Rugós mechanikai rendszerek modellezése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Rugós mechanikai rendszerek modellezése"

Átírás

1 Rugós ehanikai rendszerek odellezése. feladat Adott két sorba kapsolt rugó és erevséggel valaint l és l terheletlen hosszal. A rugókat egnyújtjuk úgy, hogy együttes hosszuk l legyen >l +l ). l l? l? l a) Mekkora a rugókban ébredı erı? b) Mekkora a rugó egváltozott hossza? l l ) + l l + l l ) + Kidolgozott példa Egy l terheletlen hosszúságú, erevségő rugó szög alatt van elhelyezve a vízszintes vezetékhez képest. A rugó alsó vége a vezetékben tud elozdulni, helyzetét az koordináta jellezi. A rugó felsı vége rögzítve van. a) Határozza eg a rugó vízszintes irányú erevségét tetszılegesen nagy elozdulásokra! b) A végeredény felhasználásával utassa eg, hogy kis alakváltozásokra ( ) os! Próbálja önállóan egoldani a példát! Csak végsı esetben nézze eg a egoldást!

2 l l* Megoldás ad a) A rugó egváltozott hossza nagyságú elozdulás esetén az ábra alapján l sin l l* l os l os+ ) + A rugó hosszváltozása (egnyúlása) l l l os+ ) + l A rugóban ébredı erı

3 l ( os+ ) + l) A kulisszakı free-body diagraja * N Innen az elozdulás irányú erı i os + os Az elozdulás következtében egváltozik a rugó hajlásszöge *-ra. Az ábra derékszögő hároszögébıl tg l sin l os+ A továbbiakban a rugóerı vízszintes koponensének száításához os*-ra lesz szükségünk. Középiskolai iseretek alapján Bárely szögfüggvény kifejezhetı bárilyen ásikkal, így a koszinusz szögfüggvény kifejezhetı tangens szögfüggvénnyel az ábra alapján: tg + tg * os + tg + os+ ) A vízszintes irányú erıkoponens ezzel os ( os+ ) + l ) + os+ ) os

4 (Vegye észre, hogy az összefüggés az erı és az elozdulás között nelineáris nelineáris rugókarakterisztika!) Nelineáris rugókarakterisztika esetén sak egy adott unkapontban értelezett differeniális rugóerevség értelezhetı. A vízszintes irányú differeniális rugóerevség a következı: + ( d d os+ ) os+ ) + + l )( (+ ) os+ ) os+ ) + os+ ) 3 ( ) + os+ ) A deriválásnál a szorzatfüggvény deriválási szabályát, valaint a lánszabályt alkalaztuk. ad b) A elıbbi összefüggése helyettesítéssel (a kis alakváltozásokra vonatkozó összefüggés) 3 d d os) + + ( os) + l )( ( + os os) + + os) os) ) 3 ( ) os) 3 os a jól isert képletet eredényezi. os. feladat Az ABr kar függıleges helyzetében az hajlásszögő, erevségő rugó terheletlen állapotban van. B M A C

5 a) Az AB karra M nyoatékot őködtetve a kar φ szöggel elfordul. Határozza eg az M nyoaték és a φ elfordulási szög kapsolatát kis elfordulási szög esetén ineáris odell)! (Elıször helyettesítse a ferde rugót ozgásirányú, vízszintes rugóval) M r os b) Határozza eg az M nyoaték és a φ elfordulási szög kapsolatát tetszılegesen nagy elfordulási szög esetén (nelineáris odell)! (Segítség: vegye alapul a egváltozott geoetriát az ábra szerint. Száítsa ki a egváltozott rugóhosszat, a rugó hosszváltozását, a rugóban ébredı erıt, a rugó egváltozott hajlásszögét, ajd írja fel az erı koponenseinek nyoatékát az A pontra. ) B y ros M rsin A rtg C M r sin tg tg tg sin + + tg tg (sin+ )os sinos tg Vegyük észre, hogy határátenet esetén sin sin, os, ( + ). tg tg tg tg Ezen értékek helyettesítésével visszakapjuk a kis elozdulásra levezetett a) pontbeli összefüggést. Ugyanezt az eredényt kapjuk, ha kiszáítjuk a dmd differeniális rugóerevséget a helyen. 3. feladat Az elızı. feladat AB rúdjára erı hat a rúd közepén.

6 B A C a) Határozza eg az erı és a φ szögelfordulás kapsolatát kis elozdulásokra! r os - 4. feladat Az ábrán látható rendszer két ferde rugóból, az elhanyagolható töegő erev AB karból, valaint egy töegpontból áll. B D β A C a) Írja fel az töegpont (t) ozgásegyenletét kis alakváltozásokra! ɺ + ( os + os β) b) Mekkora a rendszer sajátlengéseinek körfrekveniája? os + os β

7 t t 5. feladat a) Határozza eg a t és t torziós rugókból álló lépsıs tengely végének M-φ kapsolatát! t t M t b) Mekkora t és t, ha a tengelyszakaszok átérıi rendre d és d, hosszuk l és l. A tengely anyagának nyírási odulusa G. 6. feladat Az elızı feladat szerinti tengely végére erısített J tehetetlenségi nyoatékú társára M t (t) savaró nyoaték hat. M t ( t + t ) t J t M t a) Írja fel társa φ(t) ozgásegyenletét! Jɺ ɺ + ( t + t ) 7. feladat a) Írja fel a két végén befogott lépsıs tengelyt terhelı M t savarónyoaték és φ szögelfordulás kapsolatát! M t t?

