g( )) ln ( ), 3 g ( ) (ln ( )) D R, R R { 0 } D g R, R g [, ) ln ( ) 3 4 ln ( ) D o g R, R o g R { 0 } Dg o R, Rg o [, ) ( g(0)) () 0, g ( ()) g(0) Legyen e, g( ) sin 3 Adjuk meg az ( g( ) ), g ( ), továbbá az ( g(0) ) és a g ( (0) ) értékeket is! ( g( ) ) ( sin (3) ) sin (3 ) ( g( ) ) e e e, g( ) sin (3 ) sin (3 e ) ( g(0) ) (sin (3 0) ) (0 ) 0 ( g(0) ) e e e e, g( (0) ) sin (3 (0) ) sin (3 (0 ) e ) sin 3 Megj : A 0 -beli értékek természetesen egyszerűbben megadhatók az ( g( ) ) és g ( ) megadása után 0 helyettesítéssel! Károlyi Katalin : 04_03_Fuggvenyek 3 o :53

4 Függvények inverze ( Injektív üggvények esetén!!! ) : Deiníció : Az : X Y üggvényt injektív -nek nevezzük, ha az értelmezési tartományának bármely két, helyére az ( ) egyenlőségből következik ( Azaz: D, ( ), vagy másképpen:, D ) Megj : Pl a szigorúan monoton növő ill szigorúan monoton ogyó üggvények injektívek Pl az a üggvény injektív, de nem szigorúan monoton ( R -on ill R -on külön-külön szigmon ogyó ) Deiníció : Az : X Y injektív üggvény inverze az : R D, ( ) üggvény ( inverze tehát az üggvénykapcsolat "megordítása" : értelmezési tartománya az értékkészlete, és az R y elemeihez azt az D elemet rendeli, melyre y, ( azaz ( y) értékkészlete emiatt az értelmezési tartományával egyezik ), ha y ) Descartes-koordinátarendszerben ábrázolva graikonja az graikonjának az y egyenesre vonatkozó tükörképe 0 4 injektív üggvény, hiszen, D R \ { 3 } inverzének meghatározása : D R R \ { 4 }, és 4 ( ) R D R \ { 3} Az inverz meghatározásánál lényegében úgy járhatunk el, hogy a üggvényváltozót és a üggvényértéket megcseréljük, így az inverzüggvény implicit alakját kapjuk, majd ebből az eplicit alakot meghatározzuk : y 4 az üggvénykapcsolat 4 inverzének, -nek implicit alakja 3 y 3 4 y 3 y 3 ( ) 3 y Károlyi Katalin : 04_03_Fuggvenyek 4 o :53

5 ( ) g injektív üggvény, hiszen szigmonnövő ( Így, Dg R ) g inverzének meghatározása : D R (, ), és g g g ( ) g ( ) log ( ) R D g g R Vagy így : y y inverz y log ( ) y log ( ) ( ) ln ( ) h injektív üggvény, hiszen szig mon növő h inverzének meghatározása : D R R, és h h ln ( h ( )) h ( ) e R h D h R Vagy így : y ln inverz ln y ln y y e 3 ( ) l injektív üggvény, hiszen szig mon növő l inverzének meghatározása : D R R { 0 }, azaz [ 0, ) l l és l l ( ) ( ) R [, ) l Dl Vagy így : y inverz y y y Károlyi Katalin : 04_03_Fuggvenyek 5 o :53

6 Ábrázoljuk az alábbi üggvényeket : 4 5 ha e ha < ( ) 4 ( ) e 5 g( ) / ha > 3 g( ) ha Adjuk meg a üggvény minimumait és maimumait a 3, ] [ intervallumon! A [ 3, ] intervallumon a v minimális értéke melyeket a v az, maimális értéke, ill az helyeken vesz el 6 h( ) ha h( ) ( ) (4 ) ha > Adjuk meg a üggvény lokális minimum és maimumhelyeit a [, 5] intervallumon! A [, 5] intervallumon a v lokális minimumhelye ( ( ) a lokális minimumérték ), lokális maimumhelye 3 ( ( 3) a lokális maimumérték ) Határozzuk meg az alábbi üggvények értelmezési tartomámyát és zérushelyeit : 7 3 D 0 D (, 05 ] Nullhelyek : Károlyi Katalin : 04_03_Fuggvenyek 6 o :53

