Autoregressziós modellekkel kapcsolatos



Hasonló dokumentumok
Statisztika 1. zárthelyi dolgozat március 21.

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Differenciaegyenletek aszimptotikus viselkedésének

Szakmai zárójelentés (OTKA T )

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

Autoregressziós folyamatok

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

Approximációs tételek a kupongyűjtő problémában. Doktori (Ph.D.) értekezés tézisei

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

BIOMATEMATIKA ELŐADÁS

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

Szakmai zárójelentés (OTKA F )

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

A matematikai statisztika elemei

hidrodinamikai határátmenet

Változásészlelés elágazó folyamatokban

1. Sajátérték és sajátvektor

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

Feleségem Hizsnyik Mária, gyermekeim Gyula (1979) és Júlia (1981), unokáim Lola (2007), Kende (2010) és Márkó (2010)

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

Területi koncentráció és bolyongás Lengyel Imre publikációs tevékenységében

Komplex számok (el adásvázlat, február 12.) Maróti Miklós

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

VII. A határozatlan esetek kiküszöbölése

f(n) n x g(n), n x π 2 6 n, σ(n) n x

Komputer statisztika

A statisztika részei. Példa:

Statistical Inference

Sztochasztikus folyamatok alapfogalmak

Statisztika 1. zárthelyi dolgozat március 18.

Sorozatok A.: Sorozatok általában

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

Good-Turing lefedés. Lang Zsolt

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos

Statisztikai programcsomagok

V. Deriválható függvények

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;

Teljes publikációs lista

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

Bevezetés. 1. előadás, február 11. Módszerek. Tematika

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Least Squares becslés

Innen. 2. Az. s n = 1 + q + q q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

2. gyakorlat - Hatványsorok és Taylor-sorok

Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset:

A brexit-szavazás és a nagy számok törvénye

10.M ALGEBRA < <

Typotex Kiadó. Irodalom

Andai Attila: november 13.

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

AKADÉMIAI LEVELEZŐ TAGSÁGRA TÖRTÉNŐ AJÁNLÁS

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

Összefoglaló OTKA F67729 pályázat:

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Some Problems of Nonlinear Time Series Analysis in Frequency Domain

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

On Statistical Problems of Discrete and Continuous Time Autoregressive Processes

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

Prediction of Hungarian mortality rates using Lee-Carter method, Acta Oeconomica, 57, pp

A maximum likelihood becslésről

Analízis feladatgy jtemény II.

VÉLETLENÍTETT ALGORITMUSOK. 1.ea.

Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel p. 1/29. Ábele-Nagy Kristóf BCE, ELTE

Statisztika. Földtudomány szak, geológus szakirány, 2015/2016. tanév tavaszi

Függvényhatárérték-számítás

6. feladatsor. Statisztika december 6. és 8.

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Bemenet modellezése II.

Tudjuk, hogy az optimumot az ún. regressziós görbe szolgáltatja, melynek egyenlete:

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

Correlation & Linear Regression in SPSS

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

(f) f(x) = x2 x Mutassa meg, hogy ha f(x) dx = F (x) + C, akkor F (ax + b) a 3. Számolja ki az alábbi határozatlan integrálokat: 1.

Határérték-tételek véletlen mezőkre

3.1. A Poisson-eloszlás

Átírás:

Autoregressziós modellekkel kapcsolatos határeloszlás tételek Pap Gyula Kossuth Lajos Tudomáyegyetem, Matematikai és Iformatikai Itézet H 4 ebrece, Pf.2 papgy@math.klte.hu. AR() modellek Tekitsük az (.) Xk = αx k + ε k, k =, 2,..., X = egylépéses autoregressziós modellt, ahol α R ismeretle paraméter, és az egyszerűség kedvéért feltesszük, hogy (ε k ) k függetle, azoos eloszlású valószíűségi változók, Eε =, Eε 2 =. Az α paraméter legkisebb égyzetes becslése α = X jx j. X2 j Közismert, hogy az aszimptotikusa stacioárius (stabilis) esetbe, amikor α <, az ( α ) sorozat aszimptotikusa ormális (Ma, Wald [27], Aderso []): ( α α) N (, α 2 ). Az istabil esetbe ( egységgyök modell ), amikor α =, az ( α ) sorozat em aszimptotikusa ormális, haem ( α ) W (t) dw (t) W, 2 (t) dt ahol W (t) : t [, ]} stadard Wieer folyamat (White [36], Aderso []). Az explozív esetbe, amikor α >, az ( α ) sorozat megit em aszimptotikusa ormális. Ha például ε N (, ), akkor α ( α α) Cauchy(, α 2 ).