8 b) Mekkora az eredı torziós rugóerevség? t t+ t 8. feladat Az elızı 8. feladatban szereplı tengelyre J tehetetlenségi nyoatékú társát erısítünk. J t t M t Írja fel a társa φ(t) ozgásegyenletét! Jɺ ɺ + ( + t ) t 9. feladat Az l hosszúságú, IE hajlító erevségő konzol végéhez erevségő rugót rögzítünk. l IE? a) A rugók deforáiója, vagy a rugókat terhelı erı egyezik-e eg? (Párhuzaos, vagy soros kapsolásúak-e) b) Határozza eg a rendszer eredı rugóerevségét! l + AE. feladat Az IE hajlító erevségő, elhanyagolható töegő kéttáaszú tartó közepére töeget rögzítünk, elyre (t) gerjesztı erı hat.

9 y l (t) IE l (t)? a) Határozza eg a tartó, int rugó, egyenértékő rugóerevségét! (Segítség: Mehanika járulék képletek) b) Írja fel a töeg ozgásegyenletét! 48IE l y ɺ + y (t). feladat Az AB karhoz egy és egy erevségő rugó van rögzítve. B M a C b A a) Határozza eg a karra ható M nyoaték és a kar φ szögelfordulása közötti összefüggést kis elozdulásokra! Közelítıleg ekkora a rugók végeinek az elozdulása? (Segítség: a feladat bonyolultsága indokolja a free-body diagra egrajzolását!) M [(a+ b) + b ]

10 -. Kidolgozott példa Írja fel az ábrán látható töeg ozgásegyenletét! Megoldás A töeget -értékkel kiozdítjuk egyensúlyi helyzetébıl. A bal oldali rugó ekkor egnyúlik -értékkel és húzóerıt fejt ki a vele érintkezı testekre. A töegre nézve ez balra utató erıt jelent. A jobb oldali rugó ugyanakkor összenyoódik -értékkel és nyoóerıt fejt ki a vele érintkezı testekre. A töegre nézve ez balra utató erıt jelent. Megrajzoljuk a vizsgált test free-body diagra ját (erıkkel helyettesítve a vizsgált testtel érintkezı ás testek hatását). terheletlen rugó terheletlen rugó egnyúlt rugó összenyoódott rugó + koordináta irány ree-body diagra.elírva Newton II. aióáját (a dinaika alapegyenletét haladó ozgásra) nyerjük a töeg ozgásegyenletét. a - - a ɺ + ( + ) feladat Egy anizotróp sapágyazás vízszintes irányú rugóerevsége, függıleges irányú rugóerevsége y.

11 y Határozza eg a sapágyazás tetszıleges irányú rugóerevségét! ( ) os + sin y 4. feladat Két töegbıl és két rugóból álló ehanikus lengırendszer látható az ábrán. Az töegre gerjesztıerı is hat. Írja fel az egyes töegek ozgásegyenleteit! g (t) ɺɺ ɺɺ + ( + + ) g 5. feladat Az ábrán látható rendszer útgerjesztéső. Írja fel az egyes töegek ozgásegyenleteit! 3 g (t)

12 ɺɺ ɺɺ + ( + + ) g (t) 6. feladat Az ábrán szíjhajtás odellje látható. A J és J tehetetlenségi nyoatékú szíjtársákat a húzott oldalon erevségő szíj kapsolja össze. A bal oldali szíjtársára M(t) nyoatékgerjesztés hat. M(t) r r J J a) Írja fel az egyes szíjtársák ozgásegyenleteit! J ɺɺ J + r ɺɺ + r r r + r r M(t) 7. feladat Egy autó és pótkosi odelljét látja az ábrán. g (t) g (t) a) Írja fel az autó és a pótkosi ozgásegyenleteit! b) Mekkora a rendszer sajátfrekveniája? ɺɺ ɺɺ + + g g (Segítség: Gerjesztetlen rendszer esetén vezessen be új változót, -. Ezzel a ozgásegyenlet ɺ ɺ + ( + ) lesz. Innen a sajátfrekvenia + )

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész Rugalas egtáasztású erev test táaszreakióinak eghatározása I. rész Bevezetés A következő, több dolgozatban beutatott vizsgálataink tárgya a statikai / szilárdságtani szakirodalo egyik kedvene. Ugyanis