7 D D [ 7, 3 ] zárt intervallum Nullhelyek : vagy 5 a nullhelyek 7 és 3 ln ( ) D > 0 pozitív -ek esetén >, negatív -ek esetén < (, 0 ) (, ) D Nullhelyek : 0 ± 5, 0 lg ( 5 ) 5 > 0 5 > 5 < < 5 4 < < 6 D D ( 4, 6 ) nyílt intervallum Nullhelyek : lg ( 5 ) vagy 4 a nullhelyek 3 és 5 lg ( ) D > 0, s mivel a bal oldalon álló polinom gyökei és, s a őegyüttható negatív, D (, ) nyílt intervallum Nullhelyek : ( ) lg ( ) 0 0 ± 4 a nullhelyek 5 és 5 Károlyi Katalin : 04_03_Fuggvenyek 7 o :53

8 ( ) log 3 D log3 0 log 3 3 [, ) D balról zárt, jobbról nyílt intervallum Nullhelyek : log3 0 log3 0 log 3 egyetlen nullhely : További eladatok : Legyen ( ) a b c 5, a, b, c R Mennyivel egyenlő (7), ha ( 7) 7? A g : 5 üggvény páratlan, ui R g( ) 7 3 a ( ) b ( ) c ( ) 7 3 ( a b c ) g( ) g ( 7) g( 7) ( ( 7) 5 ) (7 5) ( 7) g(7) 5 5 7, ( 7) 7 APPENDIX : A 7 alatti üggvény, g( ) : 3 ábrázolásához Károlyi Katalin : 04_03_Fuggvenyek 8 o :53

1.) = grafikont kell ábrázolnunk. Megj.: 5 1+ A = 1 ill. B = 10 -szeresei. Ábrázolás Függvénytranszformációval :

1.) = grafikont kell ábrázolnunk. Megj.: 5 1+ A = 1 ill. B = 10 -szeresei. Ábrázolás Függvénytranszformációval : 0 október Függvényábrázolások, Összetett üggvény, Inverz üggvény Bev Mat BME ( Válogatás a eladatgyüjteményből ) ) 0 0 0 0 ( ) ( ) 5 5 5 5 Ábrázolás Függvénytranszormációval : y y 5 ( tengely mentén eltolás

Részletesebben

1.1 A függvény fogalma

1.1 A függvény fogalma 1.1 A üggvény ogalma Deiníció: Adott két (nem üres) halmaz H és K. Ha a H halmaz minden egyes eleméhez valamilyen módon hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést üggvénynek nevezzük.

Részletesebben

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük.

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. Hozzárendelések A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. A B Egyértelmű a hozzárendelés, ha az A halmaz mindegyik

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása

10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása . tétel Függvények lokális és globális tulajdonságai. A dierenciálszámítás alkalmazása FÜGGVÉNY De: A üggvény egyértelmű hozzárendelés két halmaz elemei között. A halmaz minden eleméhez B halmaz legeljebb

Részletesebben

Bodó Bea, Simonné Szabó Klára Matematika 1. közgazdászoknak

Bodó Bea, Simonné Szabó Klára Matematika 1. közgazdászoknak ábra: Ábra Bodó Bea, Simonné Szabó Klára Matematika. közgazdászoknak III. modul: Egyváltozós valós üggvények 3. lecke: Függvénytani alapogalmak Tanulási célok: a üggvény ogalmához kapcsolódó kiejezések

Részletesebben

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010. Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2 1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon

Részletesebben

Második zárthelyi dolgozat megoldásai biomatematikából * A verzió

Második zárthelyi dolgozat megoldásai biomatematikából * A verzió Második zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mit értünk eponenciális üggvényen? Adjon példát alulról korlátos szigorúan monoton csökkenő eponenciális üggvényre.

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Teljes függvényvizsgálat

Teljes függvényvizsgálat Teljes üggvényvizsgálat Tanulási cél A üggvényvizsgálat lépéseinek megismerése és begyakorlása. Motivációs példa Jelölje egy adott termék árát P, a termék keresleti üggvényét pedig 1000 10 P D P. A P teljes

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

Elemi függvények, függvénytranszformációk

Elemi függvények, függvénytranszformációk Elemi üggvények, üggvénytranszormációk Összeállította: dr. Leitold Adrien egyetemi docens 2013. 09. 06. 1 Függvénytani alapogalmak Függvény: két halmaz elemei közötti egyértelmű hozzárendelés. Jel.: :