Általába pedig ez a határeloszlás függ ε eloszlásától (White [36], Aderso []). Más ormálással: ( N (, ) α, /2 Xj ) 2 ( α α) W (t) dw (t) ( ) /2 α =, W 2 (t) dt amely az α > esetbe akkor érvéyes, amikor ε N (, ). A következő modellt közel istabilak ( közel egységgyök modell, közel emstacioárius modell ) evezzük: (.2) ahol Ekkor az α () () X k = α () X () X () =, k + ε() k, k =, 2,..., α () = + γ(), γ() γ. paraméterek legkisebb égyzetes becsléseiből álló ( α () ) sorozatra teljesül (.3) ( α () α () ) Y (t) dw (t) Y, 2 (t) dt ahol Y (t) : t [, ]} egy folytoos idejű AR() folyamat, azaz egy Orstei Uhlebeck folyamat, melyet a következő sztochasztikus differeciálegyelettel lehet defiiáli: (.4) dy (t) = γy (t) dt + dw (t), t [, ] Y () = (Bobkoski [4], Phillips [29], Cha ad Wei [6]). Az Y (t) : t [, ]} folyamat írható Y (t) = t e γ(t v) dw (v) alakba is. Arató, Kolmogorov, Siai [5], valamit Arató [2], [4] felhívta a figyelmet a diszkrét és folytoos idejű autoregressziós folyamatok közötti kapcsolatra. Az (.3) eredméy a következő módo is megfogalmazható: γ () γ, ahol γ () a γ () paraméter legkisebb égyzetes becslése az (.2) diszkrét idejű modellbe, γ pedig a γ paraméter maximum likelihood becslése az (.4) folytoos idejű modellbe (Arató [3]): γ = Y (t) dy (t) Y 2 (t) dt, 2

hisze az Y (t) : t [, ]} és W (t) : t [, ]} folyamatok által a C([, ]) tére idukált P Y, illetve P W mértékek ekvivalesek, és a Rado Nikodym derivált alakja: P } Y (Y ) = exp γ Y (t) dy (t) γ2 Y 2 (t) dt, P W 2 továbbá γ () = ( α () ), és az Itô formulával γ = Y (t) dw (t) Y + γ. 2 (t) dt A közel istabil esetbe fellépő külöleges határeloszlást heurisztikusa az magyarázza, hogy ( α α ) = X() j ε() j = (X() j )2 Y (t) dm (t) Y, 2 (t) dt ahol M (t) := [t], Y (t) := X () [t], és a fukcioális cetrális határeloszlás tétel értelmébe M W, Y Y, hisze j X () j = α j l ε () l, továbbá az együtthatót írhatjuk α = e γ/ Y (t) = [t] [t]/ e γ([t] l)/ ε () l = l= l= alakba is ahol γ γ, ezért [t] e γ( s) dm (s) Az α < esetbe ez a jeleség azért em lép fel, mert ekkor ( α α) = X j ε j X2 j t N ( α 2 ), valamit teljesül e γ(t s) dw (s) = Y (t). hisze a gyegé függő valószíűségi változókra voatkozó cetrális határeloszlás tétellel X j ε j a agy számok erős törvéyével pedig ( N, ), α 2 X 2 j α 2 P-m.m. 3