Részletesebben

Széchenyi István Egyetem Mechatronika és Gépszerkezettan Tanszék. Mechatronika alapjai I-II. Labor mérési útmutató Másodrendő rendszer vizsgálata

Széchenyi István Egyetem Mechatronika és Gépszerkezettan Tanszék. Mechatronika alapjai I-II. Labor mérési útmutató Másodrendő rendszer vizsgálata Széhenyi István Egyete Mehatronika és Gépszerkezettan Tanszék Mehatronika alapjai I-II. Labor érési útutató Másodrendő rendszer vizsgálata érés élja:. Másodrendő rendszer aplitúdó-nagyítási diagrajának

Részletesebben

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A A 37. Mikola Sándor Fizikaverseny feladatainak egoldása Döntő - Gináziu 0. osztály Pécs 08. feladat: a) Az első esetben eelési és súrlódási unkát kell végeznünk: d W = gd + μg cos sin + μgd, A B d d C

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

Összefüggések egy csonkolt hasábra

Összefüggések egy csonkolt hasábra Összefüggések egy sonkolt hasábra Az idők során ár többször készítettünk hasonló dolgozatokat. Ne baj: az isétlés sose árt. Most tekintsük az. ábrát!. ábra Eszerint úgy is képzelhetjük hogy egy téglalap

Részletesebben

36. Mikola verseny 2. fordulójának megoldásai I. kategória, Gimnázium 9. évfolyam

36. Mikola verseny 2. fordulójának megoldásai I. kategória, Gimnázium 9. évfolyam 6 Mikola verseny fordulójának egoldásai I kategória Gináziu 9 évfolya ) Adatok: = 45 L = 5 r = M = 00 kg a) Vizsgáljuk a axiális fordulatszáú esetet! r F L f g R Az egyenletes körozgás dinaikai alapegyenletét

Részletesebben

y f m l merevrúd 2.1. Példa: Különböző irányú rugók helyettesítése Adott: Az ábrán látható rezgőrendszer. Feladat:

y f m l merevrúd 2.1. Példa: Különböző irányú rugók helyettesítése Adott: Az ábrán látható rezgőrendszer. Feladat: SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK. MECHANIKA-EZGÉSTAN GYAKOLAT (kidolgozta: Feér Lajos, tsz. érnök; Tarnai Gábor, érnök tanár; Molnár Zoltán, eg. adj., Dr. Nag Zoltán, eg. adj.) ugók

Részletesebben

= 1, , = 1,6625 = 1 2 = 0,50 = 1,5 2 = 0,75 = 33, (1,6625 2) 0, (k 2) η = 48 1,6625 1,50 1,50 2 = 43,98

= 1, , = 1,6625 = 1 2 = 0,50 = 1,5 2 = 0,75 = 33, (1,6625 2) 0, (k 2) η = 48 1,6625 1,50 1,50 2 = 43,98 1. Egy vasbeton szerkezet tervezése során a beton nelineáris tervezési diagraját alkalazzuk. Kísérlettel egállapítottuk, hogy a beton nyoószilárdságának várható értéke fc = 48 /, a legnagyobb feszültséghez

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Alapmőveletek koncentrált erıkkel

Alapmőveletek koncentrált erıkkel Alapmőveletek koncentrált erıkkel /a. példa Az.7. ábrán feltüntetett, a,5 [m], b, [m] és c,7 [m] oldalú hasábot a bejelölt erık terhelk. A berajzolt koordnátarendszer fgyelembevételével írjuk fel komponens-alakban

Részletesebben

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 05/06. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató. feladat: Vékony, nyújthatatlan fonálra M töegű, R sugarú karikát

Részletesebben

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika Bevezető fizika (infó),. feladatsor Dinaika. és Statika 04. október 5., 4:50 A ai órához szükséges eléleti anyag: ipulzus, ipulzusegaradás forgatónyoaték egyensúly és feltétele Órai feladatok:.5. feladat:

Részletesebben

Hajtástechnika. F=kv. Határozza meg a kocsi sebességének v(t) idıfüggvényét, ha a motorra u(t)=5 1(t) [V] kapocsfeszültséget kapcsolunk!

Hajtástechnika. F=kv. Határozza meg a kocsi sebességének v(t) idıfüggvényét, ha a motorra u(t)=5 1(t) [V] kapocsfeszültséget kapcsolunk! Hajtástechnika Példa Az ábán egy nyotató odellje látható, ely két azonos szíjtácsából, alaint töegő kocsiból áll. A szíj tökéletesen hajlékony, nyújthatatlan és elhanyagolható töegő. A kocsia sebességaányos

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése . Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban

Részletesebben

Cölöpcsoport ellenőrzése Adatbev.

