Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x <. Oldjuk meg az alábbi egyenlőtlenségeket a valós számok körében! (a) 5x + 6 x > x 6x + 7x 0 > 0 (d) 6x + 8x > 0 3. Oldjuk meg a következő egyenleteket és egyenlőtlenségeket! (a) x + 3 + x 5 = 0 x + x + > x < x (d) x + 3 + x = 0 4. Bizonyítsuk be teljes indukcióval, hogy (a) + 3 + 5 + + (n + ) = (n + ) ha n N + 3 + 3 4 + + n(n + ) = n ha n N+ n + 5. Hol a hiba? log = log log < 4 log log ( 4 < 6 6 < 4 ) < log ( és < 4 Összeszorozva a két egyenlőtlenséget: A logaritmus azonosságait használva: ) 4 A log x függvény szigorúan monoton nő, tehát: Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 6-al: 6. Balkezes Bendegúz a bal kezével mindig igaz, a jobb kezével mindig hamis állításokat írt. Melyik kezével írta a következő állításokat? (a) Minden 9-cel osztható négyzetszám osztható 3-mal. Minden 8-cal osztható szám osztható -vel és 4-gyel. Minden 8-cal osztható szám osztható -vel vagy 4-gyel. (d) Minden -re végződő négyzetszám páratlan. (e) A 0 páros szám. (f) Van olyan piros krokodil, amelyik éppen most ebben a teremben repked. (g) Minden piros krokodil, amelyik éppen most ebben a teremben repked, 7-nél nagyobb prímszám. 7. : -) "Minden mohikán hazudik", mondta az utolsó mohikán. Igazat mondott?
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Bizonyítsuk be, hogy minden pozitív egész n esetén n > n.. Bizonyítsuk be, hogy van olyan n pozitív egész, amelyre,00 n > 000 3. Bizonyítsuk be, hogy a, b > 0 esetén (a) ab ab a + b a + a 4. Határozzuk meg az x ( x) függvény legnagyobb értékét a [0,] zárt intervallumon. 5. Adjuk meg (a) a P ( ; 3) Descartes koordinátájú pont polárkoordinátáit. az r = 8, ϕ = 4π 3 polárkoordinátájú pont Descartes koordinátáit. 6. Adjuk meg az r = 4, ϕ = π, h = 0 hengerkoordinátájú pont Descartes koordinátáit. 6 7. Adjuk meg az r = 4, ϑ = π 6, ϕ = π 3 gömbi koordinátájú pont Descartes koordinátáit.
Bevezető matematika kémikusoknak., 04. ősz 3. feladatlap. Számítsuk ki az adott vektorok hosszát! Írjuk fel az adott vektorokkal azonos irányba mutató egység hosszúságú vektorokat! (a) a = (, ) b = ( 3,4) c = ( 0,5 3). Végezzük el a kijelölt vektorműveleteket, ha a = (3, ), b = (,): (a) a + b, a + 3b, a b, (d) (a b )(a + b ). 3. Mekkora szöget zár be egymással az u és v vektor, ha u = (0; 5 3), v = ( 0; 5 3)? 4. Számoljuk ki az a b, a b c, (a b ) c kifejezéseket, ha a (0; ; ), b (; ; ), c (; ; 3). 5. Bizonyítsuk be, hogy a paralelogramma átlói felezik egymást. 6. Legyen az ABC háromszögben a C-ből A-ba mutató vektor a, a C-bõl B-be mutató vektor b és legyen c = a b. Az egyenlőség mindkét oldalát skalárisan megszorozva önmagával, bizonyítsuk be a koszinusz-tételt! 7. A(; 3; ), B(; 4; 0), C( 4; ; ) és D( 5; 5; 3) négy pont a térben. Bizonyítsuk be, hogy AC BD! 3