2. AR(p) modellek Hasoló eredméyek érvéyesek az (2.) Xk = α X k + + α p X k p + ε k, k =, 2,..., X = X =... = X p =, AR(p) modellre is. Az aszimptotikusa stacioárius (stabilis) esetbe, amikor a ϕ(z) = α z... α p z p karakterisztikus poliom összes zérushelye az egységkörö kívül va, az együtthatók legkisebb égyzetes becslése aszimptotikusa ormális (Ma, Wald [27], Aderso []). Az istabil esetbe ( egységgyök modell ), amikor a ϕ karakterisztikus poliom összes zérushelye az egységkörö kívül va, Cha, Wei [7] bebizoyította, hogy az α = (α,..., α p ) együtthatók α = ( α,,..., α p, ) legkisebb égyzetes becslése em aszimptotikusa ormális, viszot alkalmas δ } ormalizáló mátrixokkal a δ ( α α) sorozatak va határeloszlása, melyre adtak egy reprezetációt többszörös Wieer itegrálok segítségével. Jegaatha [2] vizsgálta a következő közel istabil ( közel egységgyök, közel emstacioárius ) AR(p) modellt: () X k = α () X () k (2.2) + + α() p X () k p + ε() k, k =, 2,..., X () = X () =... = X () p =, ahol az α () = (α (),..., α p () ) együtthatókra teljesül α () = α + δ γ, ahol γ γ, és δ } a Cha, Wei [7] által haszált ormalizáló mátrixok. Jegaatha [2] bebizoyította, hogy a δ α () ) sorozatak va határeloszlása, melyre adott egy ige boyolult reprezetációt. Va der Meer, Pap, Va Zuijle [28] adtak egy jóval egyszerűbb reprezetációt és egyúttal megmutatták, hogy létezik egy olya folytoos idejű AR(p) modell, mely hasoló kapcsolatba va a diszkrét idejű modellel, mit amely az AR() esetbe ( α () érvéyes. Tulajdoképpe köyebb kezeli a karakterisztikus poliomok zérushelyeiek legkisebb égyzetes becslését, mit az együtthatókét. A karakterisztikus poliomok zérushelyei egységgyökökhöz kovergálak a következő módo: r q j q ϕ (z) = α () z... α p () z p = ( e γ() j,k /+iθ j z) ( e iθ j z) r j, k= ahol θ,..., θ q ( π, π] párokét külöbözőek, és γ () j,k ( γ () j,k, ) legkisebb égyzetes becsléseire teljesül γ () j,k, γ j,k, γ j,k. Ekkor a γ () j,k paraméterek ahol γ j,k } maximum likelihood becslések a következő folytoos idejű AR(p) modellbe: rj k= (d γ j,k)y (t) = dw j (t), t [, ], j =,..., q Y j () =... = Y (r j ) j () =, j =,..., q, 4

ahol W j (t) : t [, ]}, j =,..., q függetle, stadard Wieer folyamatok, melyek valós értékűek, amikor ϑ j = vagy ϑ j = π, egyébkét komplex értékűek. Hasoló kapcsolat érvéyes bizoyos diszkrét és folytoos idejű vektorértékű autoregressziós modellek között is (Kormos, Pap [23], Pap, Zuijle [3], [3], Varga [35]). 3. uplá geometrikus síkbeli autoregressziós modell Most tekitsük az úgyevezett duplá geometrikus síkbeli autoregressziós modellt: (3.) Xk,l = α X k,l + α 2 X k,l α α 2 X k,l + ε k,l, k, l =, 2,...,, X,l = X k, =, melyet Marti [25] vezetett be. Ezt a modellt Jai [2] képfeldolgozás taulmáyozásáál, Marti [26], Cullis, Gleeso [8], Basu, Reisel [] mezőgazdasági kísérletekél, Tjostheim [33] pedig digitális szűrésél haszálta. Az aszimptotikusa stacioárius esetbe, amikor α < és α 2 <, az α = (α, α 2 ) paraméter külöböző becsléseiről megmutatták, hogy aszimptotikusa ormálisak (például Tjostheim [32], [34], Basu [7], Khalil [22], Basu, Reisel [8], [9]). Az egységgyök modellbe, amikor α = α 2 =, az AR() esettel elletétbe az α = (α, α 2 ) paraméter egylépéses Gauss Newto becsléseiek sorozata szité aszimptotikusa ormális (Bhattacharyya, Khalil, Richardso []). A legegyszerűbb egylépéses Gauss Newto becslés: ) ( ) ( α, ( ) = + A 2 X k,l 2 X k,l, X k,l 2 X k,l ahol és α, A = x k,l = x k,l x k,l, k= l= k= l= 2 x k,l = x k,l x k,l ( ) ( 2 X k,l ) 2 2 X k,l X k,l 2 X k,l X k,l ( X k,l ) 2. Ebbe az esetbe Bhattacharyya, Khalil, Richardso [] eredméyéből következik, hogy ) ( α, 3/2 N (, 2I). α 2, Érdemes megjegyezi, hogy az AR() egységgyök modellbe az α paraméter α égyzetes becslése is egylépéses Gauss Newto becslés, hisze legkisebb α = + k= X k X k. k= X2 k 5

