ÁLTALÁNOS STATISZTIKA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ÁLTALÁNOS STATISZTIKA"

Átírás

1 Berzseny Dánel Főskola ÁLTALÁNOS STATISZTIKA műszak menedzser alapszak Írta: Dr. Köves János Tóth Zsuzsanna Eszter Budapest 006

2 Tartalomjegyzék. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK A VALÓSZÍNŰSÉGSZÁMÍTÁS TÁRGYA A VALÓSZÍNŰSÉG FOGALMA A VALÓSZÍNŰSÉGSZÁMÍTÁS AXIÓMARENDSZERE A VALÓSZÍNŰSÉG MEGHATÁROZÁSÁNAK MÓDSZEREI A VALÓSZÍNŰSÉGSZÁMÍTÁS JELENTŐSÉGE A MŰSZAKI-GAZDASÁGI ELEMZÉSEKBEN VALÓSZÍNŰSÉGSZÁMÍTÁSI TÉTELEK, FELTÉTELES VALÓSZÍNŰSÉG, ESEMÉNYEK FÜGGETLENSÉGE VALÓSZÍNŰSÉGSZÁMÍTÁSI TÉTELEK A FELTÉTELES VALÓSZÍNŰSÉG FOGALMA A TELJES VALÓSZÍNŰSÉG TÉTELE BAYES-TÉTEL ("AZ OKOK VALÓSZÍNŰSÉGÉNEK TÉTELE") ESEMÉNYEK FÜGGETLENSÉGE LEÍRÓ STATISZTIKA A LEÍRÓ STATISZTIKA HELYE, SZEREPE A STATISZTIKA VILÁGÁBAN A STATISZTIKAI LEÍRÁS CÉLJA, MÓDSZEREI AZ ADATOK ÁBRÁZOLÁSA TAPASZTALATI ELOSZLÁSOK A TAPASZTALATI ELOSZLÁSOK KÖZÉPÉRTÉK-MUTATÓI AZ INGADOZÁS MÉRŐSZÁMAI AZ ELOSZLÁS ALAKJÁT JELLEMZŐ EGYÉB MUTATÓSZÁMOK ESETTANULMÁNY LEÍRÓ STATISZTIKAI ELEMZÉS VISZONYSZÁMOK KORRELÁCIÓ- ÉS REGRESSZIÓSZÁMÍTÁS I DETERMINISZTIKUS ÉS SZTOCHASZTIKUS KAPCSOLATOK A KAPCSOLAT SZEMLÉLTETÉSE AZ ELŐJEL KORRELÁCIÓS EGYÜTTHATÓ A LINEÁRIS REGRESSZIÓ ÉS A KORRELÁCIÓ AUTO- ÉS KERESZTKORRELÁCIÓ IDŐSOROK ELEMZÉSÉNÉL VALÓSZÍNŰSÉGI VÁLTOZÓ, ELMÉLETI ELOSZLÁSOK A VALÓSZÍNŰSÉGI VÁLTOZÓ VALÓSZÍNŰSÉGI VÁLTOZÓ JELLEMZŐI BINOMIÁLIS ELOSZLÁS POISSON-ELOSZLÁS EXPONENCIÁLIS ELOSZLÁS NORMÁLIS (GAUSS-) ELOSZLÁS A KÖZPONTI HATÁRELOSZLÁS TÉTELE STATISZTIKAI DÖNTÉSEK ALAPELVEI ESETPÉLDA DÖNTÉSI ALAPMODELL DÖNTÉSI MÁTRIX A DÖNTÉSI FOLYAMAT LOGIKÁJA DÖNTÉSI OSZTÁLYOK ÉS DÖNTÉSI KRITÉRIUMOK A MINTAVÉTEL ÉS A KÖVETKEZTETÉS HIBÁI BECSLÉS A BECSLÉS TULAJDONSÁGAI A PONTBECSLÉS MÓDSZEREI INTERVALLUMBECSLÉS... 09

3 8. HIPOTÉZISVIZSGÁLATOK I. NEMPARAMÉTERES PRÓBÁK A HIPOTÉZISVIZSGÁLAT ÁLTALÁNOS MENETE ILLESZKEDÉSVIZSGÁLAT χ -PRÓBÁVAL HIPOTÉZISVIZSGÁLATOK II. SZÓRÁSOK ÖSSZEHASONLÍTÁSA AZ ALAPSOKASÁG VARIANCIÁJÁRA VONATKOZÓ EGYMINTÁS PRÓBA KÉT SZÓRÁSNÉGYZET ÖSSZEHASONLÍTÁSA: F-PRÓBA TÖBB SZÓRÁS ÖSSZEHASONLÍTÁSÁRA VONATKOZÓ PRÓBÁK HIPOTÉZISVIZSGÁLATOK III. KÖZÉPÉRTÉKRE VONATKOZÓ PRÓBÁK VÁRHATÓ ÉRTÉKRE IRÁNYULÓ PRÓBÁK KÉT FÜGGETLEN MINTA VÁRHATÓ ÉRTÉKÉNEK ÖSSZEHASONLÍTÁSA PÁROS MINTÁK VÁRHATÓ ÉRTÉKÉNEK ÖSSZEHASONLÍTÁSA VARIANCIAANALÍZIS KORRELÁCIÓ- ÉS REGRESSZIÓSZÁMÍTÁS II A (LINEÁRIS) KORRELÁCIÓS EGYÜTTHATÓ AZ R(X,Y) ÉS A REGRESSZIÓS EGYENES ÖSSZEFÜGGÉSE A REGRESSZIÓS BECSLÉS PONTOSSÁGA FELHASZNÁLT ÉS AJÁNLOTT IRODALOM FÜGGELÉK: TÁBLÁZATOK

4 . VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK Valószínűségszámítás Valószínűségelmélet Axómák, alaptételek Kombnatorka Geometra val.sz. Val.szám tételek Elmélet eloszlások Matematka statsztka Mnta vétel Leíró statsztka Becslés Hpotézsvzsgálat Összefüggésvzsgálat 4

5 .. A VALÓSZÍNŰSÉGSZÁMÍTÁS TÁRGYA A véletlen jelenség fogalma: A tömegjelenség fogalma: 5

6 .. A VALÓSZÍNŰSÉG FOGALMA A valószínűség fogalma A n f(a) f ( A) g( A) n lm n g( A) P( A) Készítette: Erde János. ábra: A valószínűség fogalma.3. A VALÓSZÍNŰSÉGSZÁMÍTÁS AXIÓMARENDSZERE (Kolmogorov 93/3) I. Egy tetszőleges A esemény bekövetkezés valószínűsége 0 P(A). II. A bztos esemény valószínűsége, azaz P(Ω). III. Ha A és B egymást kzáró események, azaz A B 0, akkor P(A+B) P(A) + P(B). 6

