GEOMETRIA A trigonometria elemei Trigonometrikus egyenletek Trigonometria síkmértani alkalmazásai. 57
|
|
- Virág Szalainé
- 8 évvel ezelőtt
- Látták:
Átírás
1
2 Tartalomjegyzék GEOMETRIA 1 Vektorok 1 11 Irányított szakaszok Vektorok 1 12 Műveletek vektorokkal 3 13 Kollineáris vektorok 8 14 Helyzetvektor Párhuzamosság, összefutás, kollinearitás Skaláris szorzás 18 2 Analitikus geometria 24 3 Trigonometria A trigonometria elemei Trigonometrikus egyenletek Trigonometria síkmértani alkalmazásai 57 MATEMATIKAI ANALÍZIS 1 Valós számok, valós számhalmazok 62 2 Valós számsorozatok Valós sorozatok Műveletek valós sorozatokkal 68
3 23 Egyenlőtlenségek és határértékek Konvergencia, monotonitás, korlátosság Részsorozatok Néhány fontos határérték Határozatlansági esetek feloldása 80 3 Függvényhatárértékek Függvény határértéke Határértékekkel végzett műveletek Határértékek tulajdonságai Fontos határértékek 92 4 Folytonos függvények A folytonosság értelmezése Műveletek folytonos függvényekkel Folytonosság és Darboux tulajdonság Deriválható függvények A derivált értelmezése A derivált mértani jelentése Műveletek deriválható függvényekkel Elemi függvények deriváltjai Összetett függvény deriváltja Magasabb rendű deriváltak 117
4 57 A differenciálszámítás középértéktételei Függvény grafikus képe A határozatlan integrál Primitív függvény A határozatlan integrál Primitiválható függvények A parciális integrálás módszere Első helyettesítési módszer Második helyettesítési módszer Törtfüggvények integrálása A határozott integrál Riemann-integralható függvények Integrálható függvények tulajdonságai A parciális integrálás módszere Első helyettesítési módszer Második helyettesítési módszer Középértéktételek Az integrálszámítás alaptétele A határozott integrál alkalmazásai 194
5 AB AB 1 Vektorok 11 Irányított szakaszok Vektorok Irányított szakaszok rtelmezés Az (A,B) rendezett pontpárt irányított szakasznak nevezzük és így jelöljük: AB rtelmezés Az AB és CD irányított szakaszokat ekvipolenseknek nevezzük (jelölés: AB CD), ha az [AD] és [BC] szakaszok felezőpontjai egybeesnek Megjegyzés HaAB CD, akkor azab szakaszt párhuzamos eltolással acdszakaszra lehet helyezni Tulajdonság Az irányított szakaszok halmazán az ekvipolencia egy ekvivalencia-reláció, azaz (reflexív), ha AB CD, akkor CD AB (szimmetrikus), ha AB CD és CD EF, akkor AB EF (tranzitív) AB és CD pontosan akkor D ekvipolensek, ha ABDC B egy paralelogramma vagy az A,B,C,D pontok kollineárisak és az [AD], [BC] felezőpontja megegyezik A C A C B D 1
