ADATREDUKCIÓ I. Középértékek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ADATREDUKCIÓ I. Középértékek"

Átírás

1 ADATREDUKCIÓ I. Középértékek

2 Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz x mn középérték x max b) Helyzet középérték: tpkus értékek legyenek (gyakran forduljonak elő). c) Legyenek könnyen meghatározhatók. d) Legyenek egyértelműen defnálva.

3 Középértékek Számított középértékek Helyzet középértékek Artmetka Harmonkus Módusz Medán átlag: X átlag: Xh Mo Me Geometra átlag: Xg Kvadratkus átlag: Xq

4 Számított középértékek Matematka összefüggés alapján számíthatók k: Számtan (Artmetka) átlag Egyszerű Súlyozott Harmonkus átlag Egyszerű Súlyozott Mértan (Geometra) átlag Egyszerű Súlyozott Négyzetes (Kvadratkus) átlag Egyszerű Súlyozott n n n f f x a n x a x x 1 1 _ 1 _ n n n x f f h x n h x x 1 1 _ 1 _ 1 n f f n n n x g x g x x 1 1 _ 1 _ n n n f f x q n x q x x _ 1 2 _

5 Artmetka átlag Az a szám, amelyet az átlagolandó értékek helyébe téve azok összege nem változk:

6 Mértan átlag Az a szám, amelyet az átlagolandó értékek helyébe téve azok szorzata nem változk:

7 Harmonkus átlag Az a szám, amelyet az átlagolandó értékek helyébe téve azok recprokanak összege nem változk:

8 Kvadratkus átlag Az a szám, amelynek négyzetével helyettesítve az átlagolandó értékek négyzetet, azok összege nem változk:

9 Adatokat nagyságszernt rendezzük. Helyzet mutatók Meghatározzuk a küszöb értéket és felosztjuk a tartományt a kívánt részre. Kvantlsek: az összes előforduló érték j/k (j=1,2,,k-1) része ksebb és 1-j/k része nagyobb. Pl. k=2: Medán (Me) k=3: tercls k=4: Qvartls (Q1, Q2=Me, Q3) k=5: kvntls k=10: decls k=100: percentls

10 Outler

11 Robusztus becslések (Truncated means)

12 Egyéb átlagok Interquartle mean (IQM) vagy mdmean: Nem érzékeny az outler értékekre:

13 Vegyük a következő példát: 5, 8, 4, 38, 8, 6, 9, 7, 7, 3, 1, 6 Rendezzük az adatokat: 1, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 38 Vegyük a quartls határokat: elhagyjuk az alsó felső 3-3 számot: 1, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 38 Határozzuk meg az így kapott számok átlagát: x IQM = ( ) / 6 = 6.5 Határozzuk meg az eredet vagys a teljes adatok átlagát: ( ) / 12 = 8.5 Látható az outler erős befolyásoló hatása (outler=38).

14 Szmmetrkus eloszlás esetén IQM egyenlő az átlaggal: Legyen: 1, 2, 3, 4, 5 értékek Átlag=x mean = 3 Mvel szmmetrkus az eloszlás: x IQM = 3 szntén.

15 Ha az ntervallum nem osztható 4-el Megoldás: súlyozott átlaga a Q1 és Q3- adatállománynak Legyen: 1, 3, 5, 7, 9, 11, 13, 15, 17 9/4 = 2.25 adat mndegyk negyedben, és 4.5 adat az nterquartls range-ben. Csonkítsuk a tört quartls méretet, és távolítsuk el az így kapott adatszámot az 1. és 4. quartlsből (2.25 adat van mndegyk quartlsben, így a legalacsonyabb 2 és legmagasabb 2 adat lesz eltávolítva).

16 Ha az ntervallum nem osztható 4-el (folyt.) 1, 3, (5), 7, 9, 11, (13), 15, 17 Van 3 teljes adatunk és 2 tört adatunk az nterquartls range-ben. Mvel 4.5 megfgyelésünk van az nterquartls range-ben, a súlyok: = 4.5 megfgyelés. x IQM = {( ) (5 + 13)} / 4.5 = 9 Átlag: x mean = 9. IQM esetén a súlyszámok: 0, 0.25, 0.50, 0.75.