Bhattacharyya, Richardso, Frakli [2] vizsgálták a X () k,l (3.2) = α() X () k,l + α() 2 X () k,l α() α () 2 X () k,l + ε() k,l, X (),l = X() k, = közel egységgyök modellt, ahol k, l =, 2,..., α () j = + γ() j, γ() j γ j, j =, 2, és bebizoyították az α () = (α (), α () 2 ) paraméter Gauss Newto becsléseiek aszimptotikusa ormalitását. Ebbe az esetbe az egylépéses Gauss Newto becslések alakja ( ) ( ) ( α (), α () 2 X () α (), =, α () + A k,l,2x () ) k,l 2, k= l= X () k,l,,2x () k,l ahol, 2 és,2 módosított differeciák: x k,l = x k,l α (),x k,l, 2 x k,l = x k,l α () 2,x k,l,,2 x k,l = 2 x k,l + ( α (), α () ) 2 x k,l + ( α () 2, α () 2 ) x k,l. Bhattacharyya, Richardso, Frakli [2] eredméyéből következik, hogy ha a α () j, becslésekre teljesül α () j, = α() j + O P ( 3/2 ), akkor ahol 3/2 α(), α () α () 2, α () 2 N (, diag(d,, d 2,2 )), 4γj 2 ha γ e d j,j = 2γj 2γ j, j 2 ha γ j =. kiiduló Eek a cikkek az az egyik célja, hogy megvilágítsa a (3.2) diszkrét idejű közel egységgyök duplá geometrikus síkbeli modell és az (3.3) Y (s, t) = s t e γ (s u)+γ 2 (t v) dw (u, v), s, t [, ] folytoos idejű Orstei Uhlebeck véletle mező kapcsolatát, ahol W (s, t) : s, t [, ]} stadard Wieer lepedő. Kiderül, hogy a (3.3) Orstei Uhlebeck lepedő megit tekithető a (3.2) duplá geometrikus modell folytoos idejű párjáak, de ez a kapcsolat em érvéyes a becslésekre voatkozólag. Valójába a (3.3) modellbe a γ = (γ, γ 2 ) paraméterek ics maximum likelihood becslése, mert a külöböző paraméterű Orstei Uhlebeck lepedők által geerált mértékek ortogoálisak egymásra. Ez a jeleség azzal függ össze, hogy a γ = (γ, γ 2 ) paramétert erőse kozisztes módo lehet becsüli (Yig [38] a stacioárius esetbe adott erőse kozisztes becsléseket). 6

4. uplá geometrikus síkbeli autoregressziós modell kovergeciája Orstei Uhlebeck lepedőhöz Tekitsük a (3.2) diszkrét idejű duplá geometrikus közel egységgyök modellt. Ekkor a Y () (s, t) := X() [s],[t], s, t [, ], M () (s, t) := [s] [t] i= ε () i,j s, t [, ] véletle lépcsős függvéyek tekithetők véletle elemekek a ([, ] 2 R) Szkorohod térbe. A következő eredméy (Arató, Pap, Zuijle [6]) leírja az aszimptotikus kapcsolatot a modellhez hozzáredelt (Y () ) sorozat és a zajhoz hozzáredelt (M () ) sorozat között. 4. Állítás. A következő állítások ekvivalesek: (i) M () W (ii) Y () Y i ([, ] 2 R), i ([, ] 2 R), (iii) (M (), Y () ) (W, Y ) i ([, ] 2 R 2 ). A ([, ] 2 R) térbe alkalmazva a fukcioális cetrális határeloszlás tételt (Bickel, Wichura [5, Theorem 5]) kapjuk az alábbi következméyt. 4.2 Következméy. Tegyük fel, hogy ε () k,l } függetle, azoos eloszlású, várható értékű és szórású valószíűségi változók. Ekkor (M (), Y () ) (W, Y ) ([, ] 2 R 2 ) be. A 4.2 Következméyt közvetleül is be lehet láti az Y () (s, t) = [s] [t] i= e γ() ([s] i)/+ γ () 2 ([t] j)/ ε () i,j összefüggés felhaszálásával, mégpedig egyrészt a cetrális határeloszlástétel segítségével megmutatható a végesdimeziós eloszlások kovergeciája, másrészt Bhattacharyya, Richardso, Frakli [2] techikájával bizoyítható a feszesség. 7