Bevezető matematika kémikusoknak., 04. ősz 4. feladatlap. Írjuk fel annak a síkbeli egyenesnek az egyenletét, amelyik átmegy a r 0 (3,) ponton és (a) párhuzamos a x + 3y = 5 egyenessel. merőleges a x + 3y = 5 egyenesre.. Írjuk fel az egyenesek egyenletrendszerét! (a) P (; ; 3), v (4; 5; 6) P (; ; 3), P ( 4; 5; 6) 3. Írjuk fel annak a síknak az egyenletét, amelyik átmegy a r 0 (,,3) ponton és merőleges az egyenesre. x + = y 3 = z 4. Írjuk fel az x + y + 3z = 6 és a 3x + y + z = 6 síkok metszetének paraméteres vektoregyenletét. 5. Oldjuk meg a következő lineáris egyenletrendszereket! (a) x + y + z = 3 x + 3y z = 3x 4y + 4z = 4 x + y + z = 3 x + 3y z = 3x 4y + 4z = 44 6. A determinánsok tulajdonságait felhasználva számoljuk ki okosan a következő determinánst! 0 8 D = 3 6 5 4 99 7. Adott a térben négy pont, A(,,0), B(,0,), C(0,,) és O(0,0,0). Igaz-e, hogy a négy pont egy síkban van? 4
Bevezető matematika kémikusoknak., 04. ősz 5. feladatlap. Legyen z = 3i, z = 5 + 7i. Számítsuk ki a következő műveletek eredményeit algebrai alakban! (a) z + z 3z z z + z (d) z + z (e) z (f) (g) z z (h) z z z. Adott két komplex szám, u = 4(cos 4π 3 + i sin 4π 3 ) és v = 3(cos π 4 + i sin π ). Számítsuk ki a 4 következő műveletek eredményeit. (a) uv v u v (d) u 3. Számoljuk ki a z = + 3i komplex szám mint síkvektor (a) tükörképét az origóra; háromszorosára nyújtott képét; tükörképét a valós tengelyre; (d) π -tal való elforgatottját! 6 4. Legyen ε 0 =, ε,..., ε n az n-edik egységgyökök, azaz ε n k =, a szögek növekvő sorrendjében. (a) ε 0 + ε + + ε n =? ε 0 + ε + + ε n =? 5. Legyen T az egységkörre vett inverziója a síknak, az a leképezés amelyik az origóban nincs értelmezve, a többi pont helyvektorának megtartja az irányát és a pont és a képpont helyvektorai hosszának a szorzata. Hogyan lehet ezt a leképezést komplex számokkal leírni? 6. Oldjuk meg a z + z + = 0 egyenletet a komplex számok körében. 7. Fejezzük ki a cos 3x és sin 3x kifejezéseket sin x és cos x segítségével. 5
Bevezető matematika kémikusoknak., 04. ősz 6. feladatlap. Határozzuk meg az összetett függvényeket, ha f(x) = x + 5 és g(x) = x 3 (a) f(g(x)) g(f(x)) f(f(x)) (d) g(g(x)). Vannak-e egyenlők a következő függvények között? (a) f (x) = x f (x) = x f 3 (x) = ( x ) (d) f 4 (x) = lg 0 x (e) f 5 (x) = 0 lg x ( ) (f) f 6 (x) = x 3. Az ábrán látható f(x) függvény grafikonja alapján döntsük el, hogy léteznek-e az alábbi határértékek, és ha igen, adjuk meg ezt az értéket! 0 3 (a) lim x f(x) lim x f(x) lim x 3 f(x) 4. Határozzuk meg az alábbi határértékeket a törtek egyszerűsítése után! (a) lim x 5 x 5 x 5 x + 3x 0 lim x 5 x + 5 lim t t + 3t + t t 5. Határozzuk meg a következő függvények határértékeit a -ben és a -ben! (a) x + 3 5x + 7 x 7x + x + + x + x 5 x x 3 6. Határozzuk meg az alábbi függvények (véges illetve végtelen) határértékét a -ben! (a) x 7x + x3 + 3 + 7 x 7x + x4 + + 3 x + + x + + 6
Bevezető matematika kémikusoknak., 04. ősz 7. feladatlap. Hol folytonosak a következő függvények? (a) x 4 x + x3 x x. Milyen c szám megadása esetén lesznek a következő függvények folytonosak a 0-ban? (a) f(x) = { x + ha x 0 mx + c ha x < 0 f(x) = { x 3 + x + ha x > 0 ax + bx + c ha x 0 3. Számítsuk ki a következő határértékeket! ln x (a) lim x x x k lim x e x ln x lim x k x 4. Tegyük fel, hogy az f pozitív függvény folytonos [a, b]-ben. Bizonyítsuk be, hogy van olyan c [a, b], amelyre igaz, hogy (a) f = f(a) + f f = f(a)f 5. Van-e maximuma a következő függvényeknek a [77, 888] intervallumon? (a) 3 x+5 sin x + x [x] sin(x) + cos(3x) (d) {x} 6. Van-e olyan folytonos függvény, amelyikre igaz, hogy (a) D(f) = [0,] és R(f) = (0,) D(f) = [0,] és R(f) = [3,4] [5,6] 7. Számoljuk ki a következő nevezetes határértékeket: (a) lim x 0 sin x x lim x 0 cos x x lim x ln x (d) lim x 0+ x 0+ xx 7