17 Trmean vagy Tukey's trmean Kombnálja a medán és a mdhnge előnyet tekntettel az extrém értékekre:

18 Összefoglalás - Középértékek Az egyes adatfajtáknál mlyen középértékeket alkalmazunk? Átlag Medán Kvanttatív Ordnáls Módusz Nomnáls

19 ADATREDUKCIÓ II. Szóródás és mérése

20 A szóródás terjedelme A terjedelem az előforduló elemek között a legnagyobb és legksebb érték különbsége. (T=)R=x max -x mn Interkvartls range: IQR=Q 3 -Q 1 A mutatószámok kfejezk, hogy mekkora értékközben ngadoznak az smérvértékek. Gyakorlatban kevéssé használatos, mert csupán a két szélső értékre támaszkodk.

21 Boxplot és nterquartls range (N(0,σ 2 ) populácó)

22 Box-and-whsker plot négy + nagyon távol extrém értékkel: defnálva Q (IQR) and Q3 + 3(IQR) alapján

23 Mdhnge range: IQR=(Q 3 -Q 1 )/2 John Tukey: mdhnge-t egyszerűbb számítan. Md-range vagy md-extreme:

24 Mérőszámok Terjedelem : T=R= Interkvartls félterjedelem:iqr= Átlagos abszolút eltérés Szórás Szórásnégyzet (Varanca) Relatív szórás (Varácós koeffcens) 3 Q 1 Q n n n f f d x d n d x 1 1 _ 1 max x mn x n n n f f d x d n d x _ 1 2 *100 _ x V

25 Átlag szórása (Standard error, SEM) A mntaválasztás jóságát mutatja: a 0 közel érték a jó érték, mert ekkor helyes a mntaválasztás (dmenzós érték!): sx s N

26 Relatív szórás (varácós együttható, V) Az adatok szórását osztjuk az átlaggal, majd szorozzuk 100%-al Kcs: a szórás, ha V<15%, Közepes: ha 15%<V<25%, Nagy: ha 25%<V<35%, Extrém (szélsőséges): ha V>35%

27 L-estmator vagy L-statstc Egyszerű, nterpretálható, gyakran a robusztus statsztkákban alkalmazzuk. Az extrém értékeknek ellenáll.

28 Egyszerű L-estmators vzualzácója box plot dgrammal: range, mdrange, nterquartle range, mdhnge, trmean

29 Hányzó értékek kezelése (Mssng values)

30 Hányzóérték 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,0,3,4,5, x x x

31 Hányzó érték: nem regsztrált adat. Hatása: erőteljesen befolyásolhatják az elemzés eredményet. - Ha nem vesszük fgyelembe a hányzó adatokat vagy feltételezzük, hogy a hányzó értékek kzárása elegendő, akkor érvénytelen és megbízhatatlan eredményeket kaphatunk. - Az adatelőkészítés fázsban kell gondoskodn arról, hogy az adatelemzés során olyan adatokat használjunk, amelyek fgyelembe veszk a hányzó értékeket. Többváltozós módszereknél esetszám kesést jelent.

32 Hányzó értékek jelölése 0 kód esetén a teendő kód használata: Szoftver felé való közlés Hányzó értékek kezelése: - üresen hagyjuk, - átlagot tesszük be: a helyettesítés rombolja a változók eloszlásfüggvényét, konfdenca-ntervallumát, megnövel az eloszlások csúcsosságát, a változók között lneárs kapcsolatokat s megváltoztatja, a korrelácós együttható közelebb kerül a 0-hoz.

33 Az egyszerű regresszós eljárásban két vagy több változó között predkcós modell alapján egészítünk k egy hányzó adatot. Ez az eljárás az ellenkező rányba torzítja a változók között korrelácót: növel annak értékét.

34 Az 1980-as évektől kezdődően elterjedtek a maxmum lkelhood alapú EM (Expectaton-Maxmzaton) algortmuson alapuló helyettesítés technkák. Majd az 1990-es évektől az ún. multple mputaton (MI) Bayes- alapú procedúrák. Mvel a kegészített adatokkal végzett statsztka analízsek révén megbízható és eredményes következtetéseket kell levonnunk a populácóra, lletve az adott mntára nézve, meg kell őrznünk a megfgyelt változók eloszlását és asszocácót.