5. Orstei Uhlebeck lepedők ortogoalitása Legye γ R és σ > eseté Y γ,σ 2(t) := σ t e γ(t v) dw (v), t [, ]. Az Y γ,σ 2(t) : t [, ]} folyamat egy Orstei Uhlebeck folyamat (γ, σ 2 ) paraméterekkel, mely a következő sztochasztikus differeciálegyelet megoldása: dy (t) = γy (t) dt + σdw (t), t [, ], (5.) Y () =. Jelölje P Yγ,σ 2 az Y γ,σ 2 folyamat által a C([, ] R) tére idukált valószíűségi mértéket. Valamely P és P 2 valószíűségi mértékek ekvivaleciáját illetve ortogoalitását illetve fogja jelöli. A következő dichotómia jól ismert (lásd Arató [3]): PYγ,σ2 P Y γ, σ2 ha σ 2 = σ 2, Az ortogoalitás σ 2 σ 2 (5.2) P Yγ,σ 2 P Y γ, σ 2 ha σ 2 σ 2. eseté azo alapul, hogy ( ( j Yγ,σ 2 ) Yγ,σ 2 ( j )) 2 σ 2 P Yγ,σ 2-m.m., amely a következő reprezetáció segítségével bizoyítható (mely 5. következméye): Y γ,σ 2(t) = γ t Y γ,σ 2(v) dv + σw (t) felhaszálva a következő valószíűségű kovergeciákat: ( ( ( W j ( ) W j )) 2 j/, (j )/ Y γ,σ 2(v) dv) 2, ahol a második kovergecia abból következik, hogy az Y γ,σ 2 folyamat valószíűséggel folytoos. Más szavakkal: a σ 2 paramétert erőse kozisztes módo lehet becsüli (Yig [37] a stacioárius esetbe adott erőse kozisztes becsléseket). Most tekitsük a (γ, γ 2, σ 2 ) paraméterű Orstei Uhlebeck lepedőt, mely a következő módo va defiiálva: s t Y γ,γ 2,σ 2(s, t) = σ e γ (s u)+γ 2 (t v) dw (u, v), s, t [, ] 2, ahol γ, γ 2 R, σ >. Jelölje P Yγ,γ 2,σ 2 az Y γ,γ 2,σ 2 folyamat által a C([, ]2 R) tére idukált valószíűségi mértéket. A következő dichotómia érvéyes (lásd Kurcheko [24], Arató, Pap, Zuijle [6]): 5.3 Állítás. PYγ,γ2,σ2 P Y γ, γ2, σ2 ha (γ, γ 2, σ 2 ) = ( γ, γ 2, σ 2 ), P Yγ,γ 2,σ 2 P Y γ, γ 2, σ 2 ha (γ, γ 2, σ 2 ) ( γ, γ 2, σ 2 ). 8

Hivatkozások [] Aderso, T. W. (959). O asymptotic distributios of estimates of parameters of stochastic differece equatios. A. Math. Statist. 3, 676 687. [2] Arató, M. Estimatio of the parameters of a statioary Gaussia Markov process. okl. Akad. Nauk SSSR 45 3 6. [3] Arató, M. Liear stochastic systems with costat coefficiets. A statistical approach. (Lecture Notes i Cotrol ad If., vol. 45, 39 pp.) Berli: Spriger-Verlag, 982 (i Russia, Moscow: Nauka, 989). [4] Arató, M. (989). Asymptotic iferece for discrete vector AR processes. Publ. Math. 36, 9 3. [5] Arató, M., Kolmogorov, A.N. ad Siay, Ya. G. (962). Estimatio of the parameters of a complex statioary Gaussia Markov process. okl. Akad. Nauk SSSR 46 747 75. [6] Arató, M., Pap, G. ad Zuijle, M.v. (999). Asymptotic iferece for spatial autoregressio ad orthogoality of Orstei Uhlebeck sheets. Report 9927, Uiversity of Nijmege, The Netherlads. [7] Basu, S. (99). Aalysis of first-order spatial bilateral ARMA models. Ph.. dissertatio, Uiv. Wiscosi, Madiso. [8] Basu, S. ad Reisel, G. C. (992). A ote o properties of spatial Yule Walker estimators. J. Statist. Comput. Simulatio 4, 243 255. [9] Basu, S. ad Reisel, G. C. (993). Properties of the spatial uilateral first-order ARMA model. Adv. i Appl. Probab. 25, 63 648. [] Basu, S. ad Reisel, G. C. 994). Regressio models with spatially correlated errors. J. Amer. Statist. Assoc. 89, 88 99. [] Bhattacharyya, B. B., Khalil, T. M. ad Richardso, G.. (996). Gauss Newto estimatio of parameters for a spatial autoregressio model. Statist. Probab. Lett. 28, 73 79. [2] Bhattacharyya, B. B., Richardso, G.. ad Frakli, L. A. (997). Asymptotic iferece for ear uit roots i spatial autoregressio. A. Statist. 25, 79 724. [3] Billigsley, P. (968). Covergece of probability measures. Joh Wiley & Sos, New York. [4] Bobkoski, M. J. (983). Hypothesis testig i ostatioary time series. Ph.. dissertatio, Uiv. Wiscosi, Madiso. 9