7 .4. A VALÓSZÍNŰSÉG MEGHATÁROZÁSÁNAK MÓDSZEREI Klasszkus valószínűség-meghatározás: Geometra úton: Valószínűségszámítás tételek segítségével: Emprkus adatokból: Elmélet eloszlások segítségével: Szubjektív becsléssel: 7

8 .5. A VALÓSZÍNŰSÉGSZÁMÍTÁS JELENTŐSÉGE A MŰSZAKI-GAZDASÁGI ELEMZÉSEKBEN 8

9 . VALÓSZÍNŰSÉGSZÁMÍTÁSI TÉTELEK, FELTÉTELES VALÓSZÍNŰSÉG, ESEMÉNYEK FÜGGETLENSÉGE Valószínűségszámítás Valószínűségelmélet Matematka statsztka Axómák, alaptételek Kombnatorka Geometra val.sz. Val.szám tételek Elmélet eloszlások Mnta vétel Leíró statsztka Becslés Hpotézsvzsgálat Összefüggésvzsgálat 9

10 .. VALÓSZÍNŰSÉGSZÁMÍTÁSI TÉTELEK Tétel: Ha A és B egy eseményalgebra két tetszőleges eseménye, akkor annak valószínűsége, hogy közülük legalább egy bekövetkezk: P( A + B) P( A) + P( B) P( A B) Bzonyítás: Tétel: Ha A esemény bekövetkezése maga után vonja a B esemény bekövetkezését, azaz A B, akkor: P( B A) P( B) P( A) és P( A) P( B) Bzonyítás: Feladat: Mutassuk k, hogy P(A) 0,7 és P(B) 0,9 esetén P(A B) 0,6. 0

11 Feladat: Próbagyártás után két szempontból vzsgáljuk a késztermékeket. Az A esemény azt jelent, hogy a vzsgált gyártmány anyaghbás, a B esemény pedg azt, hogy mérethbás. Az A esemény P(A)0,5, a B esemény P(B)0,3 és az A B esemény P(A B)0,08 valószínűséggel következk be. M a valószínűsége annak, hogy valamely késztermék hbátlan? Feladat: Egy skola tanulónál a jeles matematka és a jeles fzka osztályzatokat fgyeljük. A következő eseményeket vezetjük be tetszőlegesen kválasztott tanulókra: A: jeles osztályzata van matematkából, B: jeles osztályzata van fzkából. Ismeretesek a következők: annak valószínűsége, hogy egy véletlen kválasztott tanulónak jelese van fzkából: P(B)0,; hogy jelese van matematkából és fzkából: P(A B)0,09; hogy a matematka és fzka tárgyak közül legalább egykből jeles az osztályzata: P(A+B)0,6. M a valószínűsége annak, hogy egy tetszőlegesen kválasztott tanulónak jeles osztályzata van matematkából?

12 .. A FELTÉTELES VALÓSZÍNŰSÉG FOGALMA Defnícó: Ha A és B egy eseményalgebra két eseménye és P(B)>0, akkor a P( A B) P( A B) PB ( ) hányadost az A eseménynek a B eseményre vonatkoztatott feltételes valószínűségének nevezzük.

13 Feladat: Egy szállítmány 96 %-a megfelel a mnőség előírásoknak, s ezek 75 %-a első osztályú. Mekkora a valószínűsége annak, hogy egy találomra kválasztott darab első osztályú? Feladat: Egy telefonfülke előtt állunk és várjuk, hogy az előttünk beszélő befejezze a beszélgetést. Az llető beszélgetés dőtartama (τ) véletlen esemény, melyre érvényes a következő: P 3 ( τ t) e a.) Határozzuk meg annak a valószínűségét, hogy a beszélgetés 3 percnél tovább tart! b.) Menny annak a valószínűsége, hogy a beszélgetés tovább 3 percnél tovább tart, feltéve, hogy eddg 3 percnél tovább tartott? c.) Menny annak a valószínűsége, hogy a beszélgetés t+3 percnél tovább tart, feltéve, hogy t percnél tovább tartott? t 3

14 Feladat: Egy börtönben három elítéltet tartanak fogva: A-t, B-t és C-t. A következő napon egyküket felakasztják. A börtönőr tudja kt akasztanak fel, de nem szabad elárulna. Az A fogoly a következőt kérdez a börtönőrtől: "Áruld el a másk két fogoly közül egy olyannak a nevét, akt holnap nem akasztanak fel. Ha mndketten szabadok lesznek, akkor döntsd el magadban, hogy knek a nevét mondod. Ezzel nem árulsz el ttkot, mert azt már tudom, hogy egykük szabad lesz." A börtönőr ném gondolkodás után így válaszolt: "Nem, ez nem volna emberséges veled szemben. Most úgy gondolod, hogy /3 valószínűséggel akasztanak fel. Ha elárulom a többek közül egy olyannak a nevét, akt nem akasztanak fel, akkor az esélyed megnövekednek, úgy fogod gondoln, hogy / valószínűséggel akasztanak fel. Nem tudnál nyugodtan aludn". Helyesen érvelt-e a börtönőr? 4

15 .3. A TELJES VALÓSZÍNŰSÉG TÉTELE Tétel: Ha B, B,...B n teljes eseményrendszer és P(B k )>0 (k,,...n), A pedg egy tetszőleges esemény, akkor: n P( A) P( AB k) P( Bk) k Bzonyítás: 5

16 Feladat: Az MBA programban a "Kvanttatív módszerek" vzsgán a férfak 60 %-a, a hölgyek 80 %-a szerepel skeresen. A férfak az évfolyam 45 %-át teszk k. Mekkora a valószínűsége, hogy egy találomra kválasztott hallgató skeresen szerepel a vzsgán? Feladat: Három műszak azonos terméket gyárt. Egy adott napon az összes termékből az I. műszakban 40%, a II. és III. műszakban 30-30% készül. Az átlagos selejtarányok: I. műszak 5%, II. műszak 7%, III. műszak 0%. Az összes termékből a MEO egy darabot kválaszt, mekkora a valószínűsége, hogy az hbátlan? 6

17 Feladat: Egy gyártóberendezés munkadejének /3 részében az A terméket, /6 részében a B terméket, a többben pedg a C terméket gyártja. Az A termék gyártásakor az erre fordított dő 0%-ában áll a berendezés, a B termék gyártása közben végg dolgozk, míg a C termék gyártásakor a munkadő 5%-ában áll. Mekkora a valószínűsége annak, hogy egy találomra kválasztott dőpontban áll a berendezés? Feladat: Egy üzem 8 berendezése egyforma terméket gyárt. Az első három gép együttvéve 4% selejtet termel, a következő négy gépnél együttvéve 3% a selejt, míg az utolsó gép selejtaránya,5%. Az elkészült termékeket egy helyen gyűjtk. Mekkora a valószínűsége, hogy egy véletlenszerűen kválasztott darab selejtes lesz? 7