6 Vektorok rtelmezés Egy adott irányított szakasszal ekvipolens irányított szakaszok halmazát vektornak nevezzük Jelölés Az AB irányított szakasz által meghatározott vektort AB-vel (vagy egy kisbetűvel) jelöljük: { } AB= CD CD AB Megjegyzés Ha AB CD, akkor AB= CD Az u = AB= CD jelöléssel az AB (vagy a CD) az u egy reprezentánsa rtelmezés Az u hossza (modulusza) az őt reprezentáló irányított szakaszok közös hosszával egyenlő és u -val jelöljük rtelmezés A nulla hosszúságú AA vektort nullvektornak nevezzük rtelmezés Az AB és CD vektorok egyenlőek (jelölés: AB= CD), ha az AB és CD irányított szakaszok ekvipolensek Megjegyzés Két vektor akkor egyenlő, ha irányuk megegyezik (tartóegyeneseik párhuzamosak), hosszuk egyenlő és ugyanaz az irányításuk Tétel (Adott kezdőpontú reprezentáns létezése) Ha adott az u vektor és egy tetszőleges M pont, akkor létezik egyetlen olyan M pont, amelyre u = MM Következmény Az egyértelműség alapján, ha MA= MB, akkor A=B 2
7 Az irányított szakaszok halmaza u = C D G H A B v = F A mellékelt ábrán u = AB= CD=, v = EF = = GH=, CD az u egy reprezentánsa, EF a v egy reprezentánsa, AB= CD 12 Műveletek vektorokkal Vektorok összeadása Az u és v vektorok összegét a következőképpen szerkesztjük meg (Háromszög-szabály): egy tetszőleges M pontból kiindulva megszerkesztjük az E MN= u majd az NP = v vektorokat Ekkor az u és v összege az u+ v= MP vektor (Paralelogramma-szabály): ha u és v nem kollineárisak, egy tetszőleges M pontból kiindulva megszerkesztjük az MN= u és az MP = v vektorokat, majd az MNQP paralelogrammát Ekkor az u és v összege az u+ v= MQ vektor 3
8 v u N v u u+ v P M Háromszög-szabály N Q u M v P Paralelogrammaszabály u+ v A vektorok összeadásának tulajdonságai rtelmezés Az AB vektor ellentétes vektora a AB= BA vektor Tulajdonság A vektorok összeadásának tulajdonságai ( a, b, c tetszőleges vektorok): asszociatív: ( a+ b)+ c= a+( b+ c); kommutatív: a+ ( b= b+ a; a nullvektor 0) az összeadás semleges eleme: a+ 0= 0+ a= a; minden a vektornak van ellentettje ( a): a+( a)=( a)+ a= 0 Feladat Bizonyítsuk be, hogy az ABCD paralelogramma síkjának bármely M pontja esetén MA+ MC= MB+ MD M Az ABCD paralelogrammában AB= DC= CD és AD= BC= CB B C MA+ MC= M =( MB+ BA)+ A D +( MD+ DC)= 4
9 = MB+ MD+ BA+ DC= MB+ MD Vektorok kivonása Az u és v vektorok különbségén az u v= u+ ( v) vektort értjük és a következőképpen szerkesztjük meg: egy tetszőleges M pontból kiindulva felvesszük az MN= u és MP = v vektorokat Ekkor u v= P N v N Tetszőleges M,N,P pontok esetén u u MN MP = M v P MN+ P M= P N u v Feladat Az ABC háromszögben az AB+ AC és AB AC vektorok modulusza egyenlő Bizonyítsuk be, hogy az ABC háromszög derékszögű! M Az AB+ AC megszerkesztése érdekében megrajzoljuk az ABDC paralelogram-mát: AB+ AC= AD, így AB+ AC = AD =AD A C AB AC= AB+ CA= CA+ AB= CB, így AB CA = CB = CB B D AB+ AC = AB AC AD=BC, vagyis az ABCD paralelogramma egy téglalap Tehát m( BAC)=90 5