Cölöpcsoport ellenőrzése Adatbev. Cölöpcsoport ellenőrzése Adatbev. Projekt Leírás Dátu : : Beállítások Pile Group - Exaple 3 28.10.2015 (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : EN 1992-1-1 szerinti tényezők

Részletesebben

Egy érdekes mechanikai feladat

Egy érdekes mechanikai feladat 1 Egy érdekes mechanikai feladat 1. ábra forrása: [ 1 ] A feladat Az 1. ábra szerinti rudazat A csomópontján átvezettek egy kötelet, melynek alsó végén egy m tömegű golyó lóg. A rudak egyező nyúlási merevsége

Részletesebben

Néhány mozgás kvantummechanikai tárgyalása

Néhány mozgás kvantummechanikai tárgyalása Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben

Részletesebben

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató Oktatási Hivatal A 13/14. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató 1.) Hőszigetelt tartályban légüres tér (vákuu) van, a tartályon kívüli

Részletesebben

Cölöpcsoport ellenőrzése Adatbev.

Cölöpcsoport ellenőrzése Adatbev. Cölöpcsoport ellenőrzése Adatbev. Projekt Leírás Szerző Dátu : : : Skupina pilot - Vzorový příklad 3 Ing. Jiří Vaněček 6.12.2012 Név : Skupina pilot - Vzorový příklad 3 Leírás : Statické schéa skupiny

Részletesebben

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer Lenésan 4.1. HF BME, Mőszaki Mechanikai sz. Lenésan 4. HÁZI FELD 1 szabadsái fokú csillapío lenırendszer 4.1. Felada z ábrán vázol lenırendszer (az m öme anyai ponnak ekinheı, a 3l hosszúsáú rúd merev,

Részletesebben

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei A rezgések dinaikai vizsgálata a rezgések kialakulásának feltételei F e F Rezgés kialakulásához szükséges: Mozgásegyenlet: & F( & t kezdeti feltételek: ( v t & v( t & ( t Ha F F( akkor az erőtér konzervatív.

Részletesebben

Fizika 1 Mechanika órai feladatok megoldása 3. hét

Fizika 1 Mechanika órai feladatok megoldása 3. hét Fizika 1 Mechanika órai feladatok egoldása 3. hét 3/1. Egy traktor két pótkocsit vontat nyújthatatlan drótkötelekkel. Mekkora erő feszíti a köteleket, ha indításnál a traktor 1 perc alatt gyorsít fel 40

Részletesebben

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein.

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein. Fzka I. Dr. Gugolya Zoltán egyete adjunktus Pannon Egyete Fzka Intézet N. ép. II. e. 39. szoba E-al: gug006@alos.ven.hu Tel: 88/64-783 Fzka I. Ajánlott rodalo: Vondervszt-Néeth-Szala: Fzka I. Veszpré Egyete

Részletesebben

3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:

3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében: 1. A mellékelt táblázat a Naphoz legközelebbi 4 bolygó keringési időit és pályagörbéik félnagytengelyeinek hosszát (a) mutatja. (A félnagytengelyek Nap- Föld távolságegységben vannak megadva.) a) Ábrázolja

Részletesebben

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai. II. kategória

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai. II. kategória Oktatási Hivatal A 008/009. tanévi IZIKA Országos Középiskolai Tanulányi Verseny első fordulójának feladatai és egoldásai II. kategória A dolgozatok elkészítéséez inden segédeszköz asználató. Megoldandó

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Érdekes geometriai számítások 7. Folytatjuk a sorozatot. 7. Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Korábbi dolgozatainkban már többféle módon is bemutattuk

Részletesebben

Egy érdekes statikai - geometriai feladat

Egy érdekes statikai - geometriai feladat 1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani

Részletesebben

Merev testek kinematikája

Merev testek kinematikája Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Fa rudak forgatása II.

Fa rudak forgatása II. Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve

Részletesebben

REZONANCIA KÍSÉRLET TÖBB SZABADSÁGFOKÚ REZGİRENDSZEREKEN. Laboratóriumi gyakorlat

REZONANCIA KÍSÉRLET TÖBB SZABADSÁGFOKÚ REZGİRENDSZEREKEN. Laboratóriumi gyakorlat SZÉCHENY STVÁN EGYETEM MŐSZAK TUDOMÁNY KAR ALKALMAZOTT MECHANKA TANSZÉK REZONANCA KÍSÉRLET TÖBB SZABADSÁGFOKÚ REZGİRENDSZEREKEN Laboratóriui gyakorlat A érés tárgya: A érés célja: reonancia jelenségének

Részletesebben

Kinematikai alapfogalmak

Kinematikai alapfogalmak Kineatikai alapfogalak a ozgások leíásáal foglalkozik töegpont, onatkoztatási endsze, pálya, pályagöbe, elozdulás ekto a sebesség, a gyosulás Egyenes Vonalú Egyenletes Mozgás áll. 35 3 5 5 5 4 a s [] 5

Részletesebben

A hajlított fagerenda törőnyomatékának számításáról II. rész

A hajlított fagerenda törőnyomatékának számításáról II. rész A ajlított fagerenda törőoatékának száításáról II. rész Bevezetés Az I. részben egbeszéltük a úzásra ideálisan rugalas, oásra ideálisan rugalas - tökéletesen képléke aag - odell alapján álló törőoaték