18 .4. BAYES-TÉTEL ("AZ OKOK VALÓSZÍNŰSÉGÉNEK TÉTELE") Tétel: Ha B, B,...B n teljes eseményrendszer és P(B k )>0 (k,,...n), A pedg egy olyan esemény, amelyre P(A)>0, akkor: ahol: PB ( A) k P( A B ) P( B ) n k P( A B ) P( B ) k P(B k A) P(B k ) posteror" valószínűségek, pror" valószínűségek. Bzonyítás: 8

19 Feladat: Alkatrész-ellátásnál a pótalkatrészt 40%-ban a I. szállító szállítja 0% selejttel, 60%-ban pedg a II. szállító szállítja 0% selejttel. Az alkatrészraktárból kvettünk egy pótalkatrészt és azt találtuk, hogy hbás. Mekkora a valószínűsége, hogy a kválasztott alkatrész a II. szállítótól jött? Feladat: Egy üzemből kkerülő áru 75% valószínűséggel I. osztályú. A készterméket megvzsgálják. Annak a valószínűsége, hogy a vzsgálat során az I. osztályú terméket nem I. osztályúnak mnősítk %. Annak a valószínűsége, hogy egy nem I. osztályú terméket I. osztályúnak mnősítenek 5%. Mekkora a valószínűsége annak, hogy egy olyan termék, amelyk egy vzsgálat során I. osztályú mnősítést kapott, valóban I. osztályú? 9

20 Feladat: Egy folyóban bekövetkező halpusztulásért 3 par üzem lehet felelős. Tapasztalatok szernt a mérgező anyag kbocsátásának valószínűsége az egyes üzemeknél: 0%, 50% és 30%. A mérések szernt az egyes üzemek szennyvízkbocsátása esetén a halpusztulás valószínűsége: 60%, 5% és 5%. Menny a halpusztulás teljes valószínűsége? Mekkora bírságot szabjon k a Ft-os halkárért a bíróság, ha nem smeretes, k a szennyezés kbocsátója a három üzem közül? (A bírságok összege a teljes halkár.) Feladat: Bertrand problémája: tekntsünk három szekrényt, amelyek mndegykében két fók van. Az első szekrény mndkét fókjában egy-egy aranygolyó, a másodk szekrény egyk fókjában arany-, a másodkban ezüstgolyó, a harmadk szekrény mndkét fókjában ezüstgolyó van. Találomra választunk egy szekrényt (azaz bármelyket egyenlő valószínűséggel választhatjuk), khúzunk egy fókot és abban aranygolyót találunk. Mekkora a valószínűsége annak, hogy az első szekrényt választottuk? 0

21 Feladat: Egy rodában 3 munkatárs dolgozk párhuzamosan azonos típusú ügyratok ntézésén. Az első naponta 0 aktával végez, a másodk nap 5, a harmadk nap 5 aktával. Az egyes munkatársaknál naponta átlagosan 0,3; 0,9; 0,5 db hbásan kezelt ügyrat található. Az összesített nap mennységből találomra kveszünk egy aktát és azt rossznak találjuk. Mekkora a valószínűsége, hogy azt az első munkatárs készítette?

22 .5. ESEMÉNYEK FÜGGETLENSÉGE Defnícó: A és B események (sztochasztkusan) függetlenek, ha P(A B)P(A) P(B). Az A esemény független B eseménytől, ha a P(A B) feltételes valószínűség nem függ a feltételtől: P( AB ) P( A B) P( A) PB ( ) Tétel: Ha A és B függetlenek, akkor A és B, A és B, valamnt A és B s függetlenek. Bzonyítás: Tétel: Ha három esemény páronként független, még nem bztos, hogy "teljesen függetlenek", azaz még teljesül az s, hogy: P(A B C)P(A) P(B) P(C) Feladat: Két kockával dobunk. Jelentse A azt az eseményt, hogy az első kockával párost dobunk, B azt az eseményt, hogy a másodk kockával páratlant dobunk és C azt az eseményt, hogy mndkettővel párost, vagy mndkettővel páratlant dobunk. A, B és C események teljesen függetlenek-e? Defnícó: Az A, A,... A n események teljesen függetlenek, ha közülük kválasztott tetszőleges számú eseményre teljesül, hogy az együttes bekövetkezésük valószínűsége egyenlő az egyes valószínűségek szorzatával.

23 3. LEÍRÓ STATISZTIKA Valószínűségszámítás Valószínűségelmélet Matematka statsztka Axómák, alaptételek Kombnatorka Geometra val.sz. Val.szám tételek Elmélet eloszlások Mnta vétel Leíró statsztka Becslés Hpotézsvzsgálat Összefüggésvzsgálat 3

24 3.. A LEÍRÓ STATISZTIKA HELYE, SZEREPE A STATISZTIKA VILÁGÁBAN A számszerű nformácó, annak mérése és elemzése alapvető szerepet játszk a társadalm és gazdaság jelenségek elemzésében. E számszerű adatok a legtöbb esetben azzal a sajátossággal rendelkeznek, hogy a megfgyelésük, a feldolgozásuk, elemzésük és az elemzés eredményenek felhasználása tudományos módszereket gényel. A statsztka módszerek között említhetünk meglehetősen egyszerű eljárásokat, és természetesen vannak ennél bonyolultabb, összetettebb matematka-statsztka módszerek. Magának a statsztka módszertannak -a konkrét vzsgálat tárgya alapján- szokás többféle ágát megkülönböztetn, a sokféle csoportosítás lehetőség közül a m szempontunkból célszerű különválasztan a leíró és a következtető statsztka vlágát. A kettő között lényeg különbség a következőkben ragadható meg: a leíró statsztka célja a vzsgálat tárgyát képező jelenség tömör, számszerű jellemzése az adatok elemzése és rendezése alapján (pl. 0 évente tartott népszámlálások adatanak feldolgozása); míg a következtető statsztka célja mnt azt a később fejezetekben látn fogjuk a mntából történő következtetés és általánosítás a teljes sokaságra vonatkozóan (pl. néhány ezer háztartás jövedelm adataból megfelelő pontossággal megbecsülhető, hogy a magyar lakosság körében mlyen jövedelm különbségek vannak). A leíró statsztka a megfgyelt adatok bemutatását, összefoglaló jellemzését tűz k célul, és ehhez az elemzéshez sokoldalú eszköztárt kínál, ebben a fejezetben célunk ennek az eszköztárnak a bemutatása. 3.. A STATISZTIKAI LEÍRÁS CÉLJA, MÓDSZEREI Ha a célnak megfelelően összegyűjtött adathalmaz áll rendelkezésünkre, akkor a következtetések felé tett első lépésünk a mnta feldolgozása, ennek kérdéskörével foglalkozk a leíró statsztka. A statsztka leírás célja a mnta adatanak átteknthető formába történő rendezése, tömörítése, az adatok grafkus megjelenítése, ábrázolása és egyes jellemző értékenek meghatározása. Így az adatok feldolgozásának kettős célja van: egy grafkus kép, pontosabban egy tapasztalat eloszláskép produkálása; a másk pedg statsztka mutatók meghatározása. A leíró statsztka e területe közül egyedül a rendezés, tömörítés pusztán technkanak tűnő, az adatok ábrázolása és a statsztka jellemzők meghatározása lényeges szemlélet, a sztochasztkus gondolkodást, látást megalapozó területek. A statsztka jellemzők segítségével a nagyszámú adat jellegzetességet néhány adatba sűrítve próbáljuk megragadn. A statsztka jellemzőket általában három fő csoportba soroljuk, éppen az alapján, hogy az adatok mlyen jellegzetességét ragadják meg: a középértékek: az adathalmaz közös, tpkus, jellegzetes, általános vonásat kísérlk megragadn egy-egy szám segítségével. az ngadozásmutatók: az egyed, különös, specáls, sajátos, eltérő jellegzetességek mértékét mutatják meg. az eloszlás alakjára jellemző egyéb mérőszámok: aszmmetra mértékét, az adatok eloszlásának lapultságát, csúcsosságát jellemző mutatók. Bármlyen adathalmaz esetén a feladatunk az, hogy alkalmas módon jelenítsük meg az adatokat, számítsunk jellemző középérték-mutatót és ngadozásmutatót s, mvel a középértékek átlagoló, összemosó hatását éppen az ngadozásmutatók tudják ellensúlyozn, míg az ngadozásmutatók pont ezt 4