10 Vektor szorzása valós számmal Legyen u egy vektor és α egy valós szám rtelmezés Az u 0 vektornak az α R számmal való szorzatán azt a α u-val jelölt vektort értjük, amely azonos állású u-val; ha α>0, akkor azonos irányú, ha α<0, akkor ellentétes irányú u-val; hossza α u -val egyenlő Ha u= 0 vagy α=0, akkor α u= 0 Vektorok és valós számok szorzásának tulajdonságai Tulajdonság Tetszőleges u, v vektorok és α,β valós számok esetén (α+β) u=α u+β u; α( u+ v)=α u+α v; α(β u)=(αβ) u; 1 u= u; ( α) u=α( u)= (α u) Feladat Legyen M a [BC] felezőpontja és A egy tetszőleges pont a síkban Igazoljuk, hogy AM= 1 ( AB+ AC ) 2 M A háromszög-szabály { alapján AM= AB+ BM AM= AC+ CM 2 AM= 6
11 = AB+ AC+ BM+ CM = AB+ AC, }{{} ahonnan AM= 1 2 = 0 ( AB+ AC ) Feladat Az E, F, G, H pontok az ABCD négyszög [BC], [DA], [AB] illetve [CD] oldalainak a felezőpontjai Bizonyítsuk be, hogy EF + HG= CA M G az [AB] felezőpontja, így 1 AG= GB= AB 2 1 Hasonlóan, BE= EC= BC, 2 CH= HD= 1 1 CD, DF = F A= DA 2 2 D F EF + HG= A =( EC+ CD+ DF )+ H G ( HD+ DA+ AG)= =( CD+ DA)+( EC+ B E C HD+ DF + AG)= = 1 CA+ BC+ 1 CD+ 1 DA+ 1 AB= = 1 ( CA+ BC+ CD+ DA+ AB )= 2 = 1 CA+ 0= CA 2 7
12 3 Trigonometria 31 A trigonometria elemei Szög-mértékegységek rtelmezés Egy kör félkerületének és sugarának aránya állandó és π 3,1415-tel egyenlő rtelmezés A kör sugarával megegyező hosszúságú körívhez tartozó középponti szög mértéke 1 radián Megjegyzés Egy szögnek fokban illetve radiánban α való mértéke közt fennáll az = 180 összefüggés, ahol α a szög fokban kifejezett, xr a szög radi- xr π ánban kifejezett mértéke II P 2π/3 P 5π/6 P π/2 I P π/3 P π/6 Pπ P 7π/6 A O P 0 P 11π/6 P 4π/3 III P 3π/2 P 5π/3 IV 37
13 A trigonometrikus kör rtelmezés Adott egy xoy derékszögű koordinátarendszer Az O középpontú, egységsugarú kört, amelyen kijelöltünk egy pozitív körbejárási irányt (az óramutató járásával ellentétes irányt), trigonometrikus körnek nevezzük Jelölés Legyen t R egy szám Ekkor egyetlen olyan P t -vel jelölt pont van a trigonometriai körön, amely m(âop t )=t Szinusz és koszinusz Legyen t egy valós szám és P t a hozzátartozó pont a körön rtelmezés A P t pont ordinátáját a t valós szám szinuszának nevezzük és így jelöljük: sint rtelmezés A P t pont abszcisszáját a t valós szám koszinuszának nevezzük és így jelöljük: cost P t sint t O cost A ctgt T P t T tgt t O A 38
14 Tangens és kotangens rtelmezés Az x=1 egyenletű függőleges egyenest tangens-tengelynek, az y=1 egyenletű vízszintes egyenest pedig kotangens-tengelynek { nevezzük π } rtelmezés Ha t R\ +kπ k Z, P t a 2 t-nek megfelelő pont és T az OP t egyenes és a tangens-tengely metszéspontja, akkor T ordinátáját t tangensének nevezzük és így jelöljük: tgt rtelmezés Ha t R\{kπ k Z}, P t a t- nek megfelelő pont és T az OP t egyenes és a kotangens-tengely metszéspontja, akkor T abszcisszáját t kotangensének nevezzük és így jelöljük: ctgt Fontosabb értékek π π π π x sinx cosx tgx ctgx
15 Fontosabb értékek 2π 3π 5π x π sinx cosx tgx ctgx Visszavezetés az első negyedbe x C 2 x C 3 sinx=sin(π x) sinx= sin(x π) cosx= cos(π x) cosx= cos(x π) tgx= tg(π x) tgx=tg(x π) ctgx= ctg(π x) ctgx=ctg(x π) x C 4 sinx= sin(2π x) cosx=cos(2π x) tgx= tg(2π x) ctgx= ctg(2π x) 40