Részletesebben

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most

Részletesebben

Oktatási Hivatal. A 2007/2008. tanévi. Országos Középiskolai Tanulmányi Verseny. első (iskolai) fordulójának. javítási-értékelési útmutatója

Oktatási Hivatal. A 2007/2008. tanévi. Országos Középiskolai Tanulmányi Verseny. első (iskolai) fordulójának. javítási-értékelési útmutatója Oktatási Hivatal A 007/008. tanévi Országos özépiskolai Tanulányi Verseny első (iskolai) fordulójának javítási-értékelési útutatója FIZIÁBÓ I. kategóriában A 007/008. tanévi Országos özépiskolai Tanulányi

Részletesebben

Anyagi pont dinamikája

Anyagi pont dinamikája TÓTH A.: Pontdinaika (kibővített óravázlat 1 Anyagi pont dinaikája Mi a ozgás oka? Arisztotelész 1 : a ozgás fenntartásához külső hatás kell. (Ezt a feltevést a felületes egfigyelés alátáasztja, hiszen

Részletesebben

körsugár kapcsolata: 4 s R 8 m. Az egyenletből a B test pályakörének sugara:

körsugár kapcsolata: 4 s R 8 m. Az egyenletből a B test pályakörének sugara: 8 évi Mikola forduló egoldásai: 9 gináziu ) Megoldás Mivel azonos és állandó nagyságú sebességgel történik a ozgás a egtett utak egyenlők: sa sb vat vbt 4 π s 4π 57 s Ha a B testnek ne nulla a gyorsulása

Részletesebben

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:...

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:... Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ 2017. április 22. 8. évfolya Versenyző neve:... Figyelj arra, hogy ezen kívül ég a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár neve:...

Részletesebben

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA ALAPOGALMAK ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA Egy testre általában nem egy erő hat, hanem több. Legalább két erőnek kell hatni a testre, ha az erő- ellenerő alaptétel alapján járunk el. A testek vizsgálatához

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

3. Egy repülőgép tömege 60 tonna. Induláskor 20 s alatt gyorsul fel 225 km/h sebességre. Mekkora eredő erő hat rá? N

3. Egy repülőgép tömege 60 tonna. Induláskor 20 s alatt gyorsul fel 225 km/h sebességre. Mekkora eredő erő hat rá? N Dinaika feladatok Dinaika alapegyenlete 1. Mekkora eredő erő hat a 2,5 kg töegű testre, ha az indulástól száított 1,5 úton 3 /s sebességet ér el? 2. Mekkora állandó erő hat a 2 kg töegű testre, ha 5 s

Részletesebben

Egy furcsa tartóról. A probléma felvetése. Adott az 1. ábra szerinti kéttámaszú tartó. 1. ábra

Egy furcsa tartóról. A probléma felvetése. Adott az 1. ábra szerinti kéttámaszú tartó. 1. ábra Egy furcsa tartóról Az alábbi probléma ha jól emlékszem tanulói felvetés, melyet tanáruk volt kol - légánk G. A. továbbított. ( Üdv Néked, Nagy Király! ) Hogy a probléma valós - e vagy mondvacsinált, azt

Részletesebben

TARTÓSZERKEZETEK I gyakorlat

TARTÓSZERKEZETEK I gyakorlat Nyírási vasalás tervezése NYOMOTT ÖV (beton) HÚZOTT RÁCSRUDAK (felhajlított hosszvasak) NYOMOTT RÁCSRUDAK (beton) HÚZOTT ÖV (hosszvasak) NYOMOTT ÖV (beton) HÚZOTT RÁCSRUDAK (kengyelek) NYOMOTT RÁCSRUDAK

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Géészeti alaiseretek közészint 5 ÉRETTSÉGI VIZSGA 05. ájus 9. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐORRÁSOK MINISZTÉRIUMA ontos tudnivalók

Részletesebben

Síkalap ellenőrzés Adatbev.

Síkalap ellenőrzés Adatbev. Síkalap ellenőrzés Adatbev. Projekt Dátu : 02.11.2005 Beállítások (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : EN 199211 szerinti tényezők : Süllyedés Száítási ódszer : Érintett

Részletesebben

Rezgésdiagnosztika. 1. Bevezetés. PDF created with pdffactory Pro trial version www.pdffactory.com

Rezgésdiagnosztika. 1. Bevezetés. PDF created with pdffactory Pro trial version www.pdffactory.com Rezgésdiagnoszika. Bevezeés rezgésdiagnoszika a űszaki diagnoszika egy eghaározo erülee. gépek állapovizsgálaánál alán a legelerjedebb vizsgálai ódszer a rezgésérés. Ebben a jegyzeben először a rezgésérés

Részletesebben

1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók.