35 A hányzó adatank becslésénél ksmértékű hbára számítunk, mközben kezeln kívánjuk az adatok bzonytalanságát. A hányzó adatokra vonatkozó becslésekkel kegészített változók konfdenca ntervalluma 95%-ban kell, hogy fedje a valós értékeket. Ha a lefedettség pontos, akkor az I. fajú hba előfordulás valószínűsége s helyes: 5%. Emellett a konfdenca ntervallumokat kellően szűknek várjuk, mert ezzel a II. fajú hbák lehetősége csökkennek.

36 Az MCAR (mssng completely at random) esetében a hányok valószínűsége egyáltalán nem függ össze az adatankkal, lyenkor a nemválaszolók olyanok, mnt egy random alcsoport. Rtka esetben gaz. A MAR (mssng at random) modelleknél a hányok valószínűsége csak a megfgyelt egyéb adatoktól függ, de nem a helyettesítendő hányzótól. Ez a standard feltételezés. Kevésbé megoldható probléma az MNAR (mssng not at random) helyzet, amkor a hányzó adat előfordulása pont a hányzó adat mnőségével vagy jelentésével függ össze. A maxmum-lkelhood módszerek elvárása a MAR helyzet, míg a multple mputaton technkák többnyre már az MNAR problémákat s jól kezelk.

37 MI (multple mputaton) Az MI célja, hogy a helyettesítésekkel együtt megtartsuk a változók eloszlását és a változók között asszocácókat. Szmulácón és legtöbbször Bayes- alapokon álló technka, ahol a megfgyelt adatokból m>1 verzóban modelleznek lehetséges adatokat a hányzók helyére, majd a végén egy algortmus szernt kombnálják az eredményeket (a becsléseket és a szórásokat).

38 MI Általános szabályként olyan változók esetében használhatjuk az mputálást, ahol változónként maxmum az adatok 30 40%-a hányzk, de a teljes adatbázsban nncs több hányzó, mnt a teljes mátrx 10 15%-a. Ezek az arányok a szakrodalom szernt egyáltalán nem adnak okot aggodalomra a helyettesítés metódusát lletően.

39 Az SPSS Mssng Values moduljában hat dagnosztka rport bármelykével több különböző szempontból vzsgálhatjuk adatankat és rátalálhatunk a hányzó adat mntákra. Ezután értékelhetjük a kapott statsztkákat és megbecsülhetjük a hányzó értékeket regresszós vagy az elvárt eredményt maxmalzáló (Expectaton Maxmalzaton, EM) algortmusok révén. Az SPSS Mssng Values segítségével: Megállapíthatjuk a hányzó értékekből adódó probléma súlyosságát. A hányzó értékeket helyettesíthetjük becslésekkel, például regresszó vagy EM algortmus segítségével.

40 Legtöbb esetben MCMC (Markov chan Monte Carlo) modellt fog alkalmazn a program, ahol az egyes változók értékenél a több modellváltozó predkcót fogja felhasználn bzonyos terácós szám mellett. Összefoglalás: azokban a kutatásokban, amelyekben korrelácóalapú számításokat végeznek a kutatók, bztonsággal alkalmazható az adat-mputálás. Kutatásokban azonban törekedn kell a mnél teljesebb adatbázs létrehozására, eredményenket ekkor fogadhatjuk el mnden fajta szkepszs nélkül.

41 Aszmmetra mérőszáma

42 Az aszmmetra mérőszáma Az eloszlások következő típusaval foglalkozunk: -egymóduszú eloszlás szmmetrkus, aszmmetrkus (vagy ferde); -többmóduszú eloszlás.

43 Az eloszlás alakjának jellemzése Ferdeség (skewness, normáls eloszlás=0 körül érték) Csúcsosság (kurtoss, normáls eloszlás=0 körül érték)

44 Ferdeség mérése Ferdeség =FERDESÉG() SKEW() A ferdeség az eloszlás középérték körül aszmmetrájának mértékét jelz. A poztív ferdeség a poztív értékek rányába nyúló aszmmetrkus eloszlást jelez, míg a negatív ferdeség a negatív értékek rányában torzított. =CSÚCSOSSÁG() KURT() Egy adathalmaz csúcsosságát számítja k. A függvény a normáls eloszláshoz vszonyítva egy eloszlás csúcsosságát vagy laposságát adja meg. A poztív értékek vszonylag csúcsos, a negatív értékek vszonylag lapos eloszlást jelentenek. n x ( n 1)( n 2) s _ x 2 3( n 1) Csúcsosság ( n 1)( n 2) 3

45 POSITIVELY SKEWED

46 NEGATIVELY SKEWED

47 BI-MODAL

48 Asszmmetra mérése

49 Az aszmmetra mérőszáma Többmóduszú gyakorság sorok általában heterogén sokaságokból származtathatók. A fősokaságot a heterogentást elődéző smérv szernt csoportosítva egy egymóduszú gyakorság sorokhoz jutunk, ezért ezeket összetett gyakorság soroknak s nevezzük. Az egymóduszú gyakorság sorok polgonjának egy hely maxmuma (csúcsa) van. A helyzetmutatók elhelyezkedésétől függően az eloszlás szmmetrkus és aszmmetrkus lehet.