[5] Bickel, P. J. ad Wichura, M. J. (97). Covergece criteria for multiparameter stochastic processes ad some applicatios. A. Math. Statist. 42, 656 67. [6] Cha, N. H. ad Wei, C. Z. (987). Asymptotic iferece for early ostatioary AR() processes. A. Statist. 5, 5 63. [7] Cha, N. H. ad Wei, C. Z. (988). Limitig distributios of least squares estimates of ustable autoregressive processes. A. Statist. 6, 367 4. [8] Cullis, B. R. ad Gleeso, A.C. (99). Spatial aalysis of field experimets a extesio to two dimesios. Biometrics 47, 449 46. [9] eo, C. M. ad Wog, S. F. (978). O quadratic variatio of Gaussia radom fields. Teor. Veroyat. Prime. 23, 655 66. [2] Jai, A. K. (98). Advaces i mathematical models for image processeg. Proc. IEEE 69, 52 528. [2] Jegaatha, P. (99). O the asymptotic behaviour of least-squares estimators i AR time series with roots ear the uit circle. Ecoometric Theory 7, 269 36. [22] Khalil, T. M. (99). A study of the doubly geometric process, statioary cases ad a ostatioary case. Ph.. dissertatio, North Carolia State Uiv., Raleigh. [23] Kormos, J. ad Pap, G. (997). Nearly ustable multidimesioal AR() processes. Computers Math. Appl. 34, 7. [24] Kurcheko, A. A. (983). Some coditios for the orthogoality of measures correspodig to homogeeous radom fields. Theory Probab. Math. Stat. 26, 3 9. [25] Mari, R. J. (979). A subclass of lattice processes applied to a problem i plaar samplig. Biometrika 66, 29 27. [26] Mari, R. J. (99). The use of time-series models ad methods i the aalysis of agricultural field trials. Comm. Statist. Theory Methods 9, 55 8. [27] Ma, H. B. ad Wald, A. (943). O the statistical treatmet of liear stochastic differece equatios. Ecoometrica, 73 22. [28] Meer, T.v.d., Pap, G. ad Zuijle, M.v. (999). Asymptotic iferece for early ustable AR(p) processes. Ecoometric Theory 5, 84 27. [29] Phillips, P. C. B. Towards a uified asymptotic theory for autoregressio. Biometrika 74 (987): 535 547. [3] Pap, G. ad Zuijle, M.v. (996). Asymptotic iferece for early ustable multidimesioal AR processes. Theory Probab. Appl. 4, 73 7.

[3] Pap, G. ad Zuijle, M.v. (999). Asymptotic properties of early ustable multivariate AR processes. Computers Math. Appl. 37, 9. [32] Tjostheim,. (978). Statistical spatial series modellig. Adv. i Appl. Probab., 3 54. [33] Tjostheim,. (98). Autoregressive modellig ad spectral aalysis of array data i the plae. IEEE Tras. o Geoscieces ad Remote Sesig 9, 5 24. [34] Tjostheim,. (983). Statistical spatial series modellig II: some further results o uilateral processes. Adv. i Appl. Probab. 5, 562 584. [35] Varga, K. (998). Nearly ustable AR models with coefficiet matrices i Jorda ormal form. Computers Math. Appl. 36,. [36] White, J. S. (958). The limitig distributio of the serial correlatio coefficiet i the explosive case. A. Math. Statist. 29, 88 97. [37] Yig, Z. (99). Asymptotic properties of a maximum likelihood estimator with data from a Gaussia process. J. Multivar. Aal. 36, 28 296. [38] Yig, Z. (993). Maximum likelihood of parameters uder spatial samplig scheme. A. Statist. 2, 567 59.