Bevezető matematika kémikusoknak., 04. ősz 8. feladatlap. Hol deriválható és mi a deriváltja a következő függvényeknek: (a) f(x) = sin x x cos x cos x + x sin x f(x) = 4x 3 tg(x + ) 3x 8 3 4 x6 +. Írjuk fel az f(x) = x 3 x + 3x + 4 függvény érintőjének az egyenletét az (; 6) pontban! 3. Bizonyítsuk be, hogy (a) (ln x) = x (arctg x) = + x 4. Határozzuk meg a következő függvények inverzének a deriváltját a megadott helyeken! (a) f(x) = x 5 + x, a = 3x 3 + x, a = 4 5. Számoljuk ki a következő függvények második deriváltját: (a) x 3 + x + x + e sin x ln cos x 6. Milyen intervallumokon növekszik, illetve csökken, hol van lokális szélsőértéke a következő függvényeknek? (a) f(x) = x 3x + 3 f(x) = x 3 8x + 3 f(x) = x 5 x (d) f(x) = x 9 x 7. Határozzuk meg a következő határértékeket: (a) lim x 0 + ln x ctg x lim x x + ln x x + x + lim x e x 8
Bevezető matematika kémikusoknak., 04. ősz 9. feladatlap. Ábrázoljuk a következő függvényeket! (a) y = 9x 6x x 3 y = (x ) 3 + y = (x + ) 3. Az egyenlő szárú derékszögű háromszögbe írható téglalapok közül melyiknek a területe a legnagyobb? Na és melyiknek a kerülete a legnagyobb? Itt beírt téglalapon olyan téglalapot értünk, amelynek két szomszédos csúcsa az átfogón, a többi csúcsa a befogókon van. 3. 8 x 5 dm-es kartonlapból téglalap alakú, nyitott dobozt készítünk úgy, hogy a kartonlap sarkaiból egybevágó négyzeteket vágunk ki, majd felhajtjuk az oldalakat. Milyenek legyenek a doboz méretei, ha azt szeretnénk elérni, hogy a lehető legnagyobb legyen a térfogata? Mekkora lesz a maximális térfogat? 4. Számoljuk ki a következő függvények elsőrendű parciális deriváltjait: (a) f(x, y) = x + xy + y f(x, y, z) = sin(x + y 3 + z 4 ) (e) f(x, y) = x y + y x f(x, y) = e x y (d) f(x, y) = arctg x y (f) f(x, y, z) = x y z 5. Határozzuk meg az alábbi függvények iránymenti deriváltját a P 0 pontban az adott irányban: (a) z = xy P 0 (, ) y + 3x = 0 egyenes irányában. u = 3x + y z P 0 (,,5) v = i + j + k irányában. 6. Számítsuk ki a következő függvények másodrendű parciális deriváltjait: (a) z = x 4 + y 4 4x y u = x sin(y + z) 9
Bevezető matematika kémikusoknak., 04. ősz 0. feladatlap. Számítsuk ki a következő határozatlan integrálokat! (a) xe x dx arctg x dx (d) x sin x dx dx x. Számítsuk ki a következő határozatlan integrálokat! x (a) + dx (sin x + cos x) dx (x + ) 3 dx 3. Határozzuk meg parciális integrálással a következő határozatlan integrálokat! (a) ln x dx x ln x dx x arctg x dx f 4. Határozzuk meg a következő, f vagy x (a) x 3 + dx f a f alakú határozatlan integrálokat! x x + dx 5. Számítsuk ki a következő határozott integrálokat, ha léteznek! ( + x )arctgx dx (a) 0 π sin x dx 4 x + 6x + 3x dx π 0 sin x cos 3 x dx 6. Helyes-e a következő parciális integrálás? Ha igen, akkor 0 =? x ln x dx = ln x ln x ln x x ln x dx = + x ln x dx 0