50 Asszmetra mérőszáma Az aszmmetra leggyakrabban használt mérőszáma a Pearson-féle mutatószám és az F mutató. A két mutatószám eltérő jellemzőkből kndulva mér az aszmmetra mértékét és rányát.

51 Pearson-féle mutatószáma Az aszmmetra Pearson-féle mutatószáma (jele: A) a számtan átlag és a módusz egyes eloszlástípusok esetén jellemző nagyságrend vszonyán alapul. A mérőszám (önmagában a számláló) előjele az aszmmetra rányát mutatja. Bal oldal, jobbra elnyúló aszmmetra esetén A 0, jobb oldal, balra elnyúló aszmmetra esetén A 0. Szmmetrkus eloszlás esetén A = 0. A mérőszám abszolút értékének nncs határozott felső korlátja, azonban már 1-nél nagyobb abszolút érték a gyakorlatban rtkán fordul elő és meglehetősen erős aszmmetrára utal. A x Mo

52 F mutató Az aszmmetra másk mérőszáma, az F mutató (jele: F) az alsó és felső kvartls medántól való eltérésének egymáshoz vszonyított nagyságán alapul. Bal oldal, jobbra elnyúló aszmmetra esetén a medán az alsó (Q 1 ), míg jobb oldal aszmmetra esetén a felső (Q 3 ) kvartlshez esk közelebb. E mutatószám ugyanolyan feltételek mellett ad nulla, poztív és negatív eredményt, mnt az A mutató. Az F mutató lényegesen ksebb értékkel jelz a már nagyfokúnak teknthető aszmmetrát, mnt az A. ( Q3 Me) ( Me Q1) F ( Q Me) ( Me Q ) 3 1

53 Eloszlások Egymóduszú Több móduszú Szmmetrkus Asszmetrkus U alakú Mérsékelten asszmetrkus Erősen asszmetrkus M alakú Balra ferdült Jobbra ferdült J alakú Fordított J alakú

54 Konfdencantervallum (Confdence nterval)

55 A konfdencantervallum fogalma (Bzonyosság/megbízhatóság ntervallum) Olyan, a mntaelemekből számolt ntervallum, amely nagy valószínűséggel tartalmazza a populácó-paraméter valód (smeretlen) értékét. Valószínűség ntervallum, az nduktív statsztka eszköze. Ha mntából becsülünk, sohasem tudjuk a pontos értéket. Pl. 95%-os bzonyosság ntervallum az átlagra: olyan, a mntaelemekből számolt ntervallum, am 95% valószínűséggel tartalmazza a populácó valód átlagát. Leggyakrabban használt megbízhatóság sznt 95% (0.95).

56 Az átlagra vonatkozó 95%-os bzonyosság ntervallum szemléltetése az adott kísérlet képzeletbel smétlésevel Ha a kísérletet képzeletben 100-szor megsmételnénk, a 100 kapott 95%-os konfdenca ntervallum közül várhatóan 95 fogja tartalmazn a populácó átlagát, és 5 nem. 56

57 Szgnfkanca vzsgálatok és a konfdencantervallum kapcsolata (H0: μ 1 = μ 2, azaz μ 1 - μ 2 =0, Ha: μ 1 μ 2 ) Szgnfkáns, p<0.05 Szgnfkáns. p<0.05 Nem szgnfkáns, p> Megjegyzés. Ha relatív kockázatot vagy esélyhányados vzsgálunk, akkor a konfdencantervallumban az 1-et keressük, hogy az értéket tartalmazza-e.