1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók. 1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók. Tevékenység: Olvassa el a jegyzet 18-29 oldalain található tananyagát! Tanulmányozza át a segédlet 8.2. és 8.3. fejezeteiben lévı kidolgozott feladatait,

Részletesebben

A mestergerendás fafödémekről

A mestergerendás fafödémekről A estergerendás aödéekről A népi építészetben gyakran alkalazzák azt a ödészerkezeti egoldást hogy a keresztirányú a gerendatartókat egy vagy több hosszirányú tartóval az úgy - nevezett estergerendával

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

PÉLDÁK ERŐTÖRVÉNYEKRE

PÉLDÁK ERŐTÖRVÉNYEKRE PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Egy háromszög egyik oldala 10 cm hosszú, s a rajta fekvő két szög 50 és 70. Számítsd ki a hiányzó szöget és oldalakat! Legyen a = 10 cm; β = 50 és γ = 70. A két szög ismeretében a harmadik

Részletesebben

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása II. rész

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása II. rész Rugalas egtáasztású erev test táaszreakióiak eghatározása rész Bevezetés A ele részbe eg ola feladatot vetük fel és olduk eg, ael az részbe vizsgált feladat általáosításáak tekithető Aíg ott a táasztó

Részletesebben

Gyakorló feladatok linearitásra

Gyakorló feladatok linearitásra A Munkponti linerizálás, lineritási hib A Kidolgozott péld Gkorló feldtok lineritásr Az ábrán láthtó tngens mechnizmus tpintóját z lphelzetbıl távolsággl elmozdítv z emeltő szöggel fordul el. k Írj fel

Részletesebben

Rezgések. x(t) x(t) TÓTH A.: Rezgések/1 (kibővített óravázlat) 1

Rezgések. x(t) x(t) TÓTH A.: Rezgések/1 (kibővített óravázlat) 1 TÓTH A.: Rezgések/1 (kibővített óravázlat) 1 Rezgések A rezgés általános érteleben valailyen ennyiség értékének bizonyos határok közötti periodikus vagy ne periodikus ingadozását jelenti. Mivel az ilyen

Részletesebben

3. 1 dimenziós mozgások, fázistér

3. 1 dimenziós mozgások, fázistér Drótos G.: Fejezetek az eléleti echanikából 3. rész 3. dienziós ozgások, fázistér 3.. Az dienziós ozgások leírása, a fázistér fogala dienziós ozgás alatt egy töegpont olyan ozgását értjük ebben a jegyzetben,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II. Trigonometria II. A tetszőleges nagyságú szögek szögfüggvényeit koordináta rendszerben egységhosszúságú forgásvektor segítségével definiáljuk. DEFINÍCIÓ: (Vektor irányszöge) Egy vektor irányszögén értjük

Részletesebben

A mechanika egyes felvonós vonatkozásai

A mechanika egyes felvonós vonatkozásai A mechanika egyes felvonós vonatkozásai Felvonókonferencia 2013 Siófok Bánréti Tibor FMF vezető-helyettes A dinamikus tényezı fogalma r r R = m* a m*g a F m* g = m* a F = m* ( g + a) F = m* g * kd a kd

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

Egy kinematikai feladathoz

Egy kinematikai feladathoz 1 Egy kinematikai feladathoz Az [ 1 ] példatárból való az alábbi feladat. Egy bütyök v 0 állandó nagyságú sebességgel halad jobbról balra. Kontúrjának egyenlete a hozzá kötött, vele együtt haladó O 1 xy

Részletesebben

Munka, Energia, Teljesítmény A feladatokat energetikai megfontolással oldjátok meg!

Munka, Energia, Teljesítmény A feladatokat energetikai megfontolással oldjátok meg! Alapfeladatok Munka, Energia, Teljesítmény A feladatokat energetikai megfontolással oldjátok meg! 1. Mekkora munkavégzés árán tudunk feljutni a 100 m magas és 500m hosszú lejtı tetejére, ha tömegünk 80kg?

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

Az egyenes vonalú egyenletes mozgás

Az egyenes vonalú egyenletes mozgás Az egyenes vonalú egyenletes ozgás Az egyenes vonalú ozgások egy egyenes entén ennek végbe. (Ki hitte volna?) Ha a ozgás egyenesét választjuk az egyik koordináta- tengelynek, akkor a hely egadásához elég

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II.

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II. Oktatási Hivatal A 010/011. tanévi FIZIKA Országos Középiskolai Tanulányi Verseny első fordulójának feladatai és egoldásai fizikából II. kategória A dolgozatok elkészítéséhez inden segédeszköz használható.

Részletesebben

Algoritmus a csigahajtások f7paramétereinek meghatározására. Dr. Antal Tibor Sándor, Dr. Antal Béla. Kolozsvári Mszaki Egyetem.

