Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,"

Átírás

1 Bevezetés a bometrába Dr. Dnya Elek egyetem tanár PhD kurzus. KOKI,

2 ADATREDUKCIÓ I. Középértékek

3 Adatredukcó. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték ma b) Helyzet középérték: tpkus értékek legyenek (gyakran forduljonak elő). c) Legyenek könnyen meghatározhatók. d) Legyenek egyértelműen defnálva.

4 Középértékek Számított középértékek Helyzet középértékek Artmetka Harmonkus Módusz Medán átlag: X átlag: Xh Mo Me Geometra átlag: Xg Kvadratkus átlag: Xq

5 Számított középértékek Matematka összefüggés alapján számíthatók k: Számtan (Artmetka) átlag Egyszerű Súlyozott Harmonkus átlag Egyszerű Súlyozott Mértan (Geometra) átlag Egyszerű Súlyozott Négyzetes (Kvadratkus) átlag Egyszerű Súlyozott n n n f f a n a n n n f f h n h n f f n n n g g n n n f f q n q 2 _ 2 _

6 Artmetka átlag Az a szám, amelyet az átlagolandó értékek helyébe téve azok összege nem változk:

7 Mértan átlag Az a szám, amelyet az átlagolandó értékek helyébe téve azok szorzata nem változk:

8 Harmonkus átlag Az a szám, amelyet az átlagolandó értékek helyébe téve azok recprokanak összege nem változk:

9 Kvadratkus átlag Az a szám, amelynek négyzetével helyettesítve az átlagolandó értékek négyzetet, azok összege nem változk:

10 Outler

11 Adatokat nagyságszernt rendezzük. Helyzet mutatók Meghatározzuk a küszöb értéket és felosztjuk a tartományt a kívánt részre. Kvantlsek: az összes előforduló érték j/k (j=,2,,k-) része ksebb és -j/k része nagyobb. Pl. k=2: Medán (Me) k=3: tercls k=4: Qvartls (Q, Q2=Me, Q3) k=5: kvntls k=0: decls k=00: percentls

12 Egyéb átlagok Interquartle mean (IQM) vagy mdmean: Nem érzékeny az outler értékekre:

13 Trmean vagy Tukey's trmean Kombnálja a medán és a mdhnge előnyet tekntettel az etrém értékekre:

14 Összefoglalás - Középértékek Az egyes adatfajtáknál mlyen középértékeket alkalmazunk? Átlag Medán Kvanttatív Ordnáls Módusz Nomnáls

15 ADATREDUKCIÓ II. Szóródás és mérése

16 A szóródás mérése Szóródás: azonos fajta számszerű adatok különbözősége Mérése: az smérvértékek valamlyen középértéktől vett vagy egymás között különbsége alapján történk. Szóródás mutatók A szóródás terjedelme Átlagos abszolút eltérés Szórásnégyzet, szórás, relatív szórás (Átlagos különbség) Koncentrácó 6

17 A szóródás terjedelme A legnagyobb és legksebb smérvérték különbsége R vagy T = X ma X mn Interquartls terjedelem: IQT = Q 3 Q A mutatószámok kfejezk, hogy mekkora értékközben ngadoznak az smérvértékek. Gyakorlatban kevéssé használatos, mert csupán a két szélső értékre támaszkodk. 7

18 8 Átlagos abszolút eltérés Az egyes smérvértékek számtan átlagtól vett vagy a medántól vett eltérésenek abszolút értékeből számított átlag k k f f k k f Me f d Az átl.absz.elt a medán esetén a legksebb!

19 9 A szórásnégyzet (varanca) és szórás Az egyes értékek számtan átlagtól vett eltérés-négyzetenek átlaga k k f f Var 2 2 ) ( ) ( k k f f 2 ) ( Varanca vagy: szórásnégyzet Szórás

20 Relatív szórás V % *00 Elvonatkoztat az smérv-értékek nagyságrendjétől és mértékegységétől. Azt mutatja meg, hogy a szórás hányad része (hány százaléka) az átlagnak. 20

21 Relatív szórás (varácós együttható, V) Az adatok szórását osztjuk az átlaggal, majd szorozzuk 00%-al Kcs: a szórás, ha V<5%, Közepes: ha 5%<V<25%, Nagy: ha 25%<V<35%, Etrém (szélsőséges): ha V>35%

22 Mdhnge range: IQR=(Q 3 -Q )/2 John Tukey: mdhnge-t egyszerűbb számítan. Md-range vagy md-etreme:

23 Átlag szórása (Standard error, SE) A mntaválasztás jóságát mutatja: a 0 közel érték a jó érték, mert ekkor helyes a mntaválasztás (dmenzós érték!): s s N Normáls eloszlás esetén az átlag ± 2SE-n belül van az gaz átlag kb. 95%-os valószínűséggel.

24 A szórás tulajdonsága Ha mnden értékhez ugyanazt a konstans számot hozzáadjuk (+a), a szórás változatlan marad. Ha mnden értéket ugyanazzal a k konstans számmal megszorozzuk, (k), a szórás s k-szorosára változk. Az eltérésnégyzet-összeg az átlagtól való eltérésekkel számolva a legksebb A szórásnégyzet felírható a négyzetes átlag és a számtan átlag négyzetének a különbségeként. A sokaságot jellemző teljes szórásnégyzet (varanca) megegyezk a rész-sokaságok külső és belső szórásnégyzetének összegével (ANOVA témakör): B K 24

25 Aszmmetra mérőszáma

26 Az aszmmetra mérőszáma Az eloszlások következő típusaval foglalkozunk: -egymóduszú eloszlás szmmetrkus, aszmmetrkus (vagy ferde); -többmóduszú eloszlás.

27 Ferdeség mérése Ferdeség =FERDESÉG() SKEW() A ferdeség az eloszlás középérték körül aszmmetrájának mértékét jelz. A poztív ferdeség a poztív értékek rányába nyúló aszmmetrkus eloszlást jelez, míg a negatív ferdeség a negatív értékek rányában torzított. =CSÚCSOSSÁG() KURT() Egy adathalmaz csúcsosságát számítja k. A függvény a normáls eloszláshoz vszonyítva egy eloszlás csúcsosságát vagy laposságát adja meg. A poztív értékek vszonylag csúcsos, a negatív értékek vszonylag lapos eloszlást jelentenek. n ( n )( n 2) s _ 2 3( n ) Csúcsosság ( n )( n 2) 3

28 Asszmmetra mérése

29 Az eloszlások típusa, aszmmetrája Típusok: Egymóduszú eloszlás szmmetrkus aszmmetrkus (ferde), bal- vagy jobboldal Többmóduszú eloszlás 29

30 Aszmmetra Az aszmmetra Pearson-féle A-mutatószáma: Mo A Az aszmmetra F-mutatószáma Szmmetrkus eloszlás esetén: A = 0 Jobb oldal aszmmetra esetén: A > 0 Bal oldal aszmmetra esetén: A < 0 F Q 3 Me Me Q Q Me Me Q 3 Szmmetrkus eloszlás esetén: F = 0 Jobb oldal aszmmetra esetén: F > 0 Bal oldal aszmmetra esetén: F < 0 30

31 Hányzó értékek kezelése (Mssng values)

32 Hányzóérték, 2, 3, 4, 5, 6,2,3,4,5,6,0,3,4,5,

33 Hányzó érték: nem regsztrált adat. Hatása: erőteljesen befolyásolhatják az elemzés eredményet. - Ha nem vesszük fgyelembe a hányzó adatokat vagy feltételezzük, hogy a hányzó értékek kzárása elegendő, akkor érvénytelen és megbízhatatlan eredményeket kaphatunk. - Az adatelőkészítés fázsban kell gondoskodn arról, hogy az adatelemzés során olyan adatokat használjunk, amelyek fgyelembe veszk a hányzó értékeket. Többváltozós módszereknél esetszám kesés.

34 Hányzó értékek jelölése 0 kód esetén a teendő kód használata: Szoftver felé való közlés Hányzó értékek kezelése: - üresen hagyjuk, - átlagot tesszük be: a helyettesítés rombolja a változók eloszlásfüggvényét, konfdenca-ntervallumát, megnövel az eloszlások csúcsosságát, a változók között lneárs kapcsolatokat s megváltoztatja, a korrelácós együttható közelebb kerül a 0-hoz.

35 Az MCAR (mssng completely at random) esetében a hányok valószínűsége egyáltalán nem függ össze az adatankkal, lyenkor a nemválaszolók olyanok, mnt egy random alcsoport. Rtka esetben gaz. A MAR (mssng at random) modelleknél a hányok valószínűsége csak a megfgyelt egyéb adatoktól függ, de nem a helyettesítendő hányzótól. Ez a standard feltételezés. Kevésbé megoldható probléma az MNAR (mssng not at random) helyzet, amkor a hányzó adat előfordulása pont a hányzó adat mnőségével vagy jelentésével függ össze. A mamum-lkelhood módszerek elvárása a MAR helyzet, míg a multple mputaton technkák többnyre már az MNAR problémákat s jól kezelk.

36 MI (multple mputaton) Az MI célja, hogy a helyettesítésekkel együtt megtartsuk a változók eloszlását és a változók között asszocácókat. Szmulácón és legtöbbször Bayes- alapokon álló technka, ahol a megfgyelt adatokból m> verzóban modelleznek lehetséges adatokat a hányzók helyére, majd a végén egy algortmus szernt kombnálják az eredményeket (a becsléseket és a szórásokat).

37 MI Általános szabályként olyan változók esetében használhatjuk az mputálást, ahol változónként mamum az adatok 30 40%-a hányzk, de a teljes adatbázsban nncs több hányzó, mnt a teljes mátr 0 5%-a. Ezek az arányok a szakrodalom szernt egyáltalán nem adnak okot aggodalomra a helyettesítés metódusát lletően.

38 Legtöbb esetben MCMC (Markov chan Monte Carlo) modellt fog alkalmazn a program, ahol az egyes változók értékenél a több modellváltozó predkcót fogja felhasználn bzonyos terácós szám mellett. Összefoglalás: azokban a kutatásokban, amelyekben korrelácóalapú számításokat végeznek a kutatók, bztonsággal alkalmazható az adat-mputálás. Kutatásokban azonban törekedn kell a mnél teljesebb adatbázs létrehozására, eredményenket ekkor fogadhatjuk el mnden fajta szkepszs nélkül.

39 Konfdencantervallum (Confdence nterval)

40 A konfdencantervallum fogalma (Bzonyosság/megbízhatóság ntervallum) Olyan, a mntaelemekből számolt ntervallum, amely nagy valószínűséggel tartalmazza a populácó-paraméter valód (smeretlen) értékét. Valószínűség ntervallum, az nduktív statsztka eszköze. Ha mntából becsülünk, sohasem tudjuk a pontos értéket. Pl. 95%-os bzonyosság ntervallum az átlagra: olyan, a mntaelemekből számolt ntervallum, am 95% valószínűséggel tartalmazza a populácó valód átlagát. A megbízhatóság mértékét jelző valószínűség (megbízhatóság sznt) tőlünk függ. Szokásos értéke: 0.90, 0.95, 0.99 A becslés hbája (-val jelöljük) a megbízhatóság sznt függvényében -0.90=0., -0.95=0.05, -0.99=0.0 Leggyakrabban használt megbízhatóság sznt 95% (0.95), tehát -ra leggyakrabban =0.05 értéket alkalmazzuk. Bostatsztka alapsmeretek Boda Krsztna Leíró statsztka A véletlen ngadozás Konfdencantervallum Egyváltozós módszerek 40

41 Szgnfkanca vzsgálatok és a konfdencantervallum kapcsolata (H0: μ = μ 2, azaz μ - μ 2 =0, Ha: μ μ 2 ) p-érték szgnfkanca 95% CI (p p2)-re p<0.05 szgn. 5%-os sznten pl. (4.5, 0.7) 0 nncs benne a konf. ntervallumban p > 0.05 nem szgn. 5%-os sz. pl. (-.72, 5.8) 0 benne van a konf. ntervallumban Szgnfkáns, p<0.05 Szgnfkáns. p<0.05 Nem szgnfkáns, p> Megjegyzés. Ha relatív kockázatot vagy esélyhányados vzsgálunk, akkor a konfdencantervallumban az -et keressük, hogy az értéket tartalmazza-e. Bostatsztka alapsmeretek Boda Krsztna Leíró statsztka A véletlen ngadozás Konfdencantervallum Egyváltozós módszerek

42 BECSLÉS A sokaság átlag becslése

43 A becslő-fg és a jó becslés krtéruma A becslő fg fogalma: A sokaság paraméter becslésére szolgáló, a mntaelemek értékétől függő függvény. pl. a mntaátlag egy becslőfg, mert értéke a mntaelemek értékétől függ, és ezzel becsüljük a sokaság átlagot. A jó becslés krtéruma Torzítatlanság Hatásosság Konzsztenca 43

44 Torzítatlan becslések A mntaátlag a sokaság átlag torzítatlan becslése X E() mntabel arány a sokaság aránynak torzítatlan becslése E( p) A mnta szórása a sokaság szórás torzított becslése. A mnta korrgált szórása már torzítatlan 2 ˆ s N P E(s) 44

45 A jó becslés krtéruma (folyt) Hatásosság: a becslőfüggvény szórása. Mnél ksebb a szórása, annál hatásosabb Konzsztenca (az a tulajdonság, hogy egyre nagyobb mntát véve egyre pontosabb becslést kapunk) 45

46 BECSLÉS A sokaság várható érték ntervallum-becslése A sokaság várható értéket a mntaközéppel becsüljük. Ez így egy torzítatlan pontbecslés, - amely nem fog pontosan egybeesn a sokaság tényleges várható értékével. Meg tudunk azonban adn egy ntervallumot, amelybe a sokaság várható érték egy előre adott (pl. 95%-os) valószínűséggel beleesk. 46

47 A sokaság átlag ntervallumbecslése 95 %-os megbízhatóság sznt mellett Ismerjük a mntaátlag eloszlását, és szórását. Tudjuk, hogy M ( ) X Kérdés: mekkora az az ntervallum, amelybe a véletlen mnta átlaga, ll. annak standardje 95 % valószínűséggel esk? Átrendezve: X,96,96 Rövdebb formában:,96 X, 96 X,96 Tehát 95 % a valószínűsége annak, hogy a sokaság a mntaátlag,96 szórásny környezetében található. X 47

48 48 Az ntervallumbecslés általános gondolatmenete z X z P p p z X z z p X Annak a valószínűsége, hogy N z X p Átrendezve Tömörebben:

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték

Részletesebben

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték

Részletesebben

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz x mn középérték

Részletesebben

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer? 01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó

Részletesebben

Adatsorok jellegadó értékei

Adatsorok jellegadó értékei Adatsorok jellegadó értéke Varga Ágnes egyetem tanársegéd varga.ag14@gmal.com Terület és térnformatka kvanttatív elemzés módszerek BCE Geo Intézet Terület elemzés forgatókönyve vacsora hasonlat Terület

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás. Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan

Részletesebben

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i . konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr. Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt

Részletesebben

A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos

A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani

Részletesebben

Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist.

Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist. 1. Az X valószínőség változó 1 várható értékő és 9 szórásnégyzető. Y tıle független várható értékkel és 1 szórásnégyzettel. a) Menny X + Y várható értéke? 13 1 b) Menny X -Y szórásnégyzete? 13 1 összesen

Részletesebben

Lineáris regresszió. Statisztika I., 4. alkalom

Lineáris regresszió. Statisztika I., 4. alkalom Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı

Részletesebben

Statisztika feladatok

Statisztika feladatok Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)

Részletesebben

ÁLTALÁNOS STATISZTIKA

ÁLTALÁNOS STATISZTIKA Berzseny Dánel Főskola ÁLTALÁNOS STATISZTIKA műszak menedzser alapszak Írta: Dr. Köves János Tóth Zsuzsanna Eszter Budapest 006 Tartalomjegyzék. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK... 4.. A VALÓSZÍNŰSÉGSZÁMÍTÁS

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr. Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Regresszó-számítás. előadás Kvanttatív statsztka módszerek Dr. Varga Beatr Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Korrelácós

Részletesebben

Variancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat?

Variancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat? Varanca-analízs (NOV Mért nem csnálunk kétmntás t-próbákat? B Van különbség a csoportok között? Nncs, az eltérés csak véletlen! Ez a nullhpotézs. és B nncs különbség Legyen, B és C 3 csoport! B és C nncs

Részletesebben

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak. 8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

GRADUÁLIS BIOSTATISZTIKAI KURZUS február hó 22. Dr. Dinya Elek egyetemi docens

GRADUÁLIS BIOSTATISZTIKAI KURZUS február hó 22. Dr. Dinya Elek egyetemi docens GRADUÁLIS BIOSTATISZTIKAI KURZUS 2012. február hó 22. Dr. Dinya Elek egyetemi docens Biometria fogalma The active pursuit of biological knowledge by quantitative methods Sir R. A. Fisher, 1948 BIOMETRIA

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak 1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok

Részletesebben

A leíró statisztikák

A leíró statisztikák A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Általános Statisztika

Általános Statisztika Budapest Mőszak és Gazdaságtudomány Egyetem Gazdaság- és Társadalomtudomány Kar Nyugat-Magyarország Egyetem Savara Egyetem Központ Dr. Köves János Dr. Tóth Zsuzsanna Eszter Általános Statsztka oktatás

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pálázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék, az MTA Közgazdaságtudomán

Részletesebben

MATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap

MATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap Közlekedésmérnök Kar Jármőtervezés és vzsgálat alapja I. Feladatlap NÉV:..tk.:. Feladat sorsz.:.. Feladat: Egy jármő futómő alkatrész terhelésvzsgálatakor felvett, az alkatrészre ható terhelı erı csúcsértékek

Részletesebben

METROLÓGIA ÉS HIBASZÁMíTÁS

METROLÓGIA ÉS HIBASZÁMíTÁS METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.

Részletesebben

Biostatisztika e-book Dr. Dinya Elek

Biostatisztika e-book Dr. Dinya Elek TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok

Részletesebben

Komplex regionális elemzés és fejlesztés tanév DE Népegészségügyi Iskola Egészségpolitika tervezés és finanszírozás MSc

Komplex regionális elemzés és fejlesztés tanév DE Népegészségügyi Iskola Egészségpolitika tervezés és finanszírozás MSc Komplex regonáls elemzés és fejlesztés 2016-2017. tanév DE Népegészségügy Iskola Egészségpoltka tervezés és fnanszírozás MSc 2. előadás Terület elemzés módszerek az egészségföldrajzban Terület ellátás

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés Extrém-érték modellezés Zemplén András Alkalmazott modul 03. február. Extrém-érték elemzés Klasszkus módszerek: év maxmumon alapulnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízbıl

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés Etrém-érték modellezés Zemplén András Alkalmazott modl 016. febrár -9. Etrém-érték elemzés Klasszks módszerek: év mammon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ

Részletesebben

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

Intelligens elosztott rendszerek

Intelligens elosztott rendszerek Intellgens elosztott rendszerek VIMIAC2 Adatelőkészítés: hhetőségvzsgálat normálás stb. Patak Béla BME I.E. 414, 463-26-79 atak@mt.bme.hu, htt://www.mt.bme.hu/general/staff/atak Valamlyen dőben állandó,

Részletesebben

Nemparaméteres módszerek. Krisztina Boda PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Nemparaméteres módszerek. Krisztina Boda PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Nemparaméteres módszerek Krsztna Boda PhD SZTE ÁOK Orvos Fzka és Orvos Informatka Intézet Paraméteres próbák Paraméter: egy szám, amely a populácó eloszlását jellemz (és általában meghatározza). A normáls

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés Extrém-érték modellezés Zemplén András Val.modellek 2018. febrár 21. Extrém-érték elemzés Klasszks módszerek: év maxmmon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék, az MTA Közgazdaságtudomány

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

IDA ELŐADÁS I. Bolgár Bence október 17.

IDA ELŐADÁS I. Bolgár Bence október 17. IDA ELŐADÁS I. Bolgár Bence 2014. október 17. I. Generatív és dszkrmnatív modellek Korábban megsmerkedtünk a felügyelt tanulással (supervsed learnng). Legyen adott a D = {, y } P =1 tanító halmaz, ahol

Részletesebben

Minősítéses mérőrendszerek képességvizsgálata

Minősítéses mérőrendszerek képességvizsgálata Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek

Részletesebben

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

(eseményalgebra) (halmazalgebra) (kijelentéskalkulus)

(eseményalgebra) (halmazalgebra) (kijelentéskalkulus) Valószínűségszámítás Valószínűség (probablty) 0 és 1 között valós szám, amely egy esemény bekövetkezésének esélyét fejez k: 0 - (sznte) lehetetlen, 0.5 - azonos eséllyel gen vagy nem, 1 - (sznte) bztos

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Nemparaméteres eljárások

Nemparaméteres eljárások Nemparaméteres eljárások Bevezetés Az ntervallum vagy a hányados skálán végzett méréseknél az adatokból számolhatunk átlagot, szórásnégyzetet, szórást Fontos módszerek alapulnak ezeknek a származtatott

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Kísérlettervezési alapfogalmak:

Kísérlettervezési alapfogalmak: Kísérlettervezés alapfogalmak: Tényező, faktor (factor) független változó, ható tényező (kezelés, gyógyszer, takarmány, genotípus, élőhely, stb.) amnek hatását a kísérletben vzsgáln vagy összehasonlítan

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

STATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm)

STATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm) Normális eloszlás sűrűségfüggvénye STATISZTIKA 9. gyakorlat Konfidencia intervallumok f σ π ( µ ) σ ( ) = e /56 p 45% 4% 35% 3% 5% % 5% % 5% Normális eloszlás sűrűségfüggvénye % 46 47 48 49 5 5 5 53 54

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Adatelemzés és adatbányászat MSc

Adatelemzés és adatbányászat MSc Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás

Részletesebben

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Least Squares becslés

Least Squares becslés Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás

Részletesebben

A m becslése. A s becslése. A (tapasztalati) szórás. n m. A minta és a populáció kapcsolata. x i átlag

A m becslése. A s becslése. A (tapasztalati) szórás. n m. A minta és a populáció kapcsolata. x i átlag 016.09.09. A m beclée A beclée = Az adatok átlago eltérée a m-től. (tapaztalat zórá) = az elemek átlago eltérée az átlagtól. átlag: az elemekhez képet középen kell elhelyezkedne. x x 0 x n x Q x x x 0

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

Régió alapú szegmentálás. Digitális képelemzés alapvető algoritmusai. 2. példa: Elfogadható eredmények. 1. példa: Jó eredmények. Csetverikov Dmitrij

Régió alapú szegmentálás. Digitális képelemzés alapvető algoritmusai. 2. példa: Elfogadható eredmények. 1. példa: Jó eredmények. Csetverikov Dmitrij Régó alapú szegmentálás Dgtáls képelemzés alapvető algortmusa Csetverkov Dmtrj Eötvös Lóránd Egyetem, Budapest csetverkov@sztak.hu http://vson.sztak.hu Informatka Kar 1 Küszöbölés példá és elemzése Küszöbölés

Részletesebben

Véletlenszám generátorok. 6. előadás

Véletlenszám generátorok. 6. előadás Véletlenszám generátorok 6. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes

Részletesebben

TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON. Bihari Zita, OMSZ Éghajlati Elemző Osztály OMSZ

TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON. Bihari Zita, OMSZ Éghajlati Elemző Osztály OMSZ TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON Bhar Zta, OMSZ Éghajlat Elemző Osztály OMSZ Áttekntés Térbel vzsgálatok Alkalmazott módszer: MISH Eredmények Tervek A módszer

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások

Részletesebben

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell Budapest Műszak és Gazdaságtudomány Egyetem Közlekedésmérnök és Járműmérnök Kar Közlekedésüzem Tanszék HÁLÓZATTERVEZÉSI MESTERISKOLA BEVEZETÉS A KÖZLEKEDÉS MODELLEZÉSI FOLYAMATÁBA Dr. Csszár Csaba egyetem

Részletesebben

Közúti közlekedésüzemvitel-ellátó. Tájékoztató

Közúti közlekedésüzemvitel-ellátó. Tájékoztató 12/2013. (III. 29.) NFM rendelet szakma és vzsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 841 02 Közút közlekedésüzemvtel-ellátó Tájékoztató A vzsgázó az első lapra írja fel

Részletesebben

Méréselmélet: 5. előadás,

Méréselmélet: 5. előadás, 5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?

Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk? Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését

Részletesebben

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar

Részletesebben

Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Lineáris regresszió, ismétlés nélküli mérések

Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Lineáris regresszió, ismétlés nélküli mérések Gakorló feladatok a Kísérletek tervezése és értékelése c. tárgból Lneárs regresszó, smétlés nélkül mérések 1. példa Az alább táblázat eg kalbrácós egenes felvételekor mért adatokat tartalmazza: x 1.8 3

Részletesebben