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i . konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

ÁLTALÁNOS STATISZTIKA

ÁLTALÁNOS STATISZTIKA Berzseny Dánel Főskola ÁLTALÁNOS STATISZTIKA műszak menedzser alapszak Írta: Dr. Köves János Tóth Zsuzsanna Eszter Budapest 006 Tartalomjegyzék. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK... 4.. A VALÓSZÍNŰSÉGSZÁMÍTÁS

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

Lineáris regresszió. Statisztika I., 4. alkalom

Lineáris regresszió. Statisztika I., 4. alkalom Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Statisztika feladatok

Statisztika feladatok Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)

Részletesebben

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

Általános Statisztika

Általános Statisztika Budapest Mőszak és Gazdaságtudomány Egyetem Gazdaság- és Társadalomtudomány Kar Nyugat-Magyarország Egyetem Savara Egyetem Központ Dr. Köves János Dr. Tóth Zsuzsanna Eszter Általános Statsztka oktatás

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés Extrém-érték modellezés Zemplén András Alkalmazott modul 03. február. Extrém-érték elemzés Klasszkus módszerek: év maxmumon alapulnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízbıl

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

(eseményalgebra) (halmazalgebra) (kijelentéskalkulus)

(eseményalgebra) (halmazalgebra) (kijelentéskalkulus) Valószínűségszámítás Valószínűség (probablty) 0 és 1 között valós szám, amely egy esemény bekövetkezésének esélyét fejez k: 0 - (sznte) lehetetlen, 0.5 - azonos eséllyel gen vagy nem, 1 - (sznte) bztos

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Biostatisztika e-book Dr. Dinya Elek

Biostatisztika e-book Dr. Dinya Elek TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok

Részletesebben

METROLÓGIA ÉS HIBASZÁMíTÁS

METROLÓGIA ÉS HIBASZÁMíTÁS METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

MATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap

MATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap Közlekedésmérnök Kar Jármőtervezés és vzsgálat alapja I. Feladatlap NÉV:..tk.:. Feladat sorsz.:.. Feladat: Egy jármő futómő alkatrész terhelésvzsgálatakor felvett, az alkatrészre ható terhelı erı csúcsértékek

Részletesebben

Kísérlettervezési alapfogalmak:

Kísérlettervezési alapfogalmak: Kísérlettervezés alapfogalmak: Tényező, faktor (factor) független változó, ható tényező (kezelés, gyógyszer, takarmány, genotípus, élőhely, stb.) amnek hatását a kísérletben vzsgáln vagy összehasonlítan

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Adatelemzés és adatbányászat MSc

Adatelemzés és adatbányászat MSc Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell Budapest Műszak és Gazdaságtudomány Egyetem Közlekedésmérnök és Járműmérnök Kar Közlekedésüzem Tanszék HÁLÓZATTERVEZÉSI MESTERISKOLA BEVEZETÉS A KÖZLEKEDÉS MODELLEZÉSI FOLYAMATÁBA Dr. Csszár Csaba egyetem

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Minősítéses mérőrendszerek képességvizsgálata

Minősítéses mérőrendszerek képességvizsgálata Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás. Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

d(f(x), f(y)) q d(x, y), ahol 0 q < 1.

d(f(x), f(y)) q d(x, y), ahol 0 q < 1. Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció

Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció Közlekedés létesítmények élettartamra vonatkozó hatékonyság vzsgálat módszerenek fejlesztése PhD Dsszertácó Budapest, 2006 Alulírott kjelentem, hogy ezt a doktor értekezést magam készítettem, és abban

Részletesebben

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar

Részletesebben

STATISZTIKA III. Oktatási segédlet

STATISZTIKA III. Oktatási segédlet MISKOLCI EGYETEM Gazdaságtudomány Kar Üzlet Informácógazdálkodás és Módszertan Intézet Üzlet Statsztka és Előrejelzés Tanszék STATISZTIKA III. Oktatás segédlet 003. MISKOLCI EGYETEM Gazdaságtudomány Kar

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Varianciaanalízis. Egytényezős kísérletek (Más néven: egyutas osztályozás, egyszempontos varianciaanalízis ANOVA)

Varianciaanalízis. Egytényezős kísérletek (Más néven: egyutas osztályozás, egyszempontos varianciaanalízis ANOVA) Varancaanalízs A varancaanalízs során kettőnél több sokaság középértékenek mnta alapán történő összehasonlítása történk zért nevezk a kétmntás t-próba általánosításának A nullhpotézs eldöntéséhez használuk

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Jövedelem és szubjektív jóllét: az elemzési módszer megválasztásának hatása a levonható következtetésekre

Jövedelem és szubjektív jóllét: az elemzési módszer megválasztásának hatása a levonható következtetésekre Tanulmányok Jövedelem és szubjektív jóllét: az elemzés módszer megválasztásának hatása a levonható következtetésekre Hajdu Tamás, az MTA Közgazdaságés Regonáls Tudomány Kutatóközpont Közgazdaságtudomány

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kdolgozott feladatok a nemparaméteres statsztka témaköréből A táékozódást mndenféle színkódok segítk. A feladatok eredet szövege zöld, a megoldások fekete, a fgyelmeztető, magyarázó elemek pros színűek.

Részletesebben

Közúti közlekedésüzemvitel-ellátó. Tájékoztató

Közúti közlekedésüzemvitel-ellátó. Tájékoztató 12/2013. (III. 29.) NFM rendelet szakma és vzsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 841 02 Közút közlekedésüzemvtel-ellátó Tájékoztató A vzsgázó az első lapra írja fel

Részletesebben

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze

Részletesebben

Egy negyedrendű rekurzív sorozatcsaládról

Egy negyedrendű rekurzív sorozatcsaládról Egy negyedrendű rekurzív sorozatcsaládról Pethő Attla Emlékül Kss Péternek, a rekurzív sorozatok fáradhatatlan kutatójának. 1. Bevezetés Legyenek a, b Z és {1, 1} olyanok, hogy a 2 4b 2) 0, b 2 és ha 1,

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II.

NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II. NKFP6-BKOMSZ05 Célzott mérőhálózat létrehozása a globáls klímaváltozás magyarország hatásanak nagypontosságú nyomon követésére II. Munkaszakasz 2007.01.01. - 2008.01.02. Konzorcumvezető: Országos Meteorológa

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL 01/2008:20236 javított 8.3 2.2.36. AZ IONKONCENRÁCIÓ POENCIOMERIÁ MEGHAÁROZÁA IONZELEKÍ ELEKRÓDOK ALKALMAZÁÁAL Az onszeletív eletród potencálja (E) és a megfelelő on atvtásána (a ) logartmusa özött deáls

Részletesebben

The original laser distance meter. The original laser distance meter

The original laser distance meter. The original laser distance meter Leca Leca DISTO DISTO TM TM D510 X310 The orgnal laser dstance meter The orgnal laser dstance meter Tartalomjegyzék A műszer beállítása - - - - - - - - - - - - - - - - - - - - - - - - - 2 Bevezetés - -

Részletesebben

Szerven belül egyenetlen dóziseloszlások és az LNT-modell

Szerven belül egyenetlen dóziseloszlások és az LNT-modell Szerven belül egyenetlen dózseloszlások és az LNT-modell Madas Balázs Gergely, Balásházy Imre MTA Energatudomány Kutatóközpont XXXVIII. Sugárvédelm Továbbképző Tanfolyam Hunguest Hotel Béke 2013. áprls

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások

Részletesebben

A gabonavertikum komplex beruházás-elemzés módszertani fejlesztése OTKA: 48562 Részletes zárójelentés Témavezető: Dr. Ertsey Imre

A gabonavertikum komplex beruházás-elemzés módszertani fejlesztése OTKA: 48562 Részletes zárójelentés Témavezető: Dr. Ertsey Imre A gabonavertkum komplex beruházás-elemzés módszertan fejlesztése OTKA: 48562 Részletes zárójelentés Témavezető: Dr. Ertsey Imre 1. Bevezetés A gabonavertkum komplex beruházás-elemzés módszertan fejlesztése

Részletesebben

Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Lineáris regresszió, ismétlés nélküli mérések

Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Lineáris regresszió, ismétlés nélküli mérések Gakorló feladatok a Kísérletek tervezése és értékelése c. tárgból Lneárs regresszó, smétlés nélkül mérések 1. példa Az alább táblázat eg kalbrácós egenes felvételekor mért adatokat tartalmazza: x 1.8 3

Részletesebben

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika Fuzzy rendszerek A fuzzy halmaz és a fuzzy logka A hagyományos kétértékű logka, melyet évezredek óta alkalmazunk a tudományban, és amelyet George Boole (1815-1864) fogalmazott meg matematkalag, azon a

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Optikai elmozdulás érzékelő illesztése STMF4 mikrovezérlőhöz és robot helyzetérzékelése. Szakdolgozat

Optikai elmozdulás érzékelő illesztése STMF4 mikrovezérlőhöz és robot helyzetérzékelése. Szakdolgozat Mskolc Egyetem Gépészmérnök és Informatka Kar Automatzálás és Infokommunkácós Intézet Tanszék Optka elmozdulás érzékelő llesztése STMF4 mkrovezérlőhöz és robot helyzetérzékelése Szakdolgozat Tervezésvezető:

Részletesebben

PhD értekezés. Gyarmati József

PhD értekezés. Gyarmati József 2 PhD értekezés Gyarmat József 2003 3 ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM Hadtechnka és mnõségügy tanszék PhD értekezés Gyarmat József Többszempontos döntéselmélet alkalmazása a hadtechnka eszközök összehasonlításában

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

MEGBÍZHATÓSÁG-ELMÉLET

MEGBÍZHATÓSÁG-ELMÉLET PHARE HU3/IB/E3-L MEGBÍZHAÓSÁG-ELMÉLE Defnícók A legszélesebb körben elfogadott defnícó szernt a megbízhatóság egy elem (termék, rendszer stb.) képessége arra, hogy meghatározott működés feltételek mellett

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA Készült a TÁMOP-4..-08//A/KMR-009-004pálázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék az MTA Közgazdaságtudomán Intézet

Részletesebben

Darupályák ellenőrző mérése

Darupályák ellenőrző mérése Darupályák ellenőrző mérése A darupályák építésére, szerelésére érvényes 15030-58 MSz szabvány tartalmazza azokat az előírásokat, melyeket a tervezés, építés, műszak átadás során be kell tartan. A geodéza

Részletesebben

Régió alapú szegmentálás. Digitális képelemzés alapvető algoritmusai. 2. példa: Elfogadható eredmények. 1. példa: Jó eredmények. Csetverikov Dmitrij

Régió alapú szegmentálás. Digitális képelemzés alapvető algoritmusai. 2. példa: Elfogadható eredmények. 1. példa: Jó eredmények. Csetverikov Dmitrij Régó alapú szegmentálás Dgtáls képelemzés alapvető algortmusa Csetverkov Dmtrj Eötvös Lóránd Egyetem, Budapest csetverkov@sztak.hu http://vson.sztak.hu Informatka Kar 1 Küszöbölés példá és elemzése Küszöbölés

Részletesebben

Hely és elmozdulás - meghatározás távolságméréssel

Hely és elmozdulás - meghatározás távolságméréssel Hely és elmozdulás - meghatározás távolságméréssel Bevezetés A repülő szerkezetek repülőgépek, rakéták, stb. helyének ( koordnátának ) meghatározása nem új feladat. Ezt a szakrodalom részletesen taglalja

Részletesebben

Foglalkoztatáspolitika. Modellek, mérés.

Foglalkoztatáspolitika. Modellek, mérés. Foglalkoztatáspoltka. Modellek, mérés. Galas Péter Budapest, 20 Galas Péter, 20 Kézrat lezárva: 20. júnus Bevezetés A tananyag célja a foglalkoztatáspoltka közgazdaságtan szempontú elemzésében és értékelésében

Részletesebben

Eseményvezérelt szimuláció

Eseményvezérelt szimuláció Hálózat szmulácós technkák (BMEVITTD094/2005) október 3. Vdács Attla Dang Dnh Trang Távközlés és Médanformatka Tanszék Budapest Mszak és Gazdaságtudomány Egyetem Eseményvezérelt szmulácó DES Dscrete-Event

Részletesebben

Konfidencia-intervallumok

Konfidencia-intervallumok Konfdenca-ntervallumok 1./ Egy 100 elemű mntából 9%-os bztonság nten kéített konfdenca ntervallum: 177,;179,18. Határozza meg a mnta átlagát és órását, feltételezve, hogy az egé sokaság normáls elolású

Részletesebben

Koncentráció és mérése gazdasági és társadalmi területeken. Kerékgyártó Györgyné BCE Statisztika Tanszék

Koncentráció és mérése gazdasági és társadalmi területeken. Kerékgyártó Györgyné BCE Statisztika Tanszék Koncentrácó és mérése gazdaság és társadalm területeken Kerékgyártó Györgyné BCE Statsztka Tanszék Koncentrácó Fogalmát a XVIII. sz. másodk felétől egyre gyakrabban használták. Először a termelésre értelmezték,

Részletesebben

Pénzügyi menedzsment

Pénzügyi menedzsment Pénzügy menedzsment Várható hozam és kockázat mérése uvárható hozam mérése számtan átlag mértan átlag medán módusz ukockázat mérése medán abszolút eltérés szórás ferdeség Egy portfóló hozamanak torzult

Részletesebben

AZ ADATHELYETTESÍTÉS MODERN TECHNIKÁJA MULTIPLE IMPUTATION (MI)

AZ ADATHELYETTESÍTÉS MODERN TECHNIKÁJA MULTIPLE IMPUTATION (MI) ALKALMAZOTT PSZICHOLÓGIA 2012/2, 65 70. 65 AZ ADATHELYETTESÍTÉS MODERN TECHNIKÁJA MULTIPLE IMPUTATION (MI) DANIS Ildikó Bright Future Humán Kutató és Tanácsadó Kft. ÖSSZEFOGLALÓ A nemzetközi szakirodalomban

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

8. Programozási tételek felsoroló típusokra

8. Programozási tételek felsoroló típusokra 8. Programozás tételek felsoroló típusokra Ha egy adatot elem értékek csoportja reprezentál, akkor az adat feldolgozása ezen értékek feldolgozásából áll. Az lyen adat típusának lényeges jellemzője, hogy

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

Réthy Zsolt GYÁRTÁSI FOLYAMATOK OPTIMALIZÁLÁSA A MINŐSÉGÜGYBEN ALKALMAZOTT KOMPROMISSZUMMODELLEK. Doktori (PhD) értekezés

Réthy Zsolt GYÁRTÁSI FOLYAMATOK OPTIMALIZÁLÁSA A MINŐSÉGÜGYBEN ALKALMAZOTT KOMPROMISSZUMMODELLEK. Doktori (PhD) értekezés Réthy Zsolt GYÁRTÁSI FOLYAMATOK OPTIMALIZÁLÁSA A MINŐSÉGÜGYBEN ALKALMAZOTT KOMPROMISSZUMMODELLEK FELHASZNÁLÁSÁVAL Doktor (PhD) értekezés Témavezető: Dr. Erdély József DSc. egyetem tanár Nyugat-Magyarország

Részletesebben

Nemlineáris függvények illesztésének néhány kérdése

Nemlineáris függvények illesztésének néhány kérdése Mûhel Tóth Zoltán docens, Károl Róbert Főskola E-mal: zol@karolrobert.hu Nemlneárs függvének llesztésének néhán kérdése A nemlneárs regresszós és trendfüggvének llesztésekor számos esetben alkalmazzuk

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Példák ekvivalencia relációra (TÉTELként kell tudni ezeket zárthelyin, vizsgán):

Példák ekvivalencia relációra (TÉTELként kell tudni ezeket zárthelyin, vizsgán): F NIK INÁRIS RLÁIÓK INÁRIS RLÁIÓK (és hasonló mátrxok s tt!) Defnícó: z R bnárs relácó, ha R {( a, b) a, b } nárs relácók lehetséges tuladonsága:. Reflexív ha ( x,.(a). Szmmetrkus ha ( x, y) ( y,.(b).

Részletesebben

10. Alakzatok és minták detektálása

10. Alakzatok és minták detektálása 0. Alakzatok és mnták detektálása Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZTE http://www.nf.u-szeged.hu/~kato/teachng/ 2 Hough transzformácó Éldetektálás során csak élpontok halmazát

Részletesebben

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek 1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják.

Részletesebben

Elosztott rendszerek játékelméleti elemzése: tervezés és öszönzés. Toka László

Elosztott rendszerek játékelméleti elemzése: tervezés és öszönzés. Toka László adat Távközlés és Médanformatka Tanszék Budapest Műszak és Gazdaságtudomány Egyetem Eurecom Telecom Pars Elosztott rendszerek játékelmélet elemzése: tervezés és öszönzés Toka László Tézsfüzet Témavezetők:

Részletesebben

Integrált rendszerek n é v; dátum

Integrált rendszerek n é v; dátum Integrált rendszerek n é v; dátum.) Az dentfkálás (folyamatdentfkácó) a.) elsődleges feladata absztrahált leírás fzka modell formában b.) legfőbb feladata a struktúradentfkálás (modellszerkezet felállítása)

Részletesebben