16 1 Valós számok, valós számhalmazok rtelmezés Az A R halmaz véges, ha létezik egy n természetes szám és egy f:a {1,2,,n} bijektív függvény rtelmezés Az A R hamaz alulról korlátos, ha létezik olyan m R, amelyre m x, x A Az m az A egy alsó korlátja rtelmezés Az A R hamaz felülről korlátos, ha létezik olyan M R, amelyre M x, x A Az M az A egy felső korlátja rtelmezés Ha A alulról korlátos, akkor A alsó korlátai között van egy legnagyobb, melyet az A alsó határának vagy infimumának nevezünk és h=infaval jelölünk Tétel Legyen A R Egyenértékű a következő két állítás: 1 h R az A alsó határa; 2 a h, a A és ε>0, aε A, amelyre aε<h+ε rtelmezés Ha A felülről korlátos, akkor A felső korlátai között van egy legkisebb, melyet az A felső határának vagy szuprémumának nevezünk és H=supA-val jelölünk Tétel Legyen A R Egyenértékű a következő két állítás: 1 H R az A felső határa; 2 a H, a A és ε>0, aε A, amelyre aε>h ε 62
17 Az R halmaz lezártja rtelmezés Ha az A halmaz alulról (felülről) nem korlátos, akkor azt mondjuk, hogy A alsó (felső) határa (+ ) Az R=R {,+ } halmazt az R lezártjának nevezzük Tulajdonság Az R halmazon végzett műveletek tulajdonságai: x+(+ )=(+ )+x= =(+ )+(+ )=+, x R; x (+ )= (+ )+x= x+( )=( )+( )=, x R; { x (+ )=(+ ) x= +, ha x>0, ha x<0 ; x = x =0, x R; + =( ) ( )=, ( )= Valós szám környezete rtelmezés Az x 0 valós szám egy környezete egy olyan halmaz, amely tartalmaz egy olyan nyílt intervallumot, amelynek eleme x 0 Egy ilyen halmazt V (x 0 )-val jelölünk: V (x 0 ) környezete x 0 -nak ε>0 úgy, hogy (x 0 ε,x 0 +ε) V (x 0 ) 63
18 Valós szám környezete - folytatás Tulajdonság Az x 0 valós szám környezeteinek tulajdonságai: az x 0 minden környezete tartalmazza x 0 -t; ha V az x 0 egy környezete és V U, akkor az U is egy környezete az x 0 -nak; az x 0 két környezetének metszete szintén környezete x 0 -nak; az x 0 egy tetszőleges V környezete esetén létezik az x 0 olyan U környezete úgy, hogy V az U minden pontjának is környezete Tétel Ha x y, akkor léteznek a Vx és Vy halmazok, Vx környezete x-nek, Vy környezete y-nak úgy, hogy Vx Vy = Torlódási pont, izolált pont Legyen A R egy halmaz rtelmezés Az x 0 R pontot az A halmaz torlódási pontjának nevezzük, ha az x 0 tetszőleges környezete az A halmaz végtelen sok elemét tartalmazza Az A halmaz torlódási pontjainak halmazát A -tel jelöljük rtelmezés Ha x 0 A és x 0 nem torlódási pontja A-nak, akkor x 0 az A egy izolált pontja Példa Ha A véges, akkor A-nak nincs torlódási pontja, A minden pontja izolált pont Az A=(a,b) intervallum torlódási pontjainak halmaza A =[a,b] 64