Algoritmus a csigahajtások f7paramétereinek meghatározására. Dr. Antal Tibor Sándor, Dr. Antal Béla. Kolozsvári Mszaki Egyetem. Algoritus a csigahajtások f7paraétereinek eghatározására Dr. Antal ibor Sánor, Dr. Antal Béla Kolozsvári Mszaki Egyete Abstract he gear esign can be achieve in several ways accoring to the publishe ethos

Részletesebben

A mágneses kölcsönhatás

A mágneses kölcsönhatás TÓTH A.: Mágneses erőtér/1 (kibővített óravázlat) 1 A ágneses kölcsönhatás Azt a kölcsönhatást, aelyet később ágnesesnek neveztek el, először bizonyos ásványok darabjai között fellépő a gravitációs és

Részletesebben

ü ő ő ü ő ő ö ö ő ö í ü ő í ö ö í ő ö ő ű ú ő í ü ő ö ő Í ö ö ő ö ö ő ő ö ő í Í í ü ö ő í ü ü ú ü ö ö ő ü ő ö ő í ü ő í ö ö ő ő ő í í ő í ő ő Á Ó Í í í ő ű ú ő í í ő ő Í ő í ő í í Í í ő í ő í ő ő íí ő

Részletesebben

É Ü ö Ü ú Ú ű Ó Ó ű ö Ó Ó ú ű Ü Ö Ó Ó ö Ó Ő ű Ó Ó ú Ü Ü Ó Ó Ó Ü Ó Í Í ö ö ö ö ö ú ú ö ű ú ö ö ö ú ö ú ű ö ö ű ö ö ö ű ö ö ö ú ö ö ú ö ö ö ö ö ú ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ö ö Í ö Ö ö ú ö ö ö ö Ó Í

Részletesebben

Í Ő É Ó É é Ö Á Á Á Ó é Ó é ö é Ö ű ö é ö ű ö é ö é é é é é é é é é é é é é é é é é é ü é é é Í é é é é ü é ö ü é ü é é ö ö é ú é é ü é é ü é é ü é ü é é é ú é Ó é é ú é ü é é ö é ö é Á Á Á Ó é Ó Í é ö

Részletesebben

ö í Ö Ó ü í ü ö Ö ö ü ü ö ö ö ö Ö ü ö ö Ö ü Ű Ö ö ü ú ű ö ö í ö ö í ü ö ö í í ö Á É ö Ö í ö Ö ü ö Ö ö ö ö ö ö ü í ü ö í ü ö ö ö Ö ü ö í ü í ö ö ö Ö ü ö Ö í í ö Ö ü ö Ö í ü ö Á É ö Ö í ü ö í ö ű ö ö ű ö

Részletesebben

ő ő ű í ó ú í ó í ó Á Á Á É ű ő ó ó ő ó ő Á É ó Á É ú Á É É Á ó Á Á Á Á Á É É ó Á É í É É í É ú ú ú ó ó Ö ú É ú ó ő ú ó í É É É É Ö Ö É Á É É É Ő Ó É ő ó ó í ő ú ő ő ű í ó ú Ő Ö ú É ú ú ő ő É É ő ő ő ő

Részletesebben

ö é é ü Ő Ö é ü ö é é ü é é ó é ü ü é é é é é í é ü é é é é é é ö é é ö ö é ü ö ö é ü í é ü ü é é é ü é ö é é é ó é é é é é ü ö é é ü ú ö é é é é ö é é ö é é ó é ó é é í é é ó é é ó é é í ó é é ü ü é ó

Részletesebben

Forgatónyomaték mérése I.

Forgatónyomaték mérése I. Forgatónyomaték mérése I Bevezetés A forgatónyomaték az erőpár mint statikai alapalakzat jellemzője A nevéből is következően a testekre forgató hatást fejt ki Vektormennyiség, melyet az M = a x F képlettel

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

Gyakorlati példák Dr. Gönczi Dávid

Gyakorlati példák Dr. Gönczi Dávid Szilárdságtani számítások Gyakorlati példák Dr. Gönczi Dávid I. Bevezető ismeretek I.1 Definíciók I.2 Tenzoralgebrai alapismeretek I.3 Bevezetés az indexes jelölésmódba I.4 A lineáris rugalmasságtan általános

Részletesebben

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK Oktatási Hivatal A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA I. KATEGÓRIA FELADATOK Bimetal motor tulajdonságainak vizsgálata A mérőberendezés leírása: A vizsgálandó

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapiseretek középszint 081 ÉRETTSÉGI VIZSGA 011. október 17. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy

Részletesebben

Rugalmas tengelykapcsoló mérése

Rugalmas tengelykapcsoló mérése BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Budapesti Mőszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Jármőelemek és Hajtások Tanszék Jármőelemek és Hajtások Tanszék

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

Fluidizált halmaz jellemzőinek mérése

Fluidizált halmaz jellemzőinek mérése 1. Gyakorlat célja Fluidizált halaz jellezőinek érése A szecsés halaz tulajdonságainak eghatározása, a légsebesség-nyoásesés görbe és a luidizációs határsebesseg eghatározása. A érésekböl eghatározott