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete) Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [

[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [ Bodó Beáta 1 FÜGGVÉNYEK 1. Határozza meg a következő összetett függvényeket! g f = g(f(x)); f g = f(g(x)) (a) B f(x) = cos x + x 2 ; g(x) = x; f(g(x)) =?; g(f(x)) =? f(g(x)) = cos( x) + ( x) 2 = cos( x)

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

= x + 1. (x 3)(x + 3) D f = R, lim. x 2. = lim. x 4

= x + 1. (x 3)(x + 3) D f = R, lim. x 2. = lim. x 4 Bodó Beáta Differenciálszámítás. B Írja fel az f() = függvény az a = és az helyekhez tartozó különbségi hányadosát. f() f(a) a = = (+)( ) = +. B Számolja ki az f() = függvény a = 3 helyhez tartozó differenciálhányadosát!

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

FÜGGVÉNYEK. A derékszögű koordináta-rendszer FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak

Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak ábra: Ábra Bodó Bea, Somonné Szabó Klára Matematika. közgazdászoknak I. modul: Dierenciálszámítás alkalmazásai lecke: Konveitás, elaszticitás Tanulási cél: A másodrendű deriváltat vizsgálva milyen következtetéseket

Részletesebben

Descartes-féle, derékszögű koordináta-rendszer

Descartes-féle, derékszögű koordináta-rendszer Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)

Részletesebben

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások ) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

Abszolútértékes és gyökös kifejezések Megoldások

Abszolútértékes és gyökös kifejezések Megoldások Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold!

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold! Megoldások 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold! A: Minden emberhez hozzárendeljük a munkahelyének nevét. B: Minden valós számhoz hozzárendeljük az ellentettjét. C: Minden

Részletesebben

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

A derivált alkalmazásai

A derivált alkalmazásai A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls

Részletesebben

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait! Elméleti kérdések: Második zárthelyi dolgozat biomatematikából * (Minta, megoldásokkal) E. Mit értünk hatványfüggvényen? Adjon példát nem invertálható hatványfüggvényre. Adjon példát mindenütt konkáv hatványfüggvényre.

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

Inverz függvények Inverz függvények / 26

Inverz függvények Inverz függvények / 26 Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás

Részletesebben

2012. október 9 és 11. Dr. Vincze Szilvia

2012. október 9 és 11. Dr. Vincze Szilvia 2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények

Részletesebben

Függvénytan elmélet, 9. osztály

Függvénytan elmélet, 9. osztály Függvénytan elmélet, 9. osztály A függvénytan alapfogalma a hozzárendelés. (Igazából nem kellene alapfogalomnak tekintenünk, mert a rendezett párok ill. a Descartes-szorzat segítségével definiálható lenne,

Részletesebben

Konvexitás, elaszticitás

Konvexitás, elaszticitás DIFFERENCIÁLSZÁMÍTÁS ALKALMAZÁSAI Konveitás, elaszticitás Tanulási cél A másodrendű deriváltat vizsgálva milyen következtetéseket vonhatunk le a üggvény konveitására vonatkozóan. Elaszticitás ogalmának

Részletesebben

A függvényekről tanultak összefoglalása /9. évfolyam/

A függvényekről tanultak összefoglalása /9. évfolyam/ A függvényekről tanultak összefoglalása /9. évfolyam/ Készítette: Almási István almasi84@gmail.com Lineáris függvény A függvény általános alakja: f (x):= m 1 m 2 x+b m a meredekség b a tengelymetszet 2/42

Részletesebben

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval 4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6

Részletesebben

Matematika 8. osztály

Matematika 8. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály III. rész: Függvények Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék III. rész:

Részletesebben

FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI

FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI FÜGGVÉNY: Adott két halmaz, H és K. Ha a H halmaz minden egyes eleméhez egyértelműen hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév) . Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()

Részletesebben

Komplex számok. A komplex számok algebrai alakja

Komplex számok. A komplex számok algebrai alakja Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc

Részletesebben

Függvények csoportosítása, függvénytranszformációk

Függvények csoportosítása, függvénytranszformációk Függvények csoportosítása, függvénytranszformációk 4. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények csoportosítása p. 1/2 Függvények nevezetes osztályai Algebrai függvények

Részletesebben

f x 1 1, x 2 1. Mivel > 0 lehetséges minimum. > 0, így f-nek az x 2 helyen minimuma van.

f x 1 1, x 2 1. Mivel > 0 lehetséges minimum. > 0, így f-nek az x 2 helyen minimuma van. 159 5. SZÉLSŐÉRTÉKSZÁMÍTÁS = + 1, R + 1 f = 1 R +,, f = R +, 1 Az 1 = 0 egyenlet gyökei : 1 1, 1. Mivel ezért az 1 helyen van az f-nek minimuma. 5.1. f f 1 0, 5.. Legyen az egyik szám, a másik pedig A.

Részletesebben

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343 Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális

Részletesebben

1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log

1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log 1. Fuggveny ertekek 1 Szamtsuk ki az alabbi fuggvenyek erteket a megadott helyeken! a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I b) f (x) = sin x 1 x = π 2, π 4, 3 3 2π, 10π I arcsin(x) ha 1 x 0 1 c) f

Részletesebben

Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.

Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim. Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Függvények ábrázolása, jellemzése I.

Függvények ábrázolása, jellemzése I. Függvények ábrázolása, jellemzése I. DEFINÍCIÓ: (Hozzárendelés) Két nem üres A és B halmaz elemei közti kapcsolat (megfeleltetés, hozzárendelés, reláció), a két halmaz elemeiből képezhető rendezett elempároknak

Részletesebben

Gazdasági Matematika I. Megoldások

Gazdasági Matematika I. Megoldások . (4.feladatlap/2) Gazdasági Matematika I. Di erenciálszámítás alkalmazásai Megoldások a) Határozza meg az f(x) x 6x 2 + függvény x 2 helyen vett érint½ojének az egyenletét. El½oször meghatározzuk a pont

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.

Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim. Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. a Matematika A1a-Analízis nevű tárgyhoz Számhalmazok jelölésére a következő szimbólumokat használjuk: N := 1, 2,...}, Z, Q, Q, R. Az intervallumokat pedig így jelöljük: [a, b], (a,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

Tartalomjegyzék Feltétel nélküli szélsőérték számítás

Tartalomjegyzék Feltétel nélküli szélsőérték számítás Dr. Vincze Szilvia Példa Egy adott talajtípuson az átlagosnak megelelő időjárási viszonyok között a búza hozamát hektáronként a elhasznált nitrogén és oszor hatóanyag erősen beolyásolja. A hektáronként

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten MÁSODFOKÚ EGYENLETEK ÉS EGYENLŽTLENSÉGEK Készítette: Gábor Szakmai felel s: Gábor

Részletesebben

Kalkulus I. gyakorlat, megoldásvázlatok

Kalkulus I. gyakorlat, megoldásvázlatok Kalkulus I. gyakorlat, megoldásvázlatok Fizika BSc I/.. Ábrázoljuk a következ halmazokat a síkon! a {, y R : + y < }, b {, y R : + y < }, c {, y R : + y

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja 2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás: Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével

Részletesebben

Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői

Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői A függvények ábrázolásához használhatjuk a nevezetes szögek, illetve a határszögek értékeit. f (x) = sin x Az ábráról leolvashatjuk a függvény

Részletesebben

FÜGGVÉNYEK x C: 2

FÜGGVÉNYEK x C: 2 FÜGGVÉNYEK 2005-2014 1. 2005/0511/2 Az ábrán egy [ 2; 2] intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! A: x x 2 2 B: x 2 2 x x

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

FÜGGVÉNYTANI ALAPOK A) ÉRTELMEZÉSI TARTOMÁNY

FÜGGVÉNYTANI ALAPOK A) ÉRTELMEZÉSI TARTOMÁNY FÜGGVÉNYTANI ALAPOK Foglalkoztunk az alaptulajdonságnak tekinthető értelmezési tartománnyal, és a paritással, továbbá az összetett függvények képzési módjával, illetve ezeknek az elemi függvényekre való

Részletesebben

Nagy Krisztián Analízis 2

Nagy Krisztián Analízis 2 Nagy Krisztián Analízis 2 Segédanyag a második zárthelyi dolgozathoz Tartalomjegyzék Deriválási alapok... 3 Elemi függvények deriváltjai... 3 Deriválási szabályok műveletekre... 4 Első feladat típus...

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat

Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet. old.. feladat a. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés:

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt 27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Matematika 11. osztály

Matematika 11. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4.

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4. Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 2017. október 4. Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus

Részletesebben

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus függvény

Részletesebben