19 4 Folytonos függvények 41 A folytonosság értelmezése rtelmezés Az f:d R függvény folytonos az x 0 D pontban, ha az f(x 0 ) bármely V (f(x 0 )) környezetének megfelel az x 0 olyan U(x 0 ) környezete, amelyre bármely x D V (x 0 ) esetén f(x) V (f(x 0 )) Tétel Az f:d R függvény akkor és csakis akkor folytonos az x 0 D pontban, ha x 0 a D izolált pontja vagy lim f(x)=f(x x x 0 ) 0 Tétel (Heine-féle kritérium) Az f:d R függvény akkor és csakis akkor folytonos az x 0 D pontban, ha tetszőleges (xn), xn D, lim n xn=x 0 sorozat esetén lim n f(xn)=f(x 0 ) Tétel Az f:d R függvény akkor és csakis akkor folytonos az x 0 D pontban, ha ε>0, δ(ε)>0 úgy, hogy x D, x x 0 <δ(ε) esetén f(x) f(x 0 ) <ε rtelmezés Az f:d R függvény folytonos a D halmazon, ha f folytonos a D minden pontjában Tétel Az elemi függvények folytonosak az értelmezési tartományuk nyílt intervallumain 96
20 Feladat Igazojuk, hogy az f:r R, { f(x)= x 2 2x, ha x Q függvény x 2, ha x R\Q nem folytonos az x 0 =3 pontban! M Tekintsünk egy racionális elemekből álló (an) sorozatot, amelyre an x 0 és egy irracionális elemekből álló (bn) sorozatot, amelyre bn x 0 Ekkor lim n f(an)= n lim a2 n 2an= =3 lim n f(bn)= n lim bn 2= 3 2=1 A Heine-féle kritérium alapján f nem folytonos x 0 =3-ban Jobb és bal oldali folytonosság rtelmezés Az f:d R függvény balról folytonos az x 0 D pontban, ha x 0 a D izolált pontja vagy lim x x 0 x<x 0 f(x)=f(x 0 ) rtelmezés Az f:d R függvény jobbról folytonos az x 0 D pontban, ha x 0 a D izolált pontja vagy lim f(x)=f(x x x 0 ) 0 x>x 0 97
21 Szakadási pontok rtelmezés Ha az f:d R függvény az x 0 D pontban nem folytonos, akkor f szakadásos az x 0 pontban és x 0 szakadási pont rtelmezés Ha lim f(x)=l R, de x x 0 l f(x 0 ), akkor x 0 megszüntethető szakadási pont rtelmezés Ha lim f(x)=l x x b R, 0 x<x 0 lim f(x)=l x x j R, de l b l j, akkor 0 x>x 0 x 0 elsőfajú szakadási pont rtelmezés Minden más szakadási pont másodfajú szakadási pont Példa f:r R, 2x 1, ha x<1 0, ha x=1 x 2, ha x (1,2) f(x)= x+1, ha x [2,3] 1, ha x (3, ) x 3 f folyt (,1) (1,2) (2,3) (3, )-n lim f(x)= lim f(x)=1, f(1)=0 x 1 x 1 x 0 =1 megszüntethető szakadási pont lim f(x)=4, lim x 2 x 2 f(x)=3 x 1 =2 elsőfajú szakadási pont lim f(x)=4, lim x 3 x 3 f(x)=+ 98
22 x 2 =3 másodfajú szakadási pont Feladat Tanulmányozzuk az f:r R, sinx, ha x<0 f(x)= x függvény 1, ha x=0 x 2 2x+2, ha x>0 folytonosságát az x 0 =0 pontban M Megvizsgáljuk, hogy teljesül-e a lim f(x)= x x 0 =lim x x0 f(x)=f(x 0 ) egyenlőségsor sinx lim f(x)= lim =1 x x 0 x 0 x lim f(x)= lim x x 0 x 0 x2 2x+2=1 f(x 0 )=f(0)=1 l b (x 0 )=l j (x 0 )=f(x 0 ) f folyt x 0 -ban Feladat Határozzuk meg az a R paraméter értékét úgy, hogy { f folytonos legyen R-n, ahol f:r R, ax f(x)= 2 +x+a+1, ha x<1 x 2 +ax 2, ha x 1 M Az f folytonos a (,1) és (1, ) intervallumokon (az elemi függvények folytonosak), tehát csak x 0 =1-ben kell vizsgálni a folytonosságot lim f(x)= lim x x 0 x 1 ax2 +x+a+1=2a+2 lim f(x)= lim x x 0 x 1 x2 +ax 2=a 1 f(x 0 )=f(1)=a 1 2a+2=a 1 a= 3 99