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2010.04.09. VASBETON ÉPÜLETEK MEREVÍTÉSE Az épületeink vízszintes terhekkel szembeni ellenállását merevítéssel biztosítjuk. A merevítés lehetséges módjai: vasbeton

Részletesebben

A ferde tartó megoszló terheléseiről

A ferde tartó megoszló terheléseiről A ferde tartó megoszló terheléseiről Úgy vettem észre az idők során, hogy nem nagyon magyarázták agyon azt a kérdést, amivel itt fogunk foglalkozni. Biztos azt mondják majd megint, hogy De hisz ezt mindenki

Részletesebben

Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész

Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész Az R forgató mátri [ ] - beli képleteinek levezetése: I rész Az [ ] forrás kötetében a ( 49 ), ( 50 ) képletek nyilván mint közismertek nem lettek levezetve Minthogy az ottani további számítások miatt

Részletesebben

Sommereiner Stein (bánya szerint) 9%

Sommereiner Stein (bánya szerint) 9% 33. fejezet: Konzolos mőködés? Vagy fokok közötti kapcsolat? (Brik; 1898) Ebben a részben egy összetettebb számítási módszert találunk. Az elsı pontban kialakítanak egy kísérletekre alapozott tapasztalati

Részletesebben

Felső végükön egymásra támaszkodó szarugerendák egyensúlya

Felső végükön egymásra támaszkodó szarugerendák egyensúlya 1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra

Részletesebben

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen A dolgozat feladatai az órán megoldott feladatok valamelyike, vagy ahhoz nagyon hasonló. A dolgozat 8 feladatból áll. 1. feladat 13 pont. feladat 8 pont 3. feladat 4. feladat 5. feladat 5 pont 6. feladat

Részletesebben

HELYI TANTERV. Mechanika

HELYI TANTERV. Mechanika HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze

Részletesebben

Az éjszakai rovarok repüléséről

Az éjszakai rovarok repüléséről Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel

Részletesebben

l 1 Adott: a 3 merev fogaskerékből álló, szabad rezgést végző rezgőrendszer. Adott továbbá

l 1 Adott: a 3 merev fogaskerékből álló, szabad rezgést végző rezgőrendszer. Adott továbbá SZÉCHENYI ISTVÁN EGYETE ALKALAZOTT ECHANIKA TANSZÉK ECHANIKA-REZGÉSTAN GYAKORLAT (kidolgozta: Fehér Lajos tsz mérnök; Tarnai Gábor mérnök tanár; olnár Zoltán egy adj r Nagy Zoltán egy adj) Több szabadságfokú

Részletesebben

13. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Németh Imre óraadó tanár, Bojtár Gergely egyetemi ts., Szüle Veronika, egy. ts.

13. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Németh Imre óraadó tanár, Bojtár Gergely egyetemi ts., Szüle Veronika, egy. ts. SZÉCHEYI ISTVÁ EGYETEM LKLMZOTT MECHIK TSZÉK. MECHIK-MOZGÁST GYKOLT (kidolgozta: éeth Ire óraadó tanár, Bojtár Gergely egyetei t., Szüle Veronika, egy. t.) /. feladat: Szerkezetek kinetikája, járű odell

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar. Körhengerhéjjal merevített körlemez stabilitásvizsgálata

Miskolci Egyetem Gépészmérnöki és Informatikai Kar. Körhengerhéjjal merevített körlemez stabilitásvizsgálata Miskolci Egyete Gépészérnöki és Inforatikai Kar Körengeréjjal erevített körleez stabilitásvizsgálata PD értekezés készítette: Bureister Dániel okleveles gépészérnök Sályi István Gépészeti Tudoányok Doktori

Részletesebben

Mechatronika alapjai II

Mechatronika alapjai II Horváth Péter Mechtroik lpji II jegyzet HEFOP táogtásávl készült. Szécheyi Istvá Egyete. Mide jog fetrtv Hi! hivtkozási forrás e tlálhtó. Megoldás z idıtrtoáy Trtlojegyzék redszer állpot, eeı és kieı jeleiek

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

Földrengésvédelem Példák 3.

Földrengésvédelem Példák 3. Térbeli rezgések, éretezés az Eurocode alapján, pushover-száítás Budapesti Műszaki és Gazdaságtudoáni Egete Szilárdságtani és Tartószerkezeti Tanszék 7. ájus 9. A példák kidolgozásához felhasznált irodalo:

Részletesebben

Mérést végezte: Varga Bonbien. Állvány melyen plexi lapok vannak rögzítve. digitális Stopper

Mérést végezte: Varga Bonbien. Állvány melyen plexi lapok vannak rögzítve. digitális Stopper Mérést végezte: Varga Bonbien Mérőtárs neve: Megyeri Balázs Mérés időpontja: 2008.04.22 Jegyzőkönyv Leadásának időpontja: 2008.04.29 A Mérés célja: Hooke Törvény Vizsgálata Hooke törvényének igazolása,

Részletesebben