25 a jellemző értéket nem tudják megragadn. Ezért a korrekt statsztka leíráshoz legalább egy-egy jellemző szükséges mndkét mutatócsoportból. Az egyed mérésekből származó adatok lehetnek dszkrétek és folytonosak. A dszkrét adatok szükségképpen ugrásszerűen változnak. Például a számlálás alapján nyert adatok dszkrét típusúak (pl. téves telefonhívások száma, balesetek száma, adott dőszak alatt bekövetkező gépmeghbásodások száma stb.). A folytonos adatok általában mérésből származnak. Jellemzőjük, hogy egy adott ntervallumon belül elvleg bármlyen értéket felvehetnek. A mérés korláta matt ezek az adatok s ugrásszerűen változnak, de az ugrások nagysága a mérőeszköztől függ, maguk az adatok lényegüket tekntve folytonosak (pl. átmérő, nyúlás, gépkocs abroncsok futásteljesítménye, nedvességtartalom) AZ ADATOK ÁBRÁZOLÁSA A leíró statsztka jelentős részben az adatok átteknthető ábrázolásával foglalkozk, így fontos eszköze a táblázatok és dagramok. Ezeknél a dagramoknál, táblázatoknál az egyes értékek összehasonlítása áll előtérben, a grafkus ábrázolásoknál azonban nem mndg fontosak az értékek, sok esetben a vzsgált jelenséggel kapcsolatban azok megoszlása, egymáshoz való vszonya, aránya árulkodóbb. A táblázatok, dagramok lehetővé teszk nagyobb adathalmazok áttekntő ábrázolását, és vszonylag egyszerű őket elkészíten. A grafkonok a pontos értékek megadása nélkül s gyors áttekntést adnak, nagy terjedelmű mnták egészen egyszerű grafka elemekre támaszkodva válnak átteknthetővé. Néhány példa: A hba típusa Szabvány Kum. Relatív Kum. rel. Gyakorság jelölése gyakorság gyakorság gyak. Gömb alakú gázzárvány ,% 53,% Gázzárvány-halmaz ,7% 70,7% Átolvadás hány ,5% 80,3% Összeolvadás hány ,% 88,4% Gyökátfolyás ,7% 9,% Hernyó alakú gázzárvány ,0% 93,% Gyökoldal szélkolvadás ,0% 95,% Egy oldalról hegesztett kötésben átolvadás hány 40 4,4% 96,6% Hely szélkolvadás, éles bemetszés nélkül 55 44,4% 98,0% Alapanyag-varrat között összeolvadás hány ,7% 98,6% Wolfrám zárvány ,7% 99,3% Egyenetlen varratfelület ,7% 00,0%. ábra: Az adatok táblázatba rendezése 5

26 3. ábra: Oszlopdagram 4. ábra: Kördagram 5. ábra: Sávdagram 6

27 Adatok ábrázolása pktogram segítségével: 6. ábra: Vonaldagram Az összes szőlőtermelés felhasználása 7. ábra 7

28 3.4. TAPASZTALATI ELOSZLÁSOK A nagy számú statsztka adat átteknthetőségét lehetővé tesz, feldolgozását egyszerűsít, ha az értékeket nagyság szernt osztályokba soroljuk. A mérés sorozat legksebb és legnagyobb értéke között ntervallumot k számú osztályra bontjuk. Ha összesen n adatunk van, f pedg az -edk osztályba eső elemek számát jelent, akkor n knduló adat f + f +..+ f k n részsokaságok összegeként értelmezhető. Általános lépése a következők: osztálybasorolás (folytonos adatok és nagyszámú dszkrét megfgyelés esetén), a gyakorságok (f ) megállapítása. Gyakorság a sokaságban levő azonos tulajdonságú (azonos osztályba tartozó) elemek száma, a relatív gyakorságok (g ) megállapítása: g f n az összegzett (kumulált) gyakorságok (f ), lletve összegzett relatív gyakorságok (g ) megállapítása, gyakorság táblázat készítése (f, g, f, g adataból), a gyakorság (relatív gyakorság), lletve összegzett gyakorság (relatív gyakorság) hsztogramok (folytonos adatok esetén a polgon és az ogva) felvétele (tapasztalat eloszlások elkészítése). Grafkus ábrázolás Feladat: Egy folyamatos üzemben 4 órán keresztül feljegyezték a gépleállások számát. A leállásokra vonatkozóan az alább értékek adódtak óránként megoszlásban: Óra Leállások száma Óra Leállások száma. Táblázat A példa adata a következő gyakorság táblázatba és hsztogramba rendezhetők: Ahhoz, hogy az előbb táblázatunkat átteknthetőbb formába öntsük, célszerű az adatankat a dszkrét valószínűség változó által felvehető értékek szernt csoportosítan: 8

29 leállások száma óránként az előfordulások gyakorsága (f ) relatív gyakorság (g ) 0 3 0,5 5 0,08 5 0, , ,5 5 0, ,083 összesen 4,000. Táblázat Ha vszonylag kevés adatunk van, akkor célszerű az alapján elkészíten az osztályba sorolást, hogy e dszkrét valószínűség változó mlyen értékeket vehet fel. 8. ábra: Gyakorságok ábrázolása dszkrét adatok esetén Dszkrét adatok esetén a gyakorságok az y tengely csak egy meghatározott pontjához tartoznak, és nem egy értéksávhoz, ezért dszkrét eloszlások esetében a gyakorságot általában függőleges vonalakkal jelölk. A kumulált (összegzett) gyakorság táblázat és hsztogram: leállások száma kumulált gyakorság (f ) kumulált relatív gyakorság (g ) 0 3 0,5 8 0, , , , ,97 6 4, Táblázat A kumulatív gyakorságok grafkus ábrázolással nyert képét tapasztalat eloszlásfüggvénynek szokták nevezn. 9

30 9. ábra: Kumulált relatív gyakorságok ábrázolása dszkrét adatok esetén 30

31 Feladat: Mnt később tanulmányank (Vállalat pénzügyek) során látn fogjuk, gazdaság elemzésenknél gyakran szükség van a részvényektől elvárt hozam becslésére. (A részvények elvárt hozama dőben vszonylag stabl, így a jövőre vonatkozó becslésenket múltbel adatankra alapozhatjuk). A Budapest Értéktőzsde Részvényndexét (BUX) - az deglenes ndex ném változtatásával és 99- g vsszafelé s meghatározva január - hatállyal vezették be. Az ndex bázsa az 99. január -án számított 000 pont. Egy 5 éves dőszak hav hozamanak értéket az alább táblázatban foglaltuk össze. dátum BUX[%] dátum BUX[%] február. -7,54 november.,03 márcus. -0,7 december.,5 áprls 5. -,0 január 6. 3,3 május. -,5 február 3.,44 júnus. -8,4 márcus 3. -,9 júlus. 4,9 áprls. 0,03 augusztus. 3,0 május 5. 3,79 szeptember. -8,45 júnus.,9 október 3. 6,88 júlus. 5,99 november. -5,08 augusztus. -8, december. -4,89 szeptember. 6,34 január 5. -8,98 október. -7,6 február. 4,05 november 3. -6,75 márcus.,6 december. 0,4 áprls 3.,68 január 7. -7, május. 5,44 február.,7 júnus. -4,79 márcus. 4,84 júlus 3.,06 áprls. -, augusztus. 5,6 május 4. -7,48 szeptember.,8 júnus. 0,63 október. -6,05 júlus. 3,45 november. -0,93 augusztus ,06 december.,9 szeptember. -,97 január 4. 35,6 október. 6,9 február. 7,8 november.,53 márcus. 9,75 december. 5,5 áprls. 7,67 január 7. 3,6 május.,06 február. -3,63 júnus 3.,39 márcus. -,37 júlus. -,85 áprls. 9,0 augusztus.,6 május 3. 4,58 szeptember 3. 8,57 júnus. 4,59 október. 6,46 4. Táblázat Dolgozzuk fel a hav hozam adatokat leíró statsztka eszközökkel! 3

32 Folytonos adatokból készítendő gyakorság eloszlásoknál (és egyébként nagyszámú dszkrét adat esetén s) szükséges a rendelkezésre álló adatok osztályközökbe történő sorolása. Osztályba sorolásnak nevezzük az adathalmaz valamenny értékét magába foglaló teljes értékköz felosztását azonos nagyságú rész-értékközökre, és az adatoknak ezen belül csoportosítását. Az osztályköz középső értékét osztályköznek nevezzük, mvel az osztályba sorolás eredményeként az adatok elvesztk egyed értékeket, és az azonos osztályba sorolt adatokra az azonos osztályközép lesz a jellemző. Az osztályközt határoló két érték az alsó és a felső osztályhatár. Az osztályozás krtéruma: Teljes Átfedésmentes Homogén csoportokat eredményezzen Az Y szernt képzett osztály alsó felső határa Osztályközép abszolút relatív gyakorság Y 0 Y Y f g Y 0 Y Y f g Y 0 Y Y Y 0 + ( Y Y ) f g g f N Y k0 Y k Y k f k g k Összesen N 0. ábra: Gyakorság sor Ahol: Y (adatankat jellemző) mennység smérv, Adathalmazunkból k db osztályt képzünk, A 0-s ndex az osztály alsó határát, az -es ndex pedg az osztályköz felső határát jelent, Y az osztályközép, f az abszolút vagy tapasztalat gyakorság, g pedg a relatív gyakorság. Akár egy, akár több smérv szernt csoportosítjuk az adatankat, mndg kardnáls kérdés az osztályok számának a megválasztása. Ez alapos megfontolást gényel, és a vzsgált sokaság nagyságától nem függetleníthető. Mérlegelendő szempontok az osztályozásnál: M a célunk az osztályozással? A teljes értékközt hány rész-értékközre bontsuk fel, vagys hány osztályt alakítsunk k? Az osztályhatárok megállapításánál, kalakításánál mlyen szempontokat célszerű fgyelembe venn? A fent példánk alapján a gyakorság táblázat: osztályhatárok f f g [%] g [%] -40,00 x <-30,00,54,54-30,0 x <-0,00 0 0,00,54-0,0 x <-0, ,3 0,77-0,0 x < 0, ,5 36,9 0,0 x < 0, ,38 7,30 0,0 x < 0, ,00 9,30 0,0 x < 30, ,6 96,9 30,0 x < 40, ,08 00,00 összesen 65 00,00 5. Táblázat 3

33 A gyakorság hsztogram: Az egyes értékközök felé emelt téglalapok területe arányos az egyes osztályokhoz tartozó tapasztalat gyakorságokkal. A pros vonallal jelölt függvényt sűrűségfüggvénynek nevezzük. A kumulált relatív gyakorság hsztogram: n 65 x s * 3, 9 %,05 %. ábra: Sűrűségfüggvény. ábra: Eloszlásfüggvény A kumulált gyakorságok grafkus ábrázolással nyert képét tapasztalat eloszlásfüggvénynek s szokás nevezn, ez megmutatja, hogy mlyen valószínűséggel fordul elő egy adott értéknél ksebb érték. A folytonos adatok eloszlásfüggvényét folytonos vonallal s összeköthetjük, és az így kapott görbét ogvának nevezzük. Ez azt mutatja meg, hogy megközelítően mlyen lenne a tapasztalat eloszlásfüggvény, ha az osztályközöket mnden határon túl csökkentenénk, az osztályközökbe eső adatok számát pedg mnden határon túl növelnénk. Az ogvát felhasználhatjuk egy adott értéknél ksebb értékek számának vagy relatív gyakorságának meghatározására. Fordítva s eljárhatunk, vagys megállapíthatjuk azt az értéket, amelyk alá adott relatív gyakorsággal esnek az adatok. Az lyen értékeket kvantlseknek nevezzük. 33

34 3.5. A TAPASZTALATI ELOSZLÁSOK KÖZÉPÉRTÉK-MUTATÓI A középérték-mutatókat gyakran helyzetmutatóknak s nevezk. A középérték-mutatók a gyakorság eloszlás helyzetét egyetlen, az adatokkal azonos mértékegységű számértékkel jellemzk. E középértékekkel kapcsolatos elvárásank, hogy legyenek: Közepes helyzetűek Tpkusak Egyértelműen meghatározhatóak Könnyen értelmezhetőek A középértémutatóknak két nagy csoportja smeretes: Helyzet középértékek: az adatok között elhelyezkedésüknél fogva jellemzk a vzsgált gyakorság eloszlás helyzetét. Számított középértékek: az adatokkal kapcsolatos számszerű összefüggésük révén jellemzk vzsgált gyakorság eloszlás helyzetét. Az alábbakban bemutatásra kerülő középérték mutatók a medán, a módusz, a számtan átlag, a harmonkus átlag, a mértan átlag és a négyzetes átlag. Medán (Me): Jellemző: helyzet középérték, közepes helyzetű. A medán a változó azon számértéke, amelynél az összes előforduló számérték fele ksebb, fele pedg nagyobb, tehát a rangsorba állított sokaság számértékeket két egyenlő gyakorságú osztályra bontja. Rövden: a nagyságrend szernt rendezett adatok középső értéke (páros számú adat esetén a két középső érték átlaga). Példa: 6, 8, 4, 9, 7, 3, 5, 3, 4, 5, 6, 7, 8, 9 Me6 4, 9, 7, 8,, 5, 4, 5, 7, 8, 9, Me7,5 7, 9, 3, 0, 5,, 5,, 3, 5, 5, 7, 9, 0 Me5 Ha a BUX ndex korább, 65 hav hozamadatat vesszük alapul, akkor e 65 adatot sorba állítva, a rangsor 33. tagja lesz a medán, hszen ennél 3 ksebb, és 3 nagyobb érték lesz a rangsorban, ez pedg 3,79. Felmerül a kérdés: hogyan határozható meg a medán akkor, amkor nem smerjük egyenként az adatokat, hanem csak osztályközös gyakorság sor áll rendelkezésünkre? Ilyen esetekben a medán legegyszerűben a következő formulával becsülhető: Meˆ Y me,0 + N f f me ' me h me ahol me annak a legelső osztályköznek a sorszáma, amelyre gaz, hogy ' f me N és Y me,0 az me sorszámú osztályköz alsó határa, és a h me pedg ennek az osztálynak az osztályközhosszúsága, am egyszerűen a felső és alsó osztályhatár értékének a különbsége. 34

35 Példa: Vegyük a korább BUX-ndexes példánkat, és tegyük fel, hogy csak a gyakorság táblázat áll rendelkezésünkre, és nem smerjük egyenként az összes hozamadatot. osztályhatárok f f g [%] g [%] -40,00 x <-30,00,54,54-30,0 x <-0,00 0 0,00,54-0,0 x <-0, ,3 0,77-0,0 x < 0, ,5 36,9 0,0 x < 0, ,38 7,30 0,0 x < 0, ,00 9,30 0,0 x < 30, ,6 96,9 30,0 x < 40, ,08 00,00 összesen 65 00,00 ' N f me N/3,5 a medánt tartalmazó osztály az ötödk osztály: 0,0 x < 0. M eˆ Y me N ' fme 3,5 4, 0 + hme 0,0+ (0,00 0,0) 3,7 f 3 me Ha összehasonlítjuk a korább eredményünkkel, láthatjuk, hogy a medán jól becsülhető osztályközös gyakorság sorból s. A medán előnye, hogy mndg egyértelműen meghatározható, és mvel valód középérték, így érzéketlen az adathalmazunkban szereplő szélsőértékekre, amely szélsőségesen nagy vagy kcs értékeket általában a véletlen szeszélye alakítják, és nem függ a több smérvértéktől sem. Ha az adathalmazunkban sok az egyforma smérvérték, akkor sem tanácsos használn. Módusz (Mo): A módusz - a medánhoz hasonlóan - helyzet középérték. A módusz nem mndg határozható meg egyértelműen, és nem s mndg létezk. Dszkrét változó esetén a változó leggyakrabban előforduló értéke. A 4 óra alatt gépleállásokhoz tartozó gyakorság táblázatot alapul véve látható, hogy a 4 órás megfgyelés alatt egyaránt 5-5 alkalommal fordult elő, hogy vagy leállás volt az adott órában. Ebben az esetben a módusz nem határozható meg egyértelműen. leállások száma óránként az előfordulások gyakorsága összesen 4 35

36 Folytonos smérv esetén a módusz a gyakorság görbe maxmum helye. Folytonos változó esetén a medánhoz hasonló módon osztályközös gyakorság sorból becsülhető. Moˆ Ymo, 0 da + d + d a f h mo Ebben a képletben mo a móduszt tartalmazó osztályköz sorszáma és da fmo f d mo f fmo fmo+ A móduszt mndg az az osztályköz tartalmazza, amelykhez a hsztogram legmagasabb oszlopa tartozk. osztályhatárok f f g [%] g [%] -40,00 x <-30,00,54,54-30,0 x <-0,00 0 0,00,54-0,0 x <-0, ,3 0,77-0,0 x < 0, ,5 36,9 0,0 x < 0, ,38 7,30 0,0 x < 0, ,00 9,30 0,0 x < 30, ,6 96,9 30,0 x < 40, ,08 00,00 összesen 65 00,00 Ebben a példánkban a móduszt a legnagyobb gyakorságú osztály tartalmazza, ez pontosan ugyanaz az osztály, ahol a medán s volt. M da (3 7), + h 0,0 + (0,00 0,0) 3,76 d + d (3 7) + (3 3) oˆ Ymo 0 mo a f Megjegyzés: néha a módusz becslésének egyszerűen a móduszt tartalmazó osztályköz osztályközepét tekntk (példánkban ez 5,00 lenne), ezt nyers módusznak hívják. Bárhogyan s határozzuk meg a móduszt, az arra kapott közelítő érték esetleges, mert függ az osztályközök számától és hosszától. A módusz előnye, hogy a medánhoz hasonlóan nem függ sem az összes, sem a kugró smérvértékektől. A módusz hátránya, hogy nem mndg egyértelműen meghatározható, és nem s mndg létezk. Számtan átlag ( x ): A leggyakrabban használt középértékmutató: az átlag, számított középérték. Az a szám, amellyel az átlagolandó számértékeket helyettesítve azok összege változatlan marad. Számítása: x n n x r r f f x r g x 36

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i

Példa: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i . konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

METROLÓGIA ÉS HIBASZÁMíTÁS

METROLÓGIA ÉS HIBASZÁMíTÁS METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Indexszámítás során megválaszolandó kérdések. Hogyan változott a termelés értéke, az értékesítés árbevétele, az értékesítési forgalom?

Indexszámítás során megválaszolandó kérdések. Hogyan változott a termelés értéke, az értékesítés árbevétele, az értékesítési forgalom? Index-számítás Indexszámítás során megálaszolandó kérdések Hogyan áltozott a termelés értéke, az értékesítés árbeétele, az értékesítés forgalom? Hogyan áltozott a termelés, értékesítés mennysége? Hogyan

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy

Részletesebben

Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak i alapfogalmak statisztikai sokaság: a megfigyelés tárgyát képező egyedek összessége 2 csoportja van: álló sokaság: mindig vmiféle állapotot, állományt fejez ki, adatai egy adott időpontban értelmezhetők

Részletesebben

Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció

Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció Közlekedés létesítmények élettartamra vonatkozó hatékonyság vzsgálat módszerenek fejlesztése PhD Dsszertácó Budapest, 2006 Alulírott kjelentem, hogy ezt a doktor értekezést magam készítettem, és abban

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Adatelemzés és adatbányászat MSc

Adatelemzés és adatbányászat MSc Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás

Részletesebben

Sta t ti t s i zt z i t k i a 3. előadás

Sta t ti t s i zt z i t k i a 3. előadás Statisztika 3. előadás Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan A statisztika, mint gyakorlati tevékenység a tömegesen előforduló jelenségek egyedeire vonatkozó információk

Részletesebben

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika Fuzzy rendszerek A fuzzy halmaz és a fuzzy logka A hagyományos kétértékű logka, melyet évezredek óta alkalmazunk a tudományban, és amelyet George Boole (1815-1864) fogalmazott meg matematkalag, azon a

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak Matematika feladatbank I. Statisztika Elméleti összefoglaló és feladatgyűjtemény középiskolásoknak ÍRTA ÉS ÖSSZEÁLLÍTOTTA: Dugasz János 2011 Fapadoskonyv.hu Kft. Dugasz János Tartalom Bevezető 7 Adatok

Részletesebben

Módszertani Intézeti Tanszéki Osztály

Módszertani Intézeti Tanszéki Osztály BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012. Név:... Kód:...... Eredmény:..... STATISZTIKA I. VIZSGA; NG KM ÉS KG TQM SZAKOKON MINTAVIZSGA Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető

Részletesebben

Darupályák ellenőrző mérése

Darupályák ellenőrző mérése Darupályák ellenőrző mérése A darupályák építésére, szerelésére érvényes 15030-58 MSz szabvány tartalmazza azokat az előírásokat, melyeket a tervezés, építés, műszak átadás során be kell tartan. A geodéza

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Statisztika példatár

Statisztika példatár Statisztika példatár v0.02 A példatár folyamatosan b vül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a letölthet példatárak közt. Országh Tamás Budapest, 2006 Mottó: Ki kéne vágni minden

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell Budapest Műszak és Gazdaságtudomány Egyetem Közlekedésmérnök és Járműmérnök Kar Közlekedésüzem Tanszék HÁLÓZATTERVEZÉSI MESTERISKOLA BEVEZETÉS A KÖZLEKEDÉS MODELLEZÉSI FOLYAMATÁBA Dr. Csszár Csaba egyetem

Részletesebben

A gabonavertikum komplex beruházás-elemzés módszertani fejlesztése OTKA: 48562 Részletes zárójelentés Témavezető: Dr. Ertsey Imre

A gabonavertikum komplex beruházás-elemzés módszertani fejlesztése OTKA: 48562 Részletes zárójelentés Témavezető: Dr. Ertsey Imre A gabonavertkum komplex beruházás-elemzés módszertan fejlesztése OTKA: 48562 Részletes zárójelentés Témavezető: Dr. Ertsey Imre 1. Bevezetés A gabonavertkum komplex beruházás-elemzés módszertan fejlesztése

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 22. lecke: A teljes valószínűség tétele és a Bayes-tétel Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Biostatisztika e-book Dr. Dinya Elek

Biostatisztika e-book Dr. Dinya Elek TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Jövedelem és szubjektív jóllét: az elemzési módszer megválasztásának hatása a levonható következtetésekre

Jövedelem és szubjektív jóllét: az elemzési módszer megválasztásának hatása a levonható következtetésekre Tanulmányok Jövedelem és szubjektív jóllét: az elemzés módszer megválasztásának hatása a levonható következtetésekre Hajdu Tamás, az MTA Közgazdaságés Regonáls Tudomány Kutatóközpont Közgazdaságtudomány

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Balogh Edina Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetemi tanár

Balogh Edina Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetemi tanár Balogh Edna Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetem tanár Budapest Műszak és Gazdaságtudomány Egyetem Építőmérnök Kar 202 . Bevezetés,

Részletesebben

STATISZTIKA III. Oktatási segédlet

STATISZTIKA III. Oktatási segédlet MISKOLCI EGYETEM Gazdaságtudomány Kar Üzlet Informácógazdálkodás és Módszertan Intézet Üzlet Statsztka és Előrejelzés Tanszék STATISZTIKA III. Oktatás segédlet 003. MISKOLCI EGYETEM Gazdaságtudomány Kar

Részletesebben

11. előadás PIACI KERESLET (2)

11. előadás PIACI KERESLET (2) . előadás PIACI KERESLET (2) Kertes Gábor Varan 5. feezete erősen átdolgozva . Állandó rugalmasságú kereslet görbe Olyan kereslet görbe, amt technkalag könnyű kezeln. Ezért szeretk a közgazdászok. Hogyan

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET. Összeállította: Dr. Szabó Sándor

ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET. Összeállította: Dr. Szabó Sándor MISKOLCI EGYETEM Gépgyártástechnológa Tanszék Mskolc - Egyetemváros ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET Összeállította: Dr. Szabó Sándor A orgácsoló megmunkálásokhoz

Részletesebben

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek 1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják.

Részletesebben

Összegzés a 92/2011.(XII.30.) NFM rendelet 9. melléklete alapján

Összegzés a 92/2011.(XII.30.) NFM rendelet 9. melléklete alapján NEMZETBIZTONSÁGI SZAKSZOLGÁLAT GAZDASÁGI VEZETŐ 1399 Budapest 62. Pf.: 710/4-2. Ikt.sz.: 30700/21293- /2015. 1. számú példány Összegzés a 92/2011.(XII.30.) NFM rendelet 9. melléklete alapján 1. Az ajánlatkérő

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Elosztott rendszerek játékelméleti elemzése: tervezés és öszönzés. Toka László

Elosztott rendszerek játékelméleti elemzése: tervezés és öszönzés. Toka László adat Távközlés és Médanformatka Tanszék Budapest Műszak és Gazdaságtudomány Egyetem Eurecom Telecom Pars Elosztott rendszerek játékelmélet elemzése: tervezés és öszönzés Toka László Tézsfüzet Témavezetők:

Részletesebben

Foglalkoztatáspolitika. Modellek, mérés.

Foglalkoztatáspolitika. Modellek, mérés. Foglalkoztatáspoltka. Modellek, mérés. Galas Péter Budapest, 20 Galas Péter, 20 Kézrat lezárva: 20. júnus Bevezetés A tananyag célja a foglalkoztatáspoltka közgazdaságtan szempontú elemzésében és értékelésében

Részletesebben

HAVRAN DÁNIEL. Pénzgazdálkodási szokások hatása a működőtőkére. A Magyar Posta példája

HAVRAN DÁNIEL. Pénzgazdálkodási szokások hatása a működőtőkére. A Magyar Posta példája HAVRAN DÁNIEL Pénzgazdálkodás szokások haása a működőőkére. A Magyar Posa példája A hálózaos parágakban, ahogy a posa szolgálaásoknál s, a forgalomban lévő készpénz nagyméreű működőőké jelenhe. A Magyar

Részletesebben

NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II.

NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II. NKFP6-BKOMSZ05 Célzott mérőhálózat létrehozása a globáls klímaváltozás magyarország hatásanak nagypontosságú nyomon követésére II. Munkaszakasz 2007.01.01. - 2008.01.02. Konzorcumvezető: Országos Meteorológa

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

Nemlineáris függvények illesztésének néhány kérdése

Nemlineáris függvények illesztésének néhány kérdése Mûhel Tóth Zoltán docens, Károl Róbert Főskola E-mal: zol@karolrobert.hu Nemlneárs függvének llesztésének néhán kérdése A nemlneárs regresszós és trendfüggvének llesztésekor számos esetben alkalmazzuk

Részletesebben

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv

Részletesebben

Statisztikai. Statisztika Sportszervező BSc képzés (levelező tagozat) Témakörök. Statisztikai alapfogalmak. Statisztika fogalma. Statisztika fogalma

Statisztikai. Statisztika Sportszervező BSc képzés (levelező tagozat) Témakörök. Statisztikai alapfogalmak. Statisztika fogalma. Statisztika fogalma Témakörök Statsztka Sortszerező BSc kézés (leelező tagozat) 2-2-es tané félé Oktató: Dr Csáfor Hajnalka főskola docens Vállalkozás-gazdaságtan Tsz E-mal: hcsafor@ektfhu Statsztka fogalmak Statsztka elemzések

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 2. előadás Előadó: Dr. Ertsey Imre Statisztikai sorok Meghatározott szempontok szerint kiválasztott két vagy több logikailag összetartozó statisztikai adat, statisztikai sort képez. általában

Részletesebben

A lánc viszonyszám: A lánc viszonyszám számítási képlete:

A lánc viszonyszám: A lánc viszonyszám számítási képlete: A lánc viszonyszám: Az idősor minden egyes tagját a közvetlenül megelőzővel osztjuk, vagyis az idősor első évének, vagy időszakának láncviszonyszáma nem számítható. A lánc viszonyszám számítási képlete:

Részletesebben

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

8. Programozási tételek felsoroló típusokra

8. Programozási tételek felsoroló típusokra 8. Programozás tételek felsoroló típusokra Ha egy adatot elem értékek csoportja reprezentál, akkor az adat feldolgozása ezen értékek feldolgozásából áll. Az lyen adat típusának lényeges jellemzője, hogy

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

II. Rákóczi Ferenc Kárpátaljai Magyar Fıiskola. Pataki Gábor. STATISZTIKA I. Jegyzet

II. Rákóczi Ferenc Kárpátaljai Magyar Fıiskola. Pataki Gábor. STATISZTIKA I. Jegyzet II. Rákócz Ferenc Kárátalja Magyar Fıskola Patak Gábor STATISZTIKA I. Jegyzet 23 Tartalomjegyzék evezetés... 3 I. Statsztka alafogalmak... 4. Statsztka kalakulása, tudománytörténet összefüggése... 4.2

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

MŰSZAKI TUDOMÁNYI DOKTORI ISKOLA. Napkollektorok üzemi jellemzőinek modellezése

MŰSZAKI TUDOMÁNYI DOKTORI ISKOLA. Napkollektorok üzemi jellemzőinek modellezése MŰSZAKI TUDOMÁNYI DOKTORI ISKOLA Napkollektorok üzem jellemzőnek modellezése Doktor (PhD) értekezés tézse Péter Szabó István Gödöllő 015 A doktor skola megnevezése: Műszak Tudomány Doktor Iskola tudományága:

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK

2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK ELTE Regonáls Földrajz Tanszék 2005. 1 2 ADATKEZELÉS, STATISZTIKAI ÉS SZÁMÍTÁSTECHNIKAI ALAPOK 2.1 Terület statsztka és térelemzés A kutatás cél, a főbb vzsgálat témakörök (hpotézsek) meghatározása, a

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

MŰSZAKI-, GAZDASÁGI FOLYAMATOK ELEMZÉSE KERESKEDELMI ÉRTÉKESÍTÉS ELEMZÉSE

MŰSZAKI-, GAZDASÁGI FOLYAMATOK ELEMZÉSE KERESKEDELMI ÉRTÉKESÍTÉS ELEMZÉSE MŰSZAKI-, GAZDASÁGI FOLYAMAOK ELEMZÉSE KERESKEDELMI ÉRÉKESÍÉS ELEMZÉSE A fentek mellett, amelyek már hagyományosnak számítanak, működnek az újabb értékesítés hálózatok: - csomagküldő - multlevel marketng

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

Bevezetés a kémiai termodinamikába

Bevezetés a kémiai termodinamikába A Sprnger kadónál megjelenő könyv nem végleges magyar változata (Csak oktatás célú magánhasználatra!) Bevezetés a kéma termodnamkába írta: Kesze Ernő Eötvös Loránd udományegyetem Budapest, 007 Ez az oldal

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

4 205 044-2012/11 Változtatások joga fenntartva. Kezelési útmutató. UltraGas kondenzációs gázkazán. Az energia megőrzése környezetünk védelme

4 205 044-2012/11 Változtatások joga fenntartva. Kezelési útmutató. UltraGas kondenzációs gázkazán. Az energia megőrzése környezetünk védelme HU 4 205 044-2012/11 Változtatások joga fenntartva Kezelés útmutató UltraGas kondenzácós gázkazán Az energa megőrzése környezetünk védelme Tartalomjegyzék UltraGas 15-1000 4 205 044 1. Kezelés útmutató

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Statisztika 1.

TANTÁRGYI ÚTMUTATÓ. Statisztika 1. I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 1. TÁVOKTATÁS Tanév 2014/2015 II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 1. Tanszék: Módszertani Tantárgyfelelős neve: Sándorné Dr. Kriszt

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2? HIPERGEO. BINOM. POISSON 4.1. Egy üzletben 100-an vásárolnak, közülük 80-an rendelkeznek bankkártyával. A pénztárnál 10-en állnak sorba, mi a valószínűsége, hogy 7-nek lesz bankkártyája? 4.2. Egy üzletben

Részletesebben

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához

Részletesebben