5. Deriválható függvények A derivált értelmezése A derivált mértani jelentése Műveletek deriválható függvényekkel...
Tartalomjegyzék GEOMETRIA 1 Vektorok 1 11 Irányított szakaszok Vektorok 1 1 Műveletek vektorokkal 3 13 Kollineáris vektorok 6 14 Helyzetvektor 8 15 Párhuzamosság, összefutás, kollinearitás 10 16 Skaláris
Tartalomjegyzék GEOMETRIA MATEMATIKAI ANALÍZIS
Tartalomjegyzék GEOMETRI 1 Vektorok 1 11 Irányított szakaszok Vektorok 1 1 Műveletek vektorokkal 1 Kollineáris vektorok 5 14 Helyzetvektor 6 15 Párhuzamosság, összefutás, kollinearitás 7 16 Skaláris szorzás
Vektoralgebra feladatlap 2018 január 20.
1. Adott az ABCD tetraéder, határozzuk meg: a) AB + BD + DC b) AD + CB + DC c) AB + BC + DA + CD Vektoralgebra feladatlap 018 január 0.. Adott az ABCD tetraéder. Igazoljuk, hogy AD + BC = BD + AC, majd
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1
Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Valós függvények tulajdonságai és határérték-számítása
EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
A valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
MATEK-INFO UBB verseny április 6.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATEK-INFO UBB verseny 219. április 6. Írásbeli próba matematikából FONTOS MEGJEGYZÉS: 1) Az A. részben megjelenő feleletválasztós
f(x) a (x x 0 )-t használjuk.
5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek... 8 3.1. Elsőfokú egyenletek... 8 3.2. Valós szám abszolút értéke...
Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 5 2.1. A függvény
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
A gyakorlatok anyaga
A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így
Függvény határérték összefoglalás
Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis
9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;
Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
2014. november 5-7. Dr. Vincze Szilvia
24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Analízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz
Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén
Matematika I. NÉV:... FELADATOK:
24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n
Alkalmazott matematika és módszerei I Tantárgy kódja
Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve
Analízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.
Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek
A Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az
13. Trigonometria II.
Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája
Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév
Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky
Függvények határértéke és folytonossága
Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc
2018/2019. Matematika 10.K
Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül
Exponenciális és logaritmusos kifejezések, egyenletek
Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok I.
Vektorok I. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított (kezdő és végponttal rendelkező) szakaszoknak a halmazát vektornak nevezzük. Jele: v ; v; AB (ahol A a vektor kezdőpontja,
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
Egyváltozós függvények 1.
Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata
5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11
Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4
Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.
1. Archimedesz tétele. Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. Legyen y > 0, nx > y akkor és csak akkor ha n > b/a. Ekkor elég megmutatni, hogy létezik minden
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
First Prev Next Last Go Back Full Screen Close Quit
Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.
Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész
FELVÉTELI VIZSGA, július 17.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 2017. július 17. Írásbeli vizsga MATEMATIKÁBÓL I. TÉTEL (30 pont) 1) (10 pont) Igazoljuk, hogy tetszőleges m R esetén
5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 2. Függvények... 8 12 3. Elsőfokú egyenletek és egyenlőtlenségek... 13 16
Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 1.1. Gyökök és hatványozás... 1 3 1.1.1. Hatványozás...1 1.1.2. Gyökök... 1 3 1.2. Azonosságok... 3 4 1.3. Egyenlőtlenségek... 5 8 2. Függvények... 8
NULLADIK MATEMATIKA ZÁRTHELYI
NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.
Függvények csoportosítása, függvénytranszformációk
Függvények csoportosítása, függvénytranszformációk 4. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények csoportosítása p. 1/2 Függvények nevezetes osztályai Algebrai függvények
Többváltozós függvények Feladatok
Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk
12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?
Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!
ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC.
ANALITIKUS MÉRTAN INFORMATIKA CSOPORT I. VEKTORALGEBRA 1. Feladatlap Műveletek vektorokkal 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AB + BD + DC; b) AD + CB + DC; c) AB + BC
λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0
Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
IV. RADÓ FERENC EMLÉKVERSENY. Kolozsvár, június 3. V. osztály
Kolozsvár, 000. június 3. V. osztály. Határozd meg az 999 99...9 szorzás eredményében a számjegyek összegét! 999 db 9 es. Egy kerek asztal köré 6 széket helyeztünk el. Számozd meg a székeket a 0,,, 3,
egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.
Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,
Metrikus terek, többváltozós függvények
Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész
Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2
Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Függvények határértéke és folytonosság
Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,
Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin
1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!
. Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x
1. A Hilbert féle axiómarendszer
{Euklideszi geometria} 1. A Hilbert féle axiómarendszer Az axiómarendszer alapfogalmai: pont, egyenes, sík, illeszkedés (pont egyenesre, pont síkra, egyenes síkra), közte van reláció, egybevágóság (szögeké,
2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?
= komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve
2010. október 12. Dr. Vincze Szilvia
2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének
HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
Matematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály II. rész: Trigonometria Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék II. rész: Trigonometria...........................
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
2014. november Dr. Vincze Szilvia
24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata
4. Vektorok. I. Feladatok. vektor, ha a b, c vektorok által bezárt szög 60? 1. Milyen hosszú a v = a+
4 Vektorok I Feladatok Milyen hosszú a v a b c vektor, ha a b, c vektorok által bezárt szög 60? c b, a, b, c és az a és Mit állíthatunk az BCD konvex négyszögről, ha B D B BC CB CD DC D 0? Igaz-e, hogy
A matematika írásbeli vizsga tematikája
A matematika írásbeli vizsga tematikája Megjegyzés. A tematika megegyezik az aktuális érettségi programjával (a X. osztályos gazdasági matematika tartalmának kivételével) IX. OSZTÁLY Halmazok és a matematikai
Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.
1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Programtervező informatikus I. évfolyam Analízis 1
Programtervező informatikus I. évfolyam Analízis 1 2012-2013. tanév, 2. félév Tételek, definíciók (az alábbi anyag csupán az előadásokon készített jegyzetek mellékletéül szolgál) 1. Mit jelent az asszociativitás
8. feladatsor: Többváltozós függvények határértéke (megoldás)
Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 07/8 ősz 8. feladatsor: Többváltozós függvények határértéke (megoldás). Számoljuk ki a következő határértékeket: y + 3 a) y
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
Gyakorló feladatok I.
Gyakorló feladatok I. (Függvények határértéke és folytonossága) Analízis 2. (A,B, C szakirány, keresztfélév) Programtervező informatikus szak 2013-2014. tanév tavaszi félév Összeállította: Szili László
Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,
25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit
Intergrált Intenzív Matematika Érettségi
. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.
Elsőfokú egyenletek...
1. Hozza egyszerűbb alakra a következő kifejezést: 1967. N 1. Elsőfokú egyenletek... I. sorozat ( 1 a 1 + 1 ) ( 1 : a+1 a 1 1 ). a+1 2. Oldja meg a következő egyenletet: 1981. G 1. 3x 1 2x 6 + 5 2 = 3x+1
Gyakorló feladatok az II. konzultáció anyagához
Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n
First Prev Next Last Go Back Full Screen Close Quit
Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy
Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
NULLADIK MATEMATIKA ZÁRTHELYI
A NULLADIK MATEMATIKA ZÁRTHELYI 0-09-09 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.
5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14.
Tartalomjegyzék 1 A matematikai logika elemei 1 11 Az ítéletkalkulus elemei 1 12 A predikátum-kalkulus elemei 7 13 Halmazok 10 14 A matematikai indukció elve 14 2 Valós számok 19 21 Valós számhalmazok
Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda
Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett