ÁLTALÁNOS STATISZTIKA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ÁLTALÁNOS STATISZTIKA"

Átírás

1 Berzseny Dánel Főskola ÁLTALÁNOS STATISZTIKA műszak menedzser alapszak Írta: Dr. Köves János Tóth Zsuzsanna Eszter Budapest 006

2 Tartalomjegyzék. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK A VALÓSZÍNŰSÉGSZÁMÍTÁS TÁRGYA A VALÓSZÍNŰSÉG FOGALMA A VALÓSZÍNŰSÉGSZÁMÍTÁS AXIÓMARENDSZERE A VALÓSZÍNŰSÉG MEGHATÁROZÁSÁNAK MÓDSZEREI A VALÓSZÍNŰSÉGSZÁMÍTÁS JELENTŐSÉGE A MŰSZAKI-GAZDASÁGI ELEMZÉSEKBEN VALÓSZÍNŰSÉGSZÁMÍTÁSI TÉTELEK, FELTÉTELES VALÓSZÍNŰSÉG, ESEMÉNYEK FÜGGETLENSÉGE VALÓSZÍNŰSÉGSZÁMÍTÁSI TÉTELEK A FELTÉTELES VALÓSZÍNŰSÉG FOGALMA A TELJES VALÓSZÍNŰSÉG TÉTELE BAYES-TÉTEL ("AZ OKOK VALÓSZÍNŰSÉGÉNEK TÉTELE") ESEMÉNYEK FÜGGETLENSÉGE LEÍRÓ STATISZTIKA A LEÍRÓ STATISZTIKA HELYE, SZEREPE A STATISZTIKA VILÁGÁBAN A STATISZTIKAI LEÍRÁS CÉLJA, MÓDSZEREI AZ ADATOK ÁBRÁZOLÁSA TAPASZTALATI ELOSZLÁSOK A TAPASZTALATI ELOSZLÁSOK KÖZÉPÉRTÉK-MUTATÓI AZ INGADOZÁS MÉRŐSZÁMAI AZ ELOSZLÁS ALAKJÁT JELLEMZŐ EGYÉB MUTATÓSZÁMOK ESETTANULMÁNY LEÍRÓ STATISZTIKAI ELEMZÉS VISZONYSZÁMOK KORRELÁCIÓ- ÉS REGRESSZIÓSZÁMÍTÁS I DETERMINISZTIKUS ÉS SZTOCHASZTIKUS KAPCSOLATOK A KAPCSOLAT SZEMLÉLTETÉSE AZ ELŐJEL KORRELÁCIÓS EGYÜTTHATÓ A LINEÁRIS REGRESSZIÓ ÉS A KORRELÁCIÓ AUTO- ÉS KERESZTKORRELÁCIÓ IDŐSOROK ELEMZÉSÉNÉL VALÓSZÍNŰSÉGI VÁLTOZÓ, ELMÉLETI ELOSZLÁSOK A VALÓSZÍNŰSÉGI VÁLTOZÓ VALÓSZÍNŰSÉGI VÁLTOZÓ JELLEMZŐI BINOMIÁLIS ELOSZLÁS POISSON-ELOSZLÁS EXPONENCIÁLIS ELOSZLÁS NORMÁLIS (GAUSS-) ELOSZLÁS A KÖZPONTI HATÁRELOSZLÁS TÉTELE STATISZTIKAI DÖNTÉSEK ALAPELVEI ESETPÉLDA DÖNTÉSI ALAPMODELL DÖNTÉSI MÁTRIX A DÖNTÉSI FOLYAMAT LOGIKÁJA DÖNTÉSI OSZTÁLYOK ÉS DÖNTÉSI KRITÉRIUMOK A MINTAVÉTEL ÉS A KÖVETKEZTETÉS HIBÁI BECSLÉS A BECSLÉS TULAJDONSÁGAI A PONTBECSLÉS MÓDSZEREI INTERVALLUMBECSLÉS... 09

3 8. HIPOTÉZISVIZSGÁLATOK I. NEMPARAMÉTERES PRÓBÁK A HIPOTÉZISVIZSGÁLAT ÁLTALÁNOS MENETE ILLESZKEDÉSVIZSGÁLAT χ -PRÓBÁVAL HIPOTÉZISVIZSGÁLATOK II. SZÓRÁSOK ÖSSZEHASONLÍTÁSA AZ ALAPSOKASÁG VARIANCIÁJÁRA VONATKOZÓ EGYMINTÁS PRÓBA KÉT SZÓRÁSNÉGYZET ÖSSZEHASONLÍTÁSA: F-PRÓBA TÖBB SZÓRÁS ÖSSZEHASONLÍTÁSÁRA VONATKOZÓ PRÓBÁK HIPOTÉZISVIZSGÁLATOK III. KÖZÉPÉRTÉKRE VONATKOZÓ PRÓBÁK VÁRHATÓ ÉRTÉKRE IRÁNYULÓ PRÓBÁK KÉT FÜGGETLEN MINTA VÁRHATÓ ÉRTÉKÉNEK ÖSSZEHASONLÍTÁSA PÁROS MINTÁK VÁRHATÓ ÉRTÉKÉNEK ÖSSZEHASONLÍTÁSA VARIANCIAANALÍZIS KORRELÁCIÓ- ÉS REGRESSZIÓSZÁMÍTÁS II A (LINEÁRIS) KORRELÁCIÓS EGYÜTTHATÓ AZ R(X,Y) ÉS A REGRESSZIÓS EGYENES ÖSSZEFÜGGÉSE A REGRESSZIÓS BECSLÉS PONTOSSÁGA FELHASZNÁLT ÉS AJÁNLOTT IRODALOM FÜGGELÉK: TÁBLÁZATOK

4 . VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK Valószínűségszámítás Valószínűségelmélet Axómák, alaptételek Kombnatorka Geometra val.sz. Val.szám tételek Elmélet eloszlások Matematka statsztka Mnta vétel Leíró statsztka Becslés Hpotézsvzsgálat Összefüggésvzsgálat 4

5 .. A VALÓSZÍNŰSÉGSZÁMÍTÁS TÁRGYA A véletlen jelenség fogalma: A tömegjelenség fogalma: 5

6 .. A VALÓSZÍNŰSÉG FOGALMA A valószínűség fogalma A n f(a) f ( A) g( A) n lm n g( A) P( A) Készítette: Erde János. ábra: A valószínűség fogalma.3. A VALÓSZÍNŰSÉGSZÁMÍTÁS AXIÓMARENDSZERE (Kolmogorov 93/3) I. Egy tetszőleges A esemény bekövetkezés valószínűsége 0 P(A). II. A bztos esemény valószínűsége, azaz P(Ω). III. Ha A és B egymást kzáró események, azaz A B 0, akkor P(A+B) P(A) + P(B). 6

7 .4. A VALÓSZÍNŰSÉG MEGHATÁROZÁSÁNAK MÓDSZEREI Klasszkus valószínűség-meghatározás: Geometra úton: Valószínűségszámítás tételek segítségével: Emprkus adatokból: Elmélet eloszlások segítségével: Szubjektív becsléssel: 7

8 .5. A VALÓSZÍNŰSÉGSZÁMÍTÁS JELENTŐSÉGE A MŰSZAKI-GAZDASÁGI ELEMZÉSEKBEN 8

9 . VALÓSZÍNŰSÉGSZÁMÍTÁSI TÉTELEK, FELTÉTELES VALÓSZÍNŰSÉG, ESEMÉNYEK FÜGGETLENSÉGE Valószínűségszámítás Valószínűségelmélet Matematka statsztka Axómák, alaptételek Kombnatorka Geometra val.sz. Val.szám tételek Elmélet eloszlások Mnta vétel Leíró statsztka Becslés Hpotézsvzsgálat Összefüggésvzsgálat 9

10 .. VALÓSZÍNŰSÉGSZÁMÍTÁSI TÉTELEK Tétel: Ha A és B egy eseményalgebra két tetszőleges eseménye, akkor annak valószínűsége, hogy közülük legalább egy bekövetkezk: P( A + B) P( A) + P( B) P( A B) Bzonyítás: Tétel: Ha A esemény bekövetkezése maga után vonja a B esemény bekövetkezését, azaz A B, akkor: P( B A) P( B) P( A) és P( A) P( B) Bzonyítás: Feladat: Mutassuk k, hogy P(A) 0,7 és P(B) 0,9 esetén P(A B) 0,6. 0

11 Feladat: Próbagyártás után két szempontból vzsgáljuk a késztermékeket. Az A esemény azt jelent, hogy a vzsgált gyártmány anyaghbás, a B esemény pedg azt, hogy mérethbás. Az A esemény P(A)0,5, a B esemény P(B)0,3 és az A B esemény P(A B)0,08 valószínűséggel következk be. M a valószínűsége annak, hogy valamely késztermék hbátlan? Feladat: Egy skola tanulónál a jeles matematka és a jeles fzka osztályzatokat fgyeljük. A következő eseményeket vezetjük be tetszőlegesen kválasztott tanulókra: A: jeles osztályzata van matematkából, B: jeles osztályzata van fzkából. Ismeretesek a következők: annak valószínűsége, hogy egy véletlen kválasztott tanulónak jelese van fzkából: P(B)0,; hogy jelese van matematkából és fzkából: P(A B)0,09; hogy a matematka és fzka tárgyak közül legalább egykből jeles az osztályzata: P(A+B)0,6. M a valószínűsége annak, hogy egy tetszőlegesen kválasztott tanulónak jeles osztályzata van matematkából?

12 .. A FELTÉTELES VALÓSZÍNŰSÉG FOGALMA Defnícó: Ha A és B egy eseményalgebra két eseménye és P(B)>0, akkor a P( A B) P( A B) PB ( ) hányadost az A eseménynek a B eseményre vonatkoztatott feltételes valószínűségének nevezzük.

13 Feladat: Egy szállítmány 96 %-a megfelel a mnőség előírásoknak, s ezek 75 %-a első osztályú. Mekkora a valószínűsége annak, hogy egy találomra kválasztott darab első osztályú? Feladat: Egy telefonfülke előtt állunk és várjuk, hogy az előttünk beszélő befejezze a beszélgetést. Az llető beszélgetés dőtartama (τ) véletlen esemény, melyre érvényes a következő: P 3 ( τ t) e a.) Határozzuk meg annak a valószínűségét, hogy a beszélgetés 3 percnél tovább tart! b.) Menny annak a valószínűsége, hogy a beszélgetés tovább 3 percnél tovább tart, feltéve, hogy eddg 3 percnél tovább tartott? c.) Menny annak a valószínűsége, hogy a beszélgetés t+3 percnél tovább tart, feltéve, hogy t percnél tovább tartott? t 3

14 Feladat: Egy börtönben három elítéltet tartanak fogva: A-t, B-t és C-t. A következő napon egyküket felakasztják. A börtönőr tudja kt akasztanak fel, de nem szabad elárulna. Az A fogoly a következőt kérdez a börtönőrtől: "Áruld el a másk két fogoly közül egy olyannak a nevét, akt holnap nem akasztanak fel. Ha mndketten szabadok lesznek, akkor döntsd el magadban, hogy knek a nevét mondod. Ezzel nem árulsz el ttkot, mert azt már tudom, hogy egykük szabad lesz." A börtönőr ném gondolkodás után így válaszolt: "Nem, ez nem volna emberséges veled szemben. Most úgy gondolod, hogy /3 valószínűséggel akasztanak fel. Ha elárulom a többek közül egy olyannak a nevét, akt nem akasztanak fel, akkor az esélyed megnövekednek, úgy fogod gondoln, hogy / valószínűséggel akasztanak fel. Nem tudnál nyugodtan aludn". Helyesen érvelt-e a börtönőr? 4

15 .3. A TELJES VALÓSZÍNŰSÉG TÉTELE Tétel: Ha B, B,...B n teljes eseményrendszer és P(B k )>0 (k,,...n), A pedg egy tetszőleges esemény, akkor: n P( A) P( AB k) P( Bk) k Bzonyítás: 5

16 Feladat: Az MBA programban a "Kvanttatív módszerek" vzsgán a férfak 60 %-a, a hölgyek 80 %-a szerepel skeresen. A férfak az évfolyam 45 %-át teszk k. Mekkora a valószínűsége, hogy egy találomra kválasztott hallgató skeresen szerepel a vzsgán? Feladat: Három műszak azonos terméket gyárt. Egy adott napon az összes termékből az I. műszakban 40%, a II. és III. műszakban 30-30% készül. Az átlagos selejtarányok: I. műszak 5%, II. műszak 7%, III. műszak 0%. Az összes termékből a MEO egy darabot kválaszt, mekkora a valószínűsége, hogy az hbátlan? 6

17 Feladat: Egy gyártóberendezés munkadejének /3 részében az A terméket, /6 részében a B terméket, a többben pedg a C terméket gyártja. Az A termék gyártásakor az erre fordított dő 0%-ában áll a berendezés, a B termék gyártása közben végg dolgozk, míg a C termék gyártásakor a munkadő 5%-ában áll. Mekkora a valószínűsége annak, hogy egy találomra kválasztott dőpontban áll a berendezés? Feladat: Egy üzem 8 berendezése egyforma terméket gyárt. Az első három gép együttvéve 4% selejtet termel, a következő négy gépnél együttvéve 3% a selejt, míg az utolsó gép selejtaránya,5%. Az elkészült termékeket egy helyen gyűjtk. Mekkora a valószínűsége, hogy egy véletlenszerűen kválasztott darab selejtes lesz? 7

18 .4. BAYES-TÉTEL ("AZ OKOK VALÓSZÍNŰSÉGÉNEK TÉTELE") Tétel: Ha B, B,...B n teljes eseményrendszer és P(B k )>0 (k,,...n), A pedg egy olyan esemény, amelyre P(A)>0, akkor: ahol: PB ( A) k P( A B ) P( B ) n k P( A B ) P( B ) k P(B k A) P(B k ) posteror" valószínűségek, pror" valószínűségek. Bzonyítás: 8

19 Feladat: Alkatrész-ellátásnál a pótalkatrészt 40%-ban a I. szállító szállítja 0% selejttel, 60%-ban pedg a II. szállító szállítja 0% selejttel. Az alkatrészraktárból kvettünk egy pótalkatrészt és azt találtuk, hogy hbás. Mekkora a valószínűsége, hogy a kválasztott alkatrész a II. szállítótól jött? Feladat: Egy üzemből kkerülő áru 75% valószínűséggel I. osztályú. A készterméket megvzsgálják. Annak a valószínűsége, hogy a vzsgálat során az I. osztályú terméket nem I. osztályúnak mnősítk %. Annak a valószínűsége, hogy egy nem I. osztályú terméket I. osztályúnak mnősítenek 5%. Mekkora a valószínűsége annak, hogy egy olyan termék, amelyk egy vzsgálat során I. osztályú mnősítést kapott, valóban I. osztályú? 9

20 Feladat: Egy folyóban bekövetkező halpusztulásért 3 par üzem lehet felelős. Tapasztalatok szernt a mérgező anyag kbocsátásának valószínűsége az egyes üzemeknél: 0%, 50% és 30%. A mérések szernt az egyes üzemek szennyvízkbocsátása esetén a halpusztulás valószínűsége: 60%, 5% és 5%. Menny a halpusztulás teljes valószínűsége? Mekkora bírságot szabjon k a Ft-os halkárért a bíróság, ha nem smeretes, k a szennyezés kbocsátója a három üzem közül? (A bírságok összege a teljes halkár.) Feladat: Bertrand problémája: tekntsünk három szekrényt, amelyek mndegykében két fók van. Az első szekrény mndkét fókjában egy-egy aranygolyó, a másodk szekrény egyk fókjában arany-, a másodkban ezüstgolyó, a harmadk szekrény mndkét fókjában ezüstgolyó van. Találomra választunk egy szekrényt (azaz bármelyket egyenlő valószínűséggel választhatjuk), khúzunk egy fókot és abban aranygolyót találunk. Mekkora a valószínűsége annak, hogy az első szekrényt választottuk? 0

21 Feladat: Egy rodában 3 munkatárs dolgozk párhuzamosan azonos típusú ügyratok ntézésén. Az első naponta 0 aktával végez, a másodk nap 5, a harmadk nap 5 aktával. Az egyes munkatársaknál naponta átlagosan 0,3; 0,9; 0,5 db hbásan kezelt ügyrat található. Az összesített nap mennységből találomra kveszünk egy aktát és azt rossznak találjuk. Mekkora a valószínűsége, hogy azt az első munkatárs készítette?

22 .5. ESEMÉNYEK FÜGGETLENSÉGE Defnícó: A és B események (sztochasztkusan) függetlenek, ha P(A B)P(A) P(B). Az A esemény független B eseménytől, ha a P(A B) feltételes valószínűség nem függ a feltételtől: P( AB ) P( A B) P( A) PB ( ) Tétel: Ha A és B függetlenek, akkor A és B, A és B, valamnt A és B s függetlenek. Bzonyítás: Tétel: Ha három esemény páronként független, még nem bztos, hogy "teljesen függetlenek", azaz még teljesül az s, hogy: P(A B C)P(A) P(B) P(C) Feladat: Két kockával dobunk. Jelentse A azt az eseményt, hogy az első kockával párost dobunk, B azt az eseményt, hogy a másodk kockával páratlant dobunk és C azt az eseményt, hogy mndkettővel párost, vagy mndkettővel páratlant dobunk. A, B és C események teljesen függetlenek-e? Defnícó: Az A, A,... A n események teljesen függetlenek, ha közülük kválasztott tetszőleges számú eseményre teljesül, hogy az együttes bekövetkezésük valószínűsége egyenlő az egyes valószínűségek szorzatával.

23 3. LEÍRÓ STATISZTIKA Valószínűségszámítás Valószínűségelmélet Matematka statsztka Axómák, alaptételek Kombnatorka Geometra val.sz. Val.szám tételek Elmélet eloszlások Mnta vétel Leíró statsztka Becslés Hpotézsvzsgálat Összefüggésvzsgálat 3

24 3.. A LEÍRÓ STATISZTIKA HELYE, SZEREPE A STATISZTIKA VILÁGÁBAN A számszerű nformácó, annak mérése és elemzése alapvető szerepet játszk a társadalm és gazdaság jelenségek elemzésében. E számszerű adatok a legtöbb esetben azzal a sajátossággal rendelkeznek, hogy a megfgyelésük, a feldolgozásuk, elemzésük és az elemzés eredményenek felhasználása tudományos módszereket gényel. A statsztka módszerek között említhetünk meglehetősen egyszerű eljárásokat, és természetesen vannak ennél bonyolultabb, összetettebb matematka-statsztka módszerek. Magának a statsztka módszertannak -a konkrét vzsgálat tárgya alapján- szokás többféle ágát megkülönböztetn, a sokféle csoportosítás lehetőség közül a m szempontunkból célszerű különválasztan a leíró és a következtető statsztka vlágát. A kettő között lényeg különbség a következőkben ragadható meg: a leíró statsztka célja a vzsgálat tárgyát képező jelenség tömör, számszerű jellemzése az adatok elemzése és rendezése alapján (pl. 0 évente tartott népszámlálások adatanak feldolgozása); míg a következtető statsztka célja mnt azt a később fejezetekben látn fogjuk a mntából történő következtetés és általánosítás a teljes sokaságra vonatkozóan (pl. néhány ezer háztartás jövedelm adataból megfelelő pontossággal megbecsülhető, hogy a magyar lakosság körében mlyen jövedelm különbségek vannak). A leíró statsztka a megfgyelt adatok bemutatását, összefoglaló jellemzését tűz k célul, és ehhez az elemzéshez sokoldalú eszköztárt kínál, ebben a fejezetben célunk ennek az eszköztárnak a bemutatása. 3.. A STATISZTIKAI LEÍRÁS CÉLJA, MÓDSZEREI Ha a célnak megfelelően összegyűjtött adathalmaz áll rendelkezésünkre, akkor a következtetések felé tett első lépésünk a mnta feldolgozása, ennek kérdéskörével foglalkozk a leíró statsztka. A statsztka leírás célja a mnta adatanak átteknthető formába történő rendezése, tömörítése, az adatok grafkus megjelenítése, ábrázolása és egyes jellemző értékenek meghatározása. Így az adatok feldolgozásának kettős célja van: egy grafkus kép, pontosabban egy tapasztalat eloszláskép produkálása; a másk pedg statsztka mutatók meghatározása. A leíró statsztka e területe közül egyedül a rendezés, tömörítés pusztán technkanak tűnő, az adatok ábrázolása és a statsztka jellemzők meghatározása lényeges szemlélet, a sztochasztkus gondolkodást, látást megalapozó területek. A statsztka jellemzők segítségével a nagyszámú adat jellegzetességet néhány adatba sűrítve próbáljuk megragadn. A statsztka jellemzőket általában három fő csoportba soroljuk, éppen az alapján, hogy az adatok mlyen jellegzetességét ragadják meg: a középértékek: az adathalmaz közös, tpkus, jellegzetes, általános vonásat kísérlk megragadn egy-egy szám segítségével. az ngadozásmutatók: az egyed, különös, specáls, sajátos, eltérő jellegzetességek mértékét mutatják meg. az eloszlás alakjára jellemző egyéb mérőszámok: aszmmetra mértékét, az adatok eloszlásának lapultságát, csúcsosságát jellemző mutatók. Bármlyen adathalmaz esetén a feladatunk az, hogy alkalmas módon jelenítsük meg az adatokat, számítsunk jellemző középérték-mutatót és ngadozásmutatót s, mvel a középértékek átlagoló, összemosó hatását éppen az ngadozásmutatók tudják ellensúlyozn, míg az ngadozásmutatók pont ezt 4

25 a jellemző értéket nem tudják megragadn. Ezért a korrekt statsztka leíráshoz legalább egy-egy jellemző szükséges mndkét mutatócsoportból. Az egyed mérésekből származó adatok lehetnek dszkrétek és folytonosak. A dszkrét adatok szükségképpen ugrásszerűen változnak. Például a számlálás alapján nyert adatok dszkrét típusúak (pl. téves telefonhívások száma, balesetek száma, adott dőszak alatt bekövetkező gépmeghbásodások száma stb.). A folytonos adatok általában mérésből származnak. Jellemzőjük, hogy egy adott ntervallumon belül elvleg bármlyen értéket felvehetnek. A mérés korláta matt ezek az adatok s ugrásszerűen változnak, de az ugrások nagysága a mérőeszköztől függ, maguk az adatok lényegüket tekntve folytonosak (pl. átmérő, nyúlás, gépkocs abroncsok futásteljesítménye, nedvességtartalom) AZ ADATOK ÁBRÁZOLÁSA A leíró statsztka jelentős részben az adatok átteknthető ábrázolásával foglalkozk, így fontos eszköze a táblázatok és dagramok. Ezeknél a dagramoknál, táblázatoknál az egyes értékek összehasonlítása áll előtérben, a grafkus ábrázolásoknál azonban nem mndg fontosak az értékek, sok esetben a vzsgált jelenséggel kapcsolatban azok megoszlása, egymáshoz való vszonya, aránya árulkodóbb. A táblázatok, dagramok lehetővé teszk nagyobb adathalmazok áttekntő ábrázolását, és vszonylag egyszerű őket elkészíten. A grafkonok a pontos értékek megadása nélkül s gyors áttekntést adnak, nagy terjedelmű mnták egészen egyszerű grafka elemekre támaszkodva válnak átteknthetővé. Néhány példa: A hba típusa Szabvány Kum. Relatív Kum. rel. Gyakorság jelölése gyakorság gyakorság gyak. Gömb alakú gázzárvány ,% 53,% Gázzárvány-halmaz ,7% 70,7% Átolvadás hány ,5% 80,3% Összeolvadás hány ,% 88,4% Gyökátfolyás ,7% 9,% Hernyó alakú gázzárvány ,0% 93,% Gyökoldal szélkolvadás ,0% 95,% Egy oldalról hegesztett kötésben átolvadás hány 40 4,4% 96,6% Hely szélkolvadás, éles bemetszés nélkül 55 44,4% 98,0% Alapanyag-varrat között összeolvadás hány ,7% 98,6% Wolfrám zárvány ,7% 99,3% Egyenetlen varratfelület ,7% 00,0%. ábra: Az adatok táblázatba rendezése 5

26 3. ábra: Oszlopdagram 4. ábra: Kördagram 5. ábra: Sávdagram 6

27 Adatok ábrázolása pktogram segítségével: 6. ábra: Vonaldagram Az összes szőlőtermelés felhasználása 7. ábra 7

28 3.4. TAPASZTALATI ELOSZLÁSOK A nagy számú statsztka adat átteknthetőségét lehetővé tesz, feldolgozását egyszerűsít, ha az értékeket nagyság szernt osztályokba soroljuk. A mérés sorozat legksebb és legnagyobb értéke között ntervallumot k számú osztályra bontjuk. Ha összesen n adatunk van, f pedg az -edk osztályba eső elemek számát jelent, akkor n knduló adat f + f +..+ f k n részsokaságok összegeként értelmezhető. Általános lépése a következők: osztálybasorolás (folytonos adatok és nagyszámú dszkrét megfgyelés esetén), a gyakorságok (f ) megállapítása. Gyakorság a sokaságban levő azonos tulajdonságú (azonos osztályba tartozó) elemek száma, a relatív gyakorságok (g ) megállapítása: g f n az összegzett (kumulált) gyakorságok (f ), lletve összegzett relatív gyakorságok (g ) megállapítása, gyakorság táblázat készítése (f, g, f, g adataból), a gyakorság (relatív gyakorság), lletve összegzett gyakorság (relatív gyakorság) hsztogramok (folytonos adatok esetén a polgon és az ogva) felvétele (tapasztalat eloszlások elkészítése). Grafkus ábrázolás Feladat: Egy folyamatos üzemben 4 órán keresztül feljegyezték a gépleállások számát. A leállásokra vonatkozóan az alább értékek adódtak óránként megoszlásban: Óra Leállások száma Óra Leállások száma. Táblázat A példa adata a következő gyakorság táblázatba és hsztogramba rendezhetők: Ahhoz, hogy az előbb táblázatunkat átteknthetőbb formába öntsük, célszerű az adatankat a dszkrét valószínűség változó által felvehető értékek szernt csoportosítan: 8

29 leállások száma óránként az előfordulások gyakorsága (f ) relatív gyakorság (g ) 0 3 0,5 5 0,08 5 0, , ,5 5 0, ,083 összesen 4,000. Táblázat Ha vszonylag kevés adatunk van, akkor célszerű az alapján elkészíten az osztályba sorolást, hogy e dszkrét valószínűség változó mlyen értékeket vehet fel. 8. ábra: Gyakorságok ábrázolása dszkrét adatok esetén Dszkrét adatok esetén a gyakorságok az y tengely csak egy meghatározott pontjához tartoznak, és nem egy értéksávhoz, ezért dszkrét eloszlások esetében a gyakorságot általában függőleges vonalakkal jelölk. A kumulált (összegzett) gyakorság táblázat és hsztogram: leállások száma kumulált gyakorság (f ) kumulált relatív gyakorság (g ) 0 3 0,5 8 0, , , , ,97 6 4, Táblázat A kumulatív gyakorságok grafkus ábrázolással nyert képét tapasztalat eloszlásfüggvénynek szokták nevezn. 9

30 9. ábra: Kumulált relatív gyakorságok ábrázolása dszkrét adatok esetén 30

31 Feladat: Mnt később tanulmányank (Vállalat pénzügyek) során látn fogjuk, gazdaság elemzésenknél gyakran szükség van a részvényektől elvárt hozam becslésére. (A részvények elvárt hozama dőben vszonylag stabl, így a jövőre vonatkozó becslésenket múltbel adatankra alapozhatjuk). A Budapest Értéktőzsde Részvényndexét (BUX) - az deglenes ndex ném változtatásával és 99- g vsszafelé s meghatározva január - hatállyal vezették be. Az ndex bázsa az 99. január -án számított 000 pont. Egy 5 éves dőszak hav hozamanak értéket az alább táblázatban foglaltuk össze. dátum BUX[%] dátum BUX[%] február. -7,54 november.,03 márcus. -0,7 december.,5 áprls 5. -,0 január 6. 3,3 május. -,5 február 3.,44 júnus. -8,4 márcus 3. -,9 júlus. 4,9 áprls. 0,03 augusztus. 3,0 május 5. 3,79 szeptember. -8,45 júnus.,9 október 3. 6,88 júlus. 5,99 november. -5,08 augusztus. -8, december. -4,89 szeptember. 6,34 január 5. -8,98 október. -7,6 február. 4,05 november 3. -6,75 márcus.,6 december. 0,4 áprls 3.,68 január 7. -7, május. 5,44 február.,7 júnus. -4,79 márcus. 4,84 júlus 3.,06 áprls. -, augusztus. 5,6 május 4. -7,48 szeptember.,8 júnus. 0,63 október. -6,05 júlus. 3,45 november. -0,93 augusztus ,06 december.,9 szeptember. -,97 január 4. 35,6 október. 6,9 február. 7,8 november.,53 márcus. 9,75 december. 5,5 áprls. 7,67 január 7. 3,6 május.,06 február. -3,63 júnus 3.,39 márcus. -,37 júlus. -,85 áprls. 9,0 augusztus.,6 május 3. 4,58 szeptember 3. 8,57 júnus. 4,59 október. 6,46 4. Táblázat Dolgozzuk fel a hav hozam adatokat leíró statsztka eszközökkel! 3

32 Folytonos adatokból készítendő gyakorság eloszlásoknál (és egyébként nagyszámú dszkrét adat esetén s) szükséges a rendelkezésre álló adatok osztályközökbe történő sorolása. Osztályba sorolásnak nevezzük az adathalmaz valamenny értékét magába foglaló teljes értékköz felosztását azonos nagyságú rész-értékközökre, és az adatoknak ezen belül csoportosítását. Az osztályköz középső értékét osztályköznek nevezzük, mvel az osztályba sorolás eredményeként az adatok elvesztk egyed értékeket, és az azonos osztályba sorolt adatokra az azonos osztályközép lesz a jellemző. Az osztályközt határoló két érték az alsó és a felső osztályhatár. Az osztályozás krtéruma: Teljes Átfedésmentes Homogén csoportokat eredményezzen Az Y szernt képzett osztály alsó felső határa Osztályközép abszolút relatív gyakorság Y 0 Y Y f g Y 0 Y Y f g Y 0 Y Y Y 0 + ( Y Y ) f g g f N Y k0 Y k Y k f k g k Összesen N 0. ábra: Gyakorság sor Ahol: Y (adatankat jellemző) mennység smérv, Adathalmazunkból k db osztályt képzünk, A 0-s ndex az osztály alsó határát, az -es ndex pedg az osztályköz felső határát jelent, Y az osztályközép, f az abszolút vagy tapasztalat gyakorság, g pedg a relatív gyakorság. Akár egy, akár több smérv szernt csoportosítjuk az adatankat, mndg kardnáls kérdés az osztályok számának a megválasztása. Ez alapos megfontolást gényel, és a vzsgált sokaság nagyságától nem függetleníthető. Mérlegelendő szempontok az osztályozásnál: M a célunk az osztályozással? A teljes értékközt hány rész-értékközre bontsuk fel, vagys hány osztályt alakítsunk k? Az osztályhatárok megállapításánál, kalakításánál mlyen szempontokat célszerű fgyelembe venn? A fent példánk alapján a gyakorság táblázat: osztályhatárok f f g [%] g [%] -40,00 x <-30,00,54,54-30,0 x <-0,00 0 0,00,54-0,0 x <-0, ,3 0,77-0,0 x < 0, ,5 36,9 0,0 x < 0, ,38 7,30 0,0 x < 0, ,00 9,30 0,0 x < 30, ,6 96,9 30,0 x < 40, ,08 00,00 összesen 65 00,00 5. Táblázat 3

33 A gyakorság hsztogram: Az egyes értékközök felé emelt téglalapok területe arányos az egyes osztályokhoz tartozó tapasztalat gyakorságokkal. A pros vonallal jelölt függvényt sűrűségfüggvénynek nevezzük. A kumulált relatív gyakorság hsztogram: n 65 x s * 3, 9 %,05 %. ábra: Sűrűségfüggvény. ábra: Eloszlásfüggvény A kumulált gyakorságok grafkus ábrázolással nyert képét tapasztalat eloszlásfüggvénynek s szokás nevezn, ez megmutatja, hogy mlyen valószínűséggel fordul elő egy adott értéknél ksebb érték. A folytonos adatok eloszlásfüggvényét folytonos vonallal s összeköthetjük, és az így kapott görbét ogvának nevezzük. Ez azt mutatja meg, hogy megközelítően mlyen lenne a tapasztalat eloszlásfüggvény, ha az osztályközöket mnden határon túl csökkentenénk, az osztályközökbe eső adatok számát pedg mnden határon túl növelnénk. Az ogvát felhasználhatjuk egy adott értéknél ksebb értékek számának vagy relatív gyakorságának meghatározására. Fordítva s eljárhatunk, vagys megállapíthatjuk azt az értéket, amelyk alá adott relatív gyakorsággal esnek az adatok. Az lyen értékeket kvantlseknek nevezzük. 33

34 3.5. A TAPASZTALATI ELOSZLÁSOK KÖZÉPÉRTÉK-MUTATÓI A középérték-mutatókat gyakran helyzetmutatóknak s nevezk. A középérték-mutatók a gyakorság eloszlás helyzetét egyetlen, az adatokkal azonos mértékegységű számértékkel jellemzk. E középértékekkel kapcsolatos elvárásank, hogy legyenek: Közepes helyzetűek Tpkusak Egyértelműen meghatározhatóak Könnyen értelmezhetőek A középértémutatóknak két nagy csoportja smeretes: Helyzet középértékek: az adatok között elhelyezkedésüknél fogva jellemzk a vzsgált gyakorság eloszlás helyzetét. Számított középértékek: az adatokkal kapcsolatos számszerű összefüggésük révén jellemzk vzsgált gyakorság eloszlás helyzetét. Az alábbakban bemutatásra kerülő középérték mutatók a medán, a módusz, a számtan átlag, a harmonkus átlag, a mértan átlag és a négyzetes átlag. Medán (Me): Jellemző: helyzet középérték, közepes helyzetű. A medán a változó azon számértéke, amelynél az összes előforduló számérték fele ksebb, fele pedg nagyobb, tehát a rangsorba állított sokaság számértékeket két egyenlő gyakorságú osztályra bontja. Rövden: a nagyságrend szernt rendezett adatok középső értéke (páros számú adat esetén a két középső érték átlaga). Példa: 6, 8, 4, 9, 7, 3, 5, 3, 4, 5, 6, 7, 8, 9 Me6 4, 9, 7, 8,, 5, 4, 5, 7, 8, 9, Me7,5 7, 9, 3, 0, 5,, 5,, 3, 5, 5, 7, 9, 0 Me5 Ha a BUX ndex korább, 65 hav hozamadatat vesszük alapul, akkor e 65 adatot sorba állítva, a rangsor 33. tagja lesz a medán, hszen ennél 3 ksebb, és 3 nagyobb érték lesz a rangsorban, ez pedg 3,79. Felmerül a kérdés: hogyan határozható meg a medán akkor, amkor nem smerjük egyenként az adatokat, hanem csak osztályközös gyakorság sor áll rendelkezésünkre? Ilyen esetekben a medán legegyszerűben a következő formulával becsülhető: Meˆ Y me,0 + N f f me ' me h me ahol me annak a legelső osztályköznek a sorszáma, amelyre gaz, hogy ' f me N és Y me,0 az me sorszámú osztályköz alsó határa, és a h me pedg ennek az osztálynak az osztályközhosszúsága, am egyszerűen a felső és alsó osztályhatár értékének a különbsége. 34

35 Példa: Vegyük a korább BUX-ndexes példánkat, és tegyük fel, hogy csak a gyakorság táblázat áll rendelkezésünkre, és nem smerjük egyenként az összes hozamadatot. osztályhatárok f f g [%] g [%] -40,00 x <-30,00,54,54-30,0 x <-0,00 0 0,00,54-0,0 x <-0, ,3 0,77-0,0 x < 0, ,5 36,9 0,0 x < 0, ,38 7,30 0,0 x < 0, ,00 9,30 0,0 x < 30, ,6 96,9 30,0 x < 40, ,08 00,00 összesen 65 00,00 ' N f me N/3,5 a medánt tartalmazó osztály az ötödk osztály: 0,0 x < 0. M eˆ Y me N ' fme 3,5 4, 0 + hme 0,0+ (0,00 0,0) 3,7 f 3 me Ha összehasonlítjuk a korább eredményünkkel, láthatjuk, hogy a medán jól becsülhető osztályközös gyakorság sorból s. A medán előnye, hogy mndg egyértelműen meghatározható, és mvel valód középérték, így érzéketlen az adathalmazunkban szereplő szélsőértékekre, amely szélsőségesen nagy vagy kcs értékeket általában a véletlen szeszélye alakítják, és nem függ a több smérvértéktől sem. Ha az adathalmazunkban sok az egyforma smérvérték, akkor sem tanácsos használn. Módusz (Mo): A módusz - a medánhoz hasonlóan - helyzet középérték. A módusz nem mndg határozható meg egyértelműen, és nem s mndg létezk. Dszkrét változó esetén a változó leggyakrabban előforduló értéke. A 4 óra alatt gépleállásokhoz tartozó gyakorság táblázatot alapul véve látható, hogy a 4 órás megfgyelés alatt egyaránt 5-5 alkalommal fordult elő, hogy vagy leállás volt az adott órában. Ebben az esetben a módusz nem határozható meg egyértelműen. leállások száma óránként az előfordulások gyakorsága összesen 4 35

36 Folytonos smérv esetén a módusz a gyakorság görbe maxmum helye. Folytonos változó esetén a medánhoz hasonló módon osztályközös gyakorság sorból becsülhető. Moˆ Ymo, 0 da + d + d a f h mo Ebben a képletben mo a móduszt tartalmazó osztályköz sorszáma és da fmo f d mo f fmo fmo+ A móduszt mndg az az osztályköz tartalmazza, amelykhez a hsztogram legmagasabb oszlopa tartozk. osztályhatárok f f g [%] g [%] -40,00 x <-30,00,54,54-30,0 x <-0,00 0 0,00,54-0,0 x <-0, ,3 0,77-0,0 x < 0, ,5 36,9 0,0 x < 0, ,38 7,30 0,0 x < 0, ,00 9,30 0,0 x < 30, ,6 96,9 30,0 x < 40, ,08 00,00 összesen 65 00,00 Ebben a példánkban a móduszt a legnagyobb gyakorságú osztály tartalmazza, ez pontosan ugyanaz az osztály, ahol a medán s volt. M da (3 7), + h 0,0 + (0,00 0,0) 3,76 d + d (3 7) + (3 3) oˆ Ymo 0 mo a f Megjegyzés: néha a módusz becslésének egyszerűen a móduszt tartalmazó osztályköz osztályközepét tekntk (példánkban ez 5,00 lenne), ezt nyers módusznak hívják. Bárhogyan s határozzuk meg a móduszt, az arra kapott közelítő érték esetleges, mert függ az osztályközök számától és hosszától. A módusz előnye, hogy a medánhoz hasonlóan nem függ sem az összes, sem a kugró smérvértékektől. A módusz hátránya, hogy nem mndg egyértelműen meghatározható, és nem s mndg létezk. Számtan átlag ( x ): A leggyakrabban használt középértékmutató: az átlag, számított középérték. Az a szám, amellyel az átlagolandó számértékeket helyettesítve azok összege változatlan marad. Számítása: x n n x r r f f x r g x 36

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

A gabonavertikum komplex beruházás-elemzés módszertani fejlesztése OTKA: 48562 Részletes zárójelentés Témavezető: Dr. Ertsey Imre

A gabonavertikum komplex beruházás-elemzés módszertani fejlesztése OTKA: 48562 Részletes zárójelentés Témavezető: Dr. Ertsey Imre A gabonavertkum komplex beruházás-elemzés módszertan fejlesztése OTKA: 48562 Részletes zárójelentés Témavezető: Dr. Ertsey Imre 1. Bevezetés A gabonavertkum komplex beruházás-elemzés módszertan fejlesztése

Részletesebben

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell Budapest Műszak és Gazdaságtudomány Egyetem Közlekedésmérnök és Járműmérnök Kar Közlekedésüzem Tanszék HÁLÓZATTERVEZÉSI MESTERISKOLA BEVEZETÉS A KÖZLEKEDÉS MODELLEZÉSI FOLYAMATÁBA Dr. Csszár Csaba egyetem

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot

Részletesebben

Nemlineáris függvények illesztésének néhány kérdése

Nemlineáris függvények illesztésének néhány kérdése Mûhel Tóth Zoltán docens, Károl Róbert Főskola E-mal: zol@karolrobert.hu Nemlneárs függvének llesztésének néhán kérdése A nemlneárs regresszós és trendfüggvének llesztésekor számos esetben alkalmazzuk

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

11. előadás PIACI KERESLET (2)

11. előadás PIACI KERESLET (2) . előadás PIACI KERESLET (2) Kertes Gábor Varan 5. feezete erősen átdolgozva . Állandó rugalmasságú kereslet görbe Olyan kereslet görbe, amt technkalag könnyű kezeln. Ezért szeretk a közgazdászok. Hogyan

Részletesebben

Foglalkoztatáspolitika. Modellek, mérés.

Foglalkoztatáspolitika. Modellek, mérés. Foglalkoztatáspoltka. Modellek, mérés. Galas Péter Budapest, 20 Galas Péter, 20 Kézrat lezárva: 20. júnus Bevezetés A tananyag célja a foglalkoztatáspoltka közgazdaságtan szempontú elemzésében és értékelésében

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK

2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK ELTE Regonáls Földrajz Tanszék 2005. 1 2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK 2.1 Terület statsztka és térelemzés A kutatás cél, a főbb vzsgálat témakörök (hpotézsek) meghatározása, a

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak i alapfogalmak statisztikai sokaság: a megfigyelés tárgyát képező egyedek összessége 2 csoportja van: álló sokaság: mindig vmiféle állapotot, állományt fejez ki, adatai egy adott időpontban értelmezhetők

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

Az aktív foglalkoztatási programok eredményességét meghatározó tényezõk

Az aktív foglalkoztatási programok eredményességét meghatározó tényezõk Az aktív foglalkoztatás programok eredményességét meghatározó tényezõk GALASI ÉTER LÁZÁR GYÖRGY NAGY GYULA Budapest Munkagazdaságtan Füzetek BW. 1999/4 1999. máus 1 Budapest Munkagazdaságtan Füzetek.1999/4.

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

Keresztkorreláció vizsgálata statisztikai teszttel

Keresztkorreláció vizsgálata statisztikai teszttel SZAKDOLGOZAT Keresztkorrelácó vzsgálata statsztka teszttel Készítette: Balogh Bertalan kéma BSc szakos hallgató Témavezető: Tóth Gergely egyetem docens Eötvös Loránd Tudományegyetem, Természettudomány

Részletesebben

Sta t ti t s i zt z i t k i a 3. előadás

Sta t ti t s i zt z i t k i a 3. előadás Statisztika 3. előadás Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan A statisztika, mint gyakorlati tevékenység a tömegesen előforduló jelenségek egyedeire vonatkozó információk

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Réthy Zsolt GYÁRTÁSI FOLYAMATOK OPTIMALIZÁLÁSA A MINŐSÉGÜGYBEN ALKALMAZOTT KOMPROMISSZUMMODELLEK. Doktori (PhD) értekezés

Réthy Zsolt GYÁRTÁSI FOLYAMATOK OPTIMALIZÁLÁSA A MINŐSÉGÜGYBEN ALKALMAZOTT KOMPROMISSZUMMODELLEK. Doktori (PhD) értekezés Réthy Zsolt GYÁRTÁSI FOLYAMATOK OPTIMALIZÁLÁSA A MINŐSÉGÜGYBEN ALKALMAZOTT KOMPROMISSZUMMODELLEK FELHASZNÁLÁSÁVAL Doktor (PhD) értekezés Témavezető: Dr. Erdély József DSc. egyetem tanár Nyugat-Magyarország

Részletesebben

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 2. előadás Előadó: Dr. Ertsey Imre Statisztikai sorok Meghatározott szempontok szerint kiválasztott két vagy több logikailag összetartozó statisztikai adat, statisztikai sort képez. általában

Részletesebben

A neurális hálózatok alapjai

A neurális hálózatok alapjai A neuráls hálózatok alapja (A Neuráls hálózatok és mszak alkalmazásak cím könyv (ld. források) alapján) 1. Bológa alapok A bológa alapok megsmerése azért fontos, mert nagyon sok egyed neuráls struktúra,

Részletesebben

BELSŐ GAZDASÁGOSSÁG A TERMELÉSI FOLYAMATBAN

BELSŐ GAZDASÁGOSSÁG A TERMELÉSI FOLYAMATBAN Kss Ferenc László BELSŐ GAZDASÁGOSSÁG A TERMELÉSI FOLYAMATBAN A szerzőnek a Verseny és szabályozás első kötetében 2007-ben megjelent sorozatndító ckke a szabályozás gazdaságtana történelmének és főbb témának

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 22. lecke: A teljes valószínűség tétele és a Bayes-tétel Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták.

1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták. 1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták. a) Hozzon létre osztályközös gyakoriságot az alábbi osztályközökkel: - 100.000 100.000-150.000 150.000-200.000 200.000-250.000

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

1. Holtids folyamatok szabályozása

1. Holtids folyamatok szabályozása . oltds folyamatok szabályozása Az rányított folyamatok jelentés részét képezk a lassú folyamatok. Ilyenek például az par környezetben található nagy méret kemencék, desztllácós oszlopok, amelyekben valamlyen

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez Bevezetés Ebben a fejezetben megismerkedünk a Logikai függvények típusaival és elsajátítjuk alkalmazásukat. Jártasságot szerzünk bonyolultabb feladatok megoldásában, valamint képesek leszünk a függvények

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként.

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként. A szta formula és alalmazása. Gyaran találozun az alább érdéssel, soszor egy összetett feladat részfeladataént. Tentsün bzonyos A 1,...,A n eseményeet, és számítsu anna a valószínűségét, hogy legalább

Részletesebben

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 1. A populációt a számunkra érdekes egységek (személyek, csalások, iskolák stb.) alkotják,

Részletesebben

SZILÁRD TESTEK SZTATIKÁJA

SZILÁRD TESTEK SZTATIKÁJA SOPRONI EGYETEM FAIPARI MÉRNÖKI KAR Dr. Szala József egyetem tanár MŰSZAKI MECHANIKA II. SZILÁRD TESTEK SZTATIKÁJA (Rugalmasság- és szlárdságtan) Jegyzet fapar-, papírpar-, erdő- és környezetmérnök hallgatók

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

ERP beruházások gazdasági értékelése

ERP beruházások gazdasági értékelése Rózsa Tünde 1 ERP beruházások gazdaság értékelése 1 DE ATC AVK Gazdaság- és Agrárnformatka Tanszék, Debrecen, Böszörmény u. 138 Absztrakt. Egy ERP rendszer bevezetése mnden esetben nagy anyag megterhelést

Részletesebben

DR. KINCZEL FERENC * Kiszolgálási folyamat vizsgálata egy életbevágó sorbanállási jelenségben. Mentőszolgálat szimulációs modellezése

DR. KINCZEL FERENC * Kiszolgálási folyamat vizsgálata egy életbevágó sorbanállási jelenségben. Mentőszolgálat szimulációs modellezése DR. KINCZEL FERENC * Kszolgálás folyamat vzsgálata egy életbevágó sorbanállás jelenségben. Mentőszolgálat szmulácós modellezése 1. Bevezetés The examnaton of an attendance process n a fateful queueng ncdent.

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

GAZDASÁGI ÉS NATURÁLIS CÉLFÜGGVÉNYEK KOMBINÁLT ALKALMAZÁSA EGY EGYSZERŰ LOGISZTIKAI PÉLDÁN

GAZDASÁGI ÉS NATURÁLIS CÉLFÜGGVÉNYEK KOMBINÁLT ALKALMAZÁSA EGY EGYSZERŰ LOGISZTIKAI PÉLDÁN GZDSÁGI ÉS NURÁLIS ÉLFÜGGVÉNY OMINÁL LLMZÁS GY GYSZRŰ LOGISZII PÉLDÁN Pokornyk Norbert aposvár gyetem Gazdaságtudomány ar, aposvár Informatka anszék onzulens: Dr. sukás éla, tanszékvezető, egyetem docens

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.

Részletesebben

A lánc viszonyszám: A lánc viszonyszám számítási képlete:

A lánc viszonyszám: A lánc viszonyszám számítási képlete: A lánc viszonyszám: Az idősor minden egyes tagját a közvetlenül megelőzővel osztjuk, vagyis az idősor első évének, vagy időszakának láncviszonyszáma nem számítható. A lánc viszonyszám számítási képlete:

Részletesebben

Bevezetés 2. Az igény összetevői 3. Konstans jellegű igény előrejelzése 5. Lineáris trenddel rendelkező igény előrejelzése 14

Bevezetés 2. Az igény összetevői 3. Konstans jellegű igény előrejelzése 5. Lineáris trenddel rendelkező igény előrejelzése 14 Termelésmenedzsmen lőrejelzés módszerek Bevezeés Az gény összeevő 3 Konsans jellegű gény előrejelzése 5 lőrejelzés mozgó álaggal 6 Mozgó álaggal előre jelze gény 6 Gyakorló felada 8 Megoldás 9 lőrejelzés

Részletesebben

Szegedi Tudományegyetem Gazdaságtudományi Kar. Petres Tibor Tóth László. STATISZTIKA I. kötet

Szegedi Tudományegyetem Gazdaságtudományi Kar. Petres Tibor Tóth László. STATISZTIKA I. kötet Szeged Tudománegetem Gazdaságtudomán Kar Petres Tbor Tóth László STATISZTIKA I. kötet Szerzők: Dr. Petres Tbor, PhD egetem docens Statsztka és Demográa Tanszék Tóth László PhD-hallgató Gazdaságtudomán

Részletesebben

Középértékszámítás egy megértési teszt eredményei

Középértékszámítás egy megértési teszt eredményei Középértékszámítás egy megértési teszt eredményei Debrenti Edith Partiumi Keresztény Egyetem, Nagyvárad edit.debrenti@gmail.com Ha arra keressük a választ, hogy az iskolában megszerzett matematikatudás

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

AZ ARCHASADÉKOK EPIDEMIOLÓGIAI VIZSGÁLATA. Doktori (Ph.D.) értekezés HORVÁTH-PUHÓ ERZSÉBET

AZ ARCHASADÉKOK EPIDEMIOLÓGIAI VIZSGÁLATA. Doktori (Ph.D.) értekezés HORVÁTH-PUHÓ ERZSÉBET PÉCSI TUDOMÁNYEGYETEM EGÉSZSÉGTUDOMÁNYI KAR EGÉSZSÉGTUDOMÁNYI DOKTORI ISKOLA Vezető: Prof. Dr. Bóds József egyetem tanár, dékán AZ ARCHASADÉKOK EPIDEMIOLÓGIAI VIZSGÁLATA Doktor (Ph.D.) értekezés HORVÁTH-PUHÓ

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Ellenőrző kérdések és lényegre törő válaszok az ütemezési feladatok osztályozása témakörből :

Ellenőrző kérdések és lényegre törő válaszok az ütemezési feladatok osztályozása témakörből : Termeléstervezés és vállalatrányítás Ellenőrző kérdések és lényegre törő válaszok az ütemezés feladatok osztályozása témakörből : 1 Ismertesse az ütemezés feladatok háromelemes osztályozásának alapvető

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL 01/2008:20236 javított 8.3 2.2.36. AZ IONKONCENRÁCIÓ POENCIOMERIÁ MEGHAÁROZÁA IONZELEKÍ ELEKRÓDOK ALKALMAZÁÁAL Az onszeletív eletród potencálja (E) és a megfelelő on atvtásána (a ) logartmusa özött deáls

Részletesebben

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Budapesti Műszaki Főiskola, NIK, Matematikai és Számítástudományi

Részletesebben

KVANTITATÍV MÓDSZEREK

KVANTITATÍV MÓDSZEREK Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet KVANTITATÍV MÓDSZEREK Példatár megoldásokkal Dr. Kövesi János Dr. Tóth Zsuzsanna Eszter Budapest

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 8. Valószínűség-számítás II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

9. Visszavezetés egyedi felsorolókkal

9. Visszavezetés egyedi felsorolókkal 9. Vsszavezetés egyed felsorolókkal Ebben a fejezetben a hét általános programozás tételt olyan feladatok megoldására alkalmazzuk, ahol nem lehet nevezetes felsorolókat sználn, azaz a Frst(), Next(), End()

Részletesebben

3. MINTAFELADATSOR KÖZÉPSZINT

3. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

A bruttó hazai termék (GDP) növekedéséhez való hozzájárulás

A bruttó hazai termék (GDP) növekedéséhez való hozzájárulás Mûhely Anwar Klára, a KSH vezető tanácsosa E-mal: Klara.Anwar@ksh.hu Szôkéné Boros Zsuzsanna, a KSH osztályvezetője E-mal: Zsuzsanna.Boros@ksh.hu A bruttó haza termék (GDP) növekedéséhez való hozzájárulás

Részletesebben

Területi különbségek a hazai egészségturizmus kínálatában

Területi különbségek a hazai egészségturizmus kínálatában KÖZLEMÉNYEK DR. ÁCS PONGRÁC LACZKÓ TAMÁS Terület különbségek a haza egészségturzmus kínálatában Bevezetés Napjankban az egészségturzmus különböző formá egyre jelentősebb szerepet játszanak a vlág turzmusában,

Részletesebben

Készletgazdálkodás. TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor

Készletgazdálkodás. TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor Készletgazdálkodás TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor KÉSZLET A készlet az üzletben lévı áruk értékének összessége. A vállalkozás

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. október 16. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT 1. FELADATSOR Felhasználható idő: 40 perc I. rész 1.1.) Oldja meg grafikusan az alábbi egyenlőtlenséget! x + 1 + 1 x + x + 11 1..) Mekkora legyen az x valós szám értéke, hogy az alábbi három mennyiség

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát!

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát! Konduktometriás titrálás kiértékelése Excel program segítségével (Office 2007) Alapszint 1. A mérési adatokat írjuk be a táblázat egymás melletti oszlopaiba. Az első oszlopba kerül a fogyás, a másodikba

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben