anal2_04_implicit_es_integral.nb 1

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "anal2_04_implicit_es_integral.nb 1"

Átírás

1 anal implicit_es_integral.nb H L H Implicit függvény tétel L H L << Graphics`ImplicitPlot` pr =.5; F@x_, y_d = x + y ; p = PlotD@F@x, yd, 8x, pr, pr<, 8y, pr, pr<, DisplayFunction IdentityD; p = PlotD@, 8x, pr, pr<, 8y, pr, pr<, Mesh False, DisplayFunction IdentityD; Show@p, p, DisplayFunction $DisplayFunctionD Solve@F@x, yd, yd ImplicitPlot@F@x, yd, 8x, pr, pr<, 8y, pr, pr<, AxesOrigin 8, <D GraphicsD 99y è!!!!!!!!!!! x =, 9y è!!!!!!!!!!! x == ContourGraphics -.5

2 anal implicit_es_integral.nb y_d := x + y x y << Graphics`ImplicitPlot` ImplicitPlot@F@x, yd, 8x,, <D; a = PlotD@F@x, yd, 8x,, <, 8y,, <, Mesh False, PlotPoints 6, Boxed False, ImageSize 6D; b = PlotD@, 8x,, <, 8y,, <, PlotPoints 6, Boxed False, Axes False, DisplayFunction IdentityD; H a felület és a z= sík metszete lesz az implicit függvény görbéje L Show@a, b, ViewPoint > 8.,, <D;

3 anal implicit_es_integral.nb

4 anal implicit_es_integral.nb H L H Kettősintegrálok L H L H téglalaptartomány L f@x_, y_d = Hx + yl ; PlotD@f@x, yd, 8x,, <, 8y,, 5<D p = ContourPlot@f@x, yd, 8x,, <, 8y,, 5<, DisplayFunction Identity, ContourLines False, Contours 5D; H ábrázoljuk az x y síkon az integrálási Htéglalap alakúl tartományt is L Show@p, Graphics@8Rectangle@8, <, 8, <D<D, DisplayFunction $DisplayFunctionD H a kettős integrál eredménye een tartomány fölött L Integrate@f@x, yd, 8x,, <, 8y,, <D

5 anal implicit_es_integral.nb SurfaceGraphics Graphics Log@D + Log@D + Log@5D Log@6D

6 anal implicit_es_integral.nb 6 H normáltartomány esetén L << Graphics`FilledPlot` f@x_, y_d = x + y; PlotD@f@x, yd, 8x,, <, 8y,, <D p = ContourPlot@f@x, yd, 8x,, <, 8y,, <, DisplayFunction Identity, ContourLines False, Contours 5D; p = FilledPlot@8 x, x <, 8x,, <, DisplayFunction IdentityD; H maga a tartomány, ami fölött integrálunk L Show@p, p, DisplayFunction $DisplayFunctionD H a kettős integrálás eredménye is egy számérték pl. ê köbméter Hpl.L, mivel felület alatti térfogatról van szó L Integrate@f@x, yd, 8x,, <, 8y, x, x<d.5.5 SurfaceGraphics.5.5 Graphics

7 anal implicit_es_integral.nb 7 H feladat L H Számold ki az x +y függvény integrálját normáltartományon és jelenítsd meg az integrálási tartományt! L f@x_, y_d = x + y ; PlotD@f@x, yd, 8x,, <, 8y,, <D p = ContourPlot@f@x, yd, 8x,, <, 8y,, <, DisplayFunction Identity, ContourLines False, Contours 5D; p = FilledPlot@8, x<, 8x,, <, DisplayFunction IdentityD; Show@p, p, DisplayFunction $DisplayFunctionD Integrate@f@x, yd, 8y,, <, 8x, y, <D SurfaceGraphics Graphics

8 anal implicit_es_integral.nb 8 H Térfogatszámítás L ClearAll@x, x, y, y, z, z, n, r, x, y, z, f, F, vectorsd; x = ; y = ; z = ; H ábrák széleibek definiálása L x = ; y = ; z = ; H ábrák széleibek definiálása L H adott a z=6 x y függvény, és a határoló síkok, ami egy térfogatot zár körül H <x< és <y<l L F = 88z == 6x y<, 8x == <, 8x == <, 8y == <, 8y == <, 8z == <<; << Graphics`ImplicitPlot` << Graphics`ParametricPlotD` p = ParametricPlotD@8x, y, 6 x y<, 8x, x, x<, 8y, y, y<, DisplayFunction IdentityD; p = ParametricPlotD@8, y, z<, 8y, y, y<, 8z, z, z<, DisplayFunction IdentityD; p = ParametricPlotD@8, y, z<, 8y, y, y<, 8z, z, z<, DisplayFunction IdentityD; p = ParametricPlotD@8x,, z<, 8x, x, x<, 8z, z, z<, DisplayFunction IdentityD; p5 = ParametricPlotD@8x,, z<, 8x, x, x<, 8z, z, z<, DisplayFunction IdentityD; p6 = ParametricPlotD@8x, y, <, 8x, x, x<, 8y, y, y<, DisplayFunction IdentityD; Show@p, p, p, p5, p6, DisplayFunction $DisplayFunction, AspectRatio AutomaticD; H a függvénnyel együtt ábrázolva L Show@p, p, p, p, p5, p6, DisplayFunction $DisplayFunction, AspectRatio AutomaticD; - - -

9 anal implicit_es_integral.nb

10 anal implicit_es_integral.nb x y, 8x,, <, 8y,, <, AspectRatio Automatic, PlotRange AllD; H Ha kiszámoljuk az integrált így ahogy van: L H6 x yl y x H Ez nem térfogatot számol, mert a z tengely alatti rész térfogatát H L gyel szorozza!, ELŐJELES TÉRFOGAT L H nézzük részletesebben a problémát: L p7 = Plot@6 x, 8x,, <, DisplayFunction IdentityD; H a z= síkmetszet L p8 = Plot@, 8x,, <, DisplayFunction IdentityD; H a z= síkmetszet L p9 = Plot@, 8x,, <, DisplayFunction IdentityD; H a z= síkmetszet L Show@p7, p8, p9, DisplayFunction $DisplayFunctionD; H a z= síkmetszet egy ábrában L Solve@8y, 6 x y<, 8x, y<d H ezek alapján felbontva a tartományt részre: L Integrate@6 x y, 8y,, <, 8x, y ê 6, <D H Annak a résznek a térfogata, ahol 6 x y> L Integrate@ H6x yl, 8y,, <, 8x,, y ê 6<D H Annak a résznek a térfogata, ahol 6 x y< L x,y == 8 - -

11 anal implicit_es_integral.nb H Az egyik gyakorlatpélda L ClearAll@x, x, y, y, z, z, n, r, x, y, z, f, F, vectorsd; x = ; y = ; z = ; H ábrahatárok L x = 5; y = ; z = ; F = 88z == x + y <, 8Hx L^+ y^ == <, 8z == <<; << Graphics`ImplicitPlot` << Graphics`ParametricPlotD` p = ParametricPlotD@8x, y, x + y <, 8x, x, x<, 8y, y, y<, DisplayFunction IdentityD; Show@p, DisplayFunction $DisplayFunction, ViewPoint 8,, <, AspectRatio AutomaticD;H Nézzük a belsejét L -

12 anal implicit_es_integral.nb p = ParametricPlotD@8 + Cos@tD, Sin@tD, z<, 8t,, Pi<, 8z, z, z<, DisplayFunction IdentityD; p = ParametricPlotD@8x, y, <, 8x, x, x<, 8y, y, y<, DisplayFunction IdentityD; Show@p, p, p, DisplayFunction $DisplayFunction, AspectRatio AutomaticD; H Elforgatva is nézzünk bele! L Show@p, p, p, DisplayFunction $DisplayFunction, ViewPoint 8, 8, <, AspectRatio AutomaticD; H áttérünk polárkoordináta rendszerbe L x@r_, ϕ_d := r Cos@ϕD; y@r_, ϕ_d := r Sin@ϕD; H integrálunk, és itt is a végeredmény egy szám lesz L Integrate@Hx@r, ϕd + y@r, ϕd L r, 8ϕ, Pi ê, Pi ê <, 8r,, Cos@ϕD<D -

13 anal implicit_es_integral.nb - π

14 anal implicit_es_integral.nb H Egy másik gyakorlatpélda L ClearAll@x, x, y, y, z, z, n, r, x, y, z, f, F, vectorsd; x = ; y = ; z = ; x = ; y = ; z = ; F = 88z == x y <, 8x^+ y^ <, 8z == <<; << Graphics`ImplicitPlot` << Graphics`ParametricPlotD` p = ParametricPlotD@8x, y, x y <, 8x, x, x<, 8y, y, y<, DisplayFunction IdentityD; p = ParametricPlotD@8Cos@tD, Sin@tD, z<, 8t,, Pi<, 8z, z, z<, DisplayFunction IdentityD; p = ParametricPlotD@8x, y, <, 8x, x, x<, 8y, y, y<, DisplayFunction IdentityD; Show@p, DisplayFunction $DisplayFunction, AspectRatio AutomaticD; Show@p, p, p, DisplayFunction $DisplayFunction, AspectRatio AutomaticD;

15 anal implicit_es_integral.nb Show@p, p, DisplayFunction $DisplayFunction, AspectRatio AutomaticD; x@r_, ϕ_d := r Cos@ϕD; y@r_, ϕ_d := r Sin@ϕD; Integrate@Hx@r, ϕd y@r, ϕd L r, 8ϕ,, Pi<, 8r,, <D H Ez nem térfogatot számol, mert a z tengely alatti rész térfogatát H L gyel szorozza! L H érdekes is az eredmény! L

16 anal implicit_es_integral.nb 6 p7 = Plot@x, 8x, x, x<, DisplayFunction IdentityD; H a z= síkmetszet L p8 = Plot@ x, 8x, x, x<, DisplayFunction IdentityD; p9 = ParametricPlot@8Cos@tD, Sin@tD<, 8t,, Pi<, DisplayFunction IdentityD; H Felülnézetből L Show@p7, p8, p9, DisplayFunction $DisplayFunctionD; Integrate@Hx@r, ϕd y@r, ϕd L r, 8ϕ, Pi ê, Pi ê <, 8r,, <D H Az egyik negyedrész térfogata, ebből számítható a teljes térfogat L H L H Hármasintegrálok L H L

17 anal implicit_es_integral.nb 7 H Tetraéder tartomány L ClearAll@a, b, c, d, x, x, y, y, z, z, n, r, x, y, z, f, F, vectorsd; x = ; y = ; z = ; a = 6; b = ; c = ; d = ; x = d ê a + ; y = d ê b + ; z = d ê c + ; F = 88ax + by + cz d<, 8x <, 8y == <, 8z == <<; << Graphics`ImplicitPlot` << Graphics`ParametricPlotD` p = ParametricPlotD@8x, y, <, 8x, x, x<, 8y, y, y<, DisplayFunction IdentityD; p = ParametricPlotD@8x,, z<, 8x, x, x<, 8z, z, z<, DisplayFunction IdentityD; p = ParametricPlotD@8, y, z<, 8y, y, y<, 8z, z, z<, DisplayFunction IdentityD; p = ParametricPlotD@8x, y, Hd a x b ylêc<, 8x, x, x<, 8y, y, y<, DisplayFunction IdentityD; Show@p, p, p, p, DisplayFunction $DisplayFunction, AspectRatio AutomaticD; PlotD@Hd a x b ylêc, 8x, x, x<, 8y, y, y<, AspectRatio AutomaticD; p5 = GraphicsD@Polygon@88,, <, 8, d ê b, <, 8,, d ê c<<dd; H az x= síkmetszet L p6 = GraphicsD@Polygon@88,, <, 8d ê a,, <, 8,, d ê c<<dd; H az y= síkmetszet L p7 = GraphicsD@Polygon@88,, <, 8d ê a,, <, 8, d ê b, <<DD;H a z= síkmetszet L Show@p5, p6, p7, DisplayFunction $DisplayFunctionD; f@x_, y_d = x y;h Integráljuk ezt a függvényt a tetraéderen L Integrate@f@x, yd, 8x,, d ê a<, 8y,, Hd axlêb<, 8z,, Hd ax bylêc<d Integrate@f@x, yd, 8x,, d ê a<, 8z,, Hd axlêc<, 8y,, Hd a x c zlêb<dh A másik négy lehetőség HF! L

18 anal implicit_es_integral.nb

19 anal implicit_es_integral.nb 9 H Viviani test L << Graphics`ImplicitPlot` R = ; G = 8x + y + z R <; H = 8Hx RL + y R <; f@x_, y_d = z ê. Solve@G, zdpt p = ContourPlot@Re@f@x, ydd, 8x,, <, 8y,, <, DisplayFunction Identity, ContourLines False, Contours 5D; p = ImplicitPlot@H, 8x,, <, DisplayFunction Identity, PlotStyle 88Thickness@.D, Hue@.5D<<D; Show@p, p, DisplayFunction $DisplayFunctionD è!!!!!!!!!!!!!!!!!!!!!! x y Graphics

20 anal implicit_es_integral.nb p = ParametricPlotDA8 Cos@ϕD Cos@θD, Sin@ϕD Cos@θD, Sin@θD<, 8ϕ,,π<, 9θ, π, π =, DisplayFunction IdentityE p = ParametricPlotD@8 + Cos@ϕD, Sin@ϕD, z<, 8ϕ,, π<, 8z,.,.<, DisplayFunction IdentityD Show@p, p, DisplayFunction $DisplayFunction, Boxed False, Axes FalseD IntegrateAf@x, yd, 8x,, <, 9y, "################ R ########### Hx RL, "################ R ########### Hx RL =E IntegrateA, 8x,, <, 9y, "################ R ########### Hx RL, "################ R ########## Hx RL =, 9z,, è!!!!!!!!!!!!!!!! R!!!!!!!!!!! x y =E GraphicsD GraphicsD GraphicsD 8 H + πl 9 8 H + πl 9 H feladat L H z=x y hiperbolikus paraboloidot ábrázold D ben, és számold ki azt a területet, amit az xy tengelysíkkal és az x +y = hengerpalásttal bezár L sik = ParametricPlotD@8, x, y<, 8x,, <, 8y,, <, DisplayFunction IdentityD; sik = ParametricPlotD@8x,, y<, 8x,, <, 8y,, <, DisplayFunction IdentityD; sik = ParametricPlotD@8x, y, <, 8x,, <, 8y,, <, DisplayFunction IdentityD; sik = ParametricPlotD@ 8Cos@tD Cos@uD, Sin@tD Cos@uD, Sin@uD<, 8t,, Pi<, 8u, Pi ê, Pi ê <D Show@sik, sik, sik, ViewPoint > 8.,.,.<, DisplayFunction $DisplayFunction, ImageSize D Show@sik, sik, sik, sik, ViewPoint > 8.,.,.<, ImageSize, DisplayFunction $DisplayFunctionD

21 anal implicit_es_integral.nb GraphicsD GraphicsD

22 anal implicit_es_integral.nb GraphicsD H Egység sugarú gömb térfogata Descartes koordinátarendszerben L π è!!!!!!!!!!! x è!!!!!!!!!!! x è!!!!!!!!!!!!!!!!!! x y è!!!!!!!!!!!!!!!!!! x y z y x H Órai példa Descartes koordinátarendszerben L H ugye, hogy érdemes áttérni gömbi koordinátarendszerre? L è!!!!!!!!!!! x è!!!!!!!!!!!!!!!!!! x y x y z z y x x + y + z

23 Implicit függvények ábrázolása mivel ez Mathematica 6-os és 7-es parancsokat elfogad ContourPlot[x^/9+y^/(/)-==, {x, -, }, {y, -, }] ContourPlot[x^ + y^ - *x*y==, {x, -, }, {y, -, }] Ehhez a P (.5,.5) pontba érintőt húzva: ContourPlot[{x^ + y^ - *x*y==,y==-x+}, {x, -, }, {y, -, }] Integráláshoz segédlet (vizualizáció és végeredmény) ContourPlotD[{z = x^ - y^, x^ + y^ =, z = }, {x, -, }, {y, -, },{z,-,}] (tessék változtatgatni a határokat) Vagy akár egy többes integrált is beírhatunk: Integrate[(x*y*z)/(x^+y^+z^),{x,, },{y,,sqrt[-x^]},{z,,sqrt[- x^-y^]}]

anal2_03_szelsoertek_demo.nb 1

anal2_03_szelsoertek_demo.nb 1 anal szelsoertek_demo.nb parciális deriválás f x^ y^; f Sin x Cos y ; g D f, x ; h D f, y ; Show GraphicsArray PlotD f, x,,, y,,, AxesLabel StringForm "f ``", f, None, None, DisplayFunction Identity, PlotD

Részletesebben

Számítógépes Modellezés. Egyváltozós függvénydiszkusszió

Számítógépes Modellezés. Egyváltozós függvénydiszkusszió Számítógépes Modellezés Egyváltozós függvénydiszkusszió Függvédiszkusszió számítógéppel (ÉT, zéróhelyek, limeszek (lokális/globális/aszimpt viselkedés), monotonitás, szimb+num+viz) f@x_d = Hx ^ 6 - x ^

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

Limesz, Derivált, Integrál

Limesz, Derivált, Integrál Modellezés Limesz, Derivált, Integrál Direkt (normál) értékadás (=) p legyen a 6. Chebysev polinom. p ChebyshevT6, x 8 x 48 x 4 3 x 6 (Formális) derivált Dp, x 36 x9 x 3 9 x DSinx, x Cosx DSinx, x, Sinx

Részletesebben

Koordinátarendszerek

Koordinátarendszerek Koordinátarendszerek KO 1 Koordinátarendszerek Ponthalmazok előállításai Koordinátarendszerek KO Két gyakran alkalmazott síkbeli koordinátarendszer Derékszögű (Descartes féle) koordinátarendszer Síkbeli

Részletesebben

1. dolgozat Számítógéppel segített matematikai modellezés "A" változat 2009 október 20, kedd

1. dolgozat Számítógéppel segített matematikai modellezés A változat 2009 október 20, kedd Név:. dolgozat Számítógéppel segített matematikai modellezés "A" változat 9 október, kedd Oldd meg a következ: feladatokat. Készíts szép notebook-ot, figyelj a korrekt strukturált megoldásokra.. feladat

Részletesebben

Számítógépes Modellezés 3. Limesz, Derivált, Integrál. Direkt (normál) értékadás (=) p legyen a 6. Chebysev polinom.

Számítógépes Modellezés 3. Limesz, Derivált, Integrál. Direkt (normál) értékadás (=) p legyen a 6. Chebysev polinom. Számítógépes Modellezés 3 Limesz, Derivált, Integrál Direkt (normál) értékadás (=) p legyen a. Chebysev polinom. p ChebyshevT, x 8 x 48 x 4 3 x Helyettesítési érték meghatározásához a változó/határozatlan

Részletesebben

Név: RV 1. ZH. Számítógépes Modellezés (Mathematica) A csoport Okt. 15. csütörtök

Név: RV 1. ZH. Számítógépes Modellezés (Mathematica) A csoport Okt. 15. csütörtök Név: RV 1. ZH. Számítógépes Modellezés (Mathematica) A csoport Okt. 15. csütörtök Oldjuk meg az alábbi problémákat. Ügyeljünk a mukafüzet struktúrájára, használjunk szöveges cellát a megjegyzésekhez, vagy

Részletesebben

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény. Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...

Részletesebben

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13.

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13. 2015 május 13. Kétváltozós függvény kettősintegráljának definíciója Legyen f (x, y), R 2 R korlátos függvény egy T korlátos és mérhető területű tartományon. Vegyük a T tartomány egy felosztását T 1, T

Részletesebben

Megjegyzés: jelenti. akkor létezik az. ekkor

Megjegyzés: jelenti. akkor létezik az. ekkor . Hármas Integrál. Bevezetés és definíciók A bevezetés első részében egy feladaton keresztül jutunk el a hármasintegrál definíciójához. Feladat: Legyen R korlátos test, és a testnek legyen az f(x, y, z

Részletesebben

Kettős és többes integrálok

Kettős és többes integrálok Kettős és többes integrálok ) f,) + + kettős integrálja az, tartománon Megoldás: + + dd 6 + 6 + 8 + 9 + ] + + ] d 8 + 8 + ) f,) sin + ) integrálja a, tartománon Megoldás: ] d + 9 + d + + 68 8 7,5 + sin

Részletesebben

Számítógépes Modellezés 11. Differenciálegyenletes modellek. Inga

Számítógépes Modellezés 11. Differenciálegyenletes modellek. Inga Számítógépes Modellezés Differenciálegyenletes modellek Inga Tekintsük a következő egyparaméteres differenciálegyenletes modellt: Φ' Ω, Ω' g l sin Φ, l 0, g 9.8. Keresd meg az egyensúlyi helyzetet. Oldd

Részletesebben

9. előadás. Térbeli koordinátageometria

9. előadás. Térbeli koordinátageometria 9. előadás Térbeli koordinátageometria Koordinátageometria a térben Descartes-féle koordinátarendszerben dolgozunk. A legegyszerűbb alakzatokat fogjuk vizsgálni. Az ezeket leíró egyenletek első-, vagy

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Alapvető műveletek és operátorok

Alapvető műveletek és operátorok Mathematica bevezető Alapfogalmak è Kernel: kiértékel és tárolja a kiszámított értékeket è notebook - ok ( *.nb file): munkafzet è cellák (jobb oldalon zárójelezés): a notebook alapeleme; hierarcikus felépítés;

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

Analízis III. gyakorlat október

Analízis III. gyakorlat október Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer

Részletesebben

Galton- deszka Számítógéppel segített matematikai modellezés Prezentációs projektmunka Kertész Balázs

Galton- deszka Számítógéppel segített matematikai modellezés Prezentációs projektmunka Kertész Balázs Galton- deszka Számítógéppel segített matematikai modellezés Prezentációs projektmunka Kertész Balázs 2 galton2.nb Történeti áttekintő Sir Francis Galton (1822-1911) Polihisztor Társadalomfilozófia, eugenetika,

Részletesebben

Széchenyi István Egyetem

Széchenyi István Egyetem polár 3D gömbi Széchenyi István Egyetem Téglalapon vett integrál polár 3D gömbi Legyenek [a, b], [c, d] R véges intervallumok, és jelölje T az [a, b] [c, d] = {(x, y) R : a x b, c y d } téglalapot. Legyen

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

A Newton-Raphson iteráció kezdeti értéktől való érzékenysége

A Newton-Raphson iteráció kezdeti értéktől való érzékenysége Szénási Eszter SZTE TTIK Matematika BSc, Numerikus matematika projekt 2015. november 30. A Newton-Raphson iteráció kezdeti értéktől való érzékenysége Medencék (attraktorok) színezése 2 Newton_project-szenasi.nb

Részletesebben

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Felületábrázolás és alkalmazásai Maple-ben

Felületábrázolás és alkalmazásai Maple-ben Debreceni Egyetem Informatikai Kar Felületábrázolás és alkalmazásai Maple-ben Témavezető: Dr. Hoffmann Miklós egyetemi docens Készítette: Szlahorek András informatikatanár Debrecen 2009 Tartalomjegyzék

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

0, különben. 9. Függvények

0, különben. 9. Függvények 9. Függvények 9.. Ábrázolja a megadott függvényeket, és vizsgálja meg a függvények korlátosságát, monotonitását, konveitását, paritását, előjelét, zérushelyeit, periodicitását és határozza meg a valós

Részletesebben

Hármas integrál Szabó Krisztina menedzser hallgató. A hármas és háromszoros integrál

Hármas integrál Szabó Krisztina menedzser hallgató. A hármas és háromszoros integrál Hármas integrál Szabó Krisztina menedzser hallgató A hármas és háromszoros integrál Definició A fizikai meggondolások előzményeként jutunk el a hármas integrál következő értelmezéséhez. Legyen értelmezve

Részletesebben

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel; Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

IV. INTEGRÁLSZÁMÍTÁS Feladatok november IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin

Részletesebben

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 212. október 16. Frissítve: 215. január

Részletesebben

Példa keresztmetszet másodrendű nyomatékainak számítására

Példa keresztmetszet másodrendű nyomatékainak számítására Példa keresztmetszet másodrendű nyomatékainak számítására Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. február 22. Tekintsük az alábbi keresztmetszetet. 1. ábra. A vizsgált

Részletesebben

Petz Erika

Petz Erika Többváltozós függvények 1. Petz Erika petzerika@yahoo.com Áttekintés Kétváltozós s függvf ggvények ábrázolása Kis Maple ízelítı Parciális deriváltak és s geometriai jelentésük A gradiens vektor A kétvk

Részletesebben

Matematika példatár 5.

Matematika példatár 5. Matematika példatár 5 Integrálszámítás alkalmazása Csabina, Zoltánné Created by XMLmind XSL-FO Converter Matematika példatár 5: Integrálszámítás alkalmazása Csabina, Zoltánné Lektor: PhD Vigné dr Lencsés,

Részletesebben

Kétváltozós vektor-skalár függvények

Kétváltozós vektor-skalár függvények Kétáltozós ekto-skalá függények Definíció: Az olyan függényt amely az ( endezett alós számpáokhoz ( R R ( ektot endel kétáltozós ekto-skalá függénynek neezzük. : ( ( ( x( i + y( j + z( k Az ektoal együtt

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,

Részletesebben

Tartalomjegyzék. Az EULER 3D program

Tartalomjegyzék. Az EULER 3D program Tartalomjegyzék Tartalomjegyzék... 1 Az EULER 3D program... 1 Gyakorló poliéder: a kocka... Gyakoribb beállítások... Második alakzat: a tetraéder... 5 A Mathematica program... 7 A másodfokú függvények

Részletesebben

Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd

Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd Integrálszámítás 4. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 2015 november 30. Filip Ferdinánd 2015 november 30. Integrálszámítás 4. 1 / 12 Az el adás vázlata Területszámítás

Részletesebben

Egy kinematikai feladathoz

Egy kinematikai feladathoz 1 Egy kinematikai feladathoz Az [ 1 ] példatárból való az alábbi feladat. Egy bütyök v 0 állandó nagyságú sebességgel halad jobbról balra. Kontúrjának egyenlete a hozzá kötött, vele együtt haladó O 1 xy

Részletesebben

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010. Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =

Részletesebben

Matematikai analízis II.

Matematikai analízis II. Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények

Részletesebben

A Cassini - görbékről

A Cassini - görbékről A Cassini - görbékről Giovanni Domenico Cassini, a 17-18 században élt olasz származású francia csillagász neve egyebek mellett a róla elnevezett görbékről is ismert lehet; ilyeneket mutat az 1 ábra is

Részletesebben

NULLADIK MATEMATIKA szeptember 7.

NULLADIK MATEMATIKA szeptember 7. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke

Részletesebben

Matematika példatár 5.

Matematika példatár 5. Nyugat-magyarországi Egyetem Geoinformatikai Kara Csabina Zoltánné Matematika példatár 5 MAT5 modul Integrálszámítás alkalmazása SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Polárkoordinátás és paraméteres megadású görbék. oktatási segédanyag

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Polárkoordinátás és paraméteres megadású görbék. oktatási segédanyag Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Polárkoordinátás és paraméteres megadású görbék oktatási segédanyag Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 01. Köszönetnyilvánítás Az

Részletesebben

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19. Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor

Részletesebben

1.) = grafikont kell ábrázolnunk. Megj.: 5 1+ A = 1 ill. B = 10 -szeresei. Ábrázolás Függvénytranszformációval :

1.) = grafikont kell ábrázolnunk. Megj.: 5 1+ A = 1 ill. B = 10 -szeresei. Ábrázolás Függvénytranszformációval : 0 október Függvényábrázolások, Összetett üggvény, Inverz üggvény Bev Mat BME ( Válogatás a eladatgyüjteményből ) ) 0 0 0 0 ( ) ( ) 5 5 5 5 Ábrázolás Függvénytranszormációval : y y 5 ( tengely mentén eltolás

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

Csuklós mechanizmus tervezése és analízise

Csuklós mechanizmus tervezése és analízise Csuklós mechanizmus tervezése és analízise Burmeister Dániel 1. Feladatkitűzés Megtervezendő egy többláncú csuklós mechanizmus, melynek ABCD láncában található hajtórúd (2-es tag) mozgása során három előírt

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6 Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Injektív függvények ( inverz függvény ).

Injektív függvények ( inverz függvény ). 04 október 6 3 Függvényábrázolások, Függvények kompozíciója ( összetett üggvény ), Bev Mat BME Injektív üggvények ( inverz üggvény ) 0 0 0 0 ( ) ( ) 5 5 5 5 Ábrázolás Függvénytranszormációval : 3 y y 5

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

BME MOGI Gépészeti informatika 15.

BME MOGI Gépészeti informatika 15. BME MOGI Gépészeti informatika 15. 1. feladat Készítsen alkalmazást a y=2*sin(3*x-π/4)-1 függvény ábrázolására a [-2π; 2π] intervallumban 0,1-es lépésközzel! Ezen az intervallumon a függvény értékkészlete

Részletesebben

Descartes-féle, derékszögű koordináta-rendszer

Descartes-féle, derékszögű koordináta-rendszer Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten

Részletesebben

Kalkulus 2., Matematika BSc 1. Házi feladat

Kalkulus 2., Matematika BSc 1. Házi feladat . Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 7 VII VEkTORANALÍZIS 1 ELmÉLETI ALAPOk Az u függvényt skalár-vektor függvénynek nevezzük, ha értelmezési tartománya a háromdimenziós tér vektorainak halmaza, a függvényértékek

Részletesebben

MATLAB. 6. gyakorlat. Integrálás folytatás, gyakorlás

MATLAB. 6. gyakorlat. Integrálás folytatás, gyakorlás MATLAB 6. gyakorlat Integrálás folytatás, gyakorlás Menetrend Kis ZH Példák integrálásra Kérdések, gyakorlás pdf Kis ZH Numerikus integrálás (ismétlés) A deriváláshoz hasonlóan lehet vektorértékek és megadott

Részletesebben

A hordófelület síkmetszeteiről

A hordófelület síkmetszeteiről 1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

A Descartes derékszög½u koordinátarendszert az i; j; k ortonormált bázis feszíti ki. Egy

A Descartes derékszög½u koordinátarendszert az i; j; k ortonormált bázis feszíti ki. Egy 8 Görbevonalú koordináták A Descartes derékszög½u koordinátarendszert az i; j; k ortonormált bázis feszíti ki. Egy tetsz½oleges pont helyvektora ebben a bázisban r =xi+yj+zk ahol x; y; z a pont ún. Descartes-féle

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

A2 jegyzet építőmérnök mérnök hallgatóknak Többváltozós deriválás

A2 jegyzet építőmérnök mérnök hallgatóknak Többváltozós deriválás A jegyzet építőmérnök mérnök hallgatóknak Többváltozós deriválás Simon Károly 7.4.4 BA.. Többváltozós valósértékű függvények integrálása... Normáltartományok Normáltartományok síkban A normáltartományok

Részletesebben

SCILAB programcsomag segítségével

SCILAB programcsomag segítségével Felhasználói függvények de niálása és függvények 3D ábrázolása SCILAB programcsomag segítségével 1. Felhasználói függvények de niálása A Scilab programcsomag rengeteg matematikai függvényt biztosít a számítások

Részletesebben

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1 Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató

Részletesebben

1. Vektorterek és lineáris leképezések

1. Vektorterek és lineáris leképezések 1. Vektorterek és lineáris leképezések 1.1. Feladat. Legyenek A, B : R 2 R 2 az A(x, y) = (2x y, y) B(x, y) = ( x, x + y) módon definiált leképezések. Ellenőrizzük, hogy lineárisak és írjuk fel a mátrixukat

Részletesebben

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx

Részletesebben

Hozzárendelés, lineáris függvény

Hozzárendelés, lineáris függvény Hozzárendelés, lineáris függvény Feladat 1 A ménesben a lovak száma és a lábaik száma közötti összefüggést vizsgáljuk. Hány lába van 0; 1; 2; 3; 5; 7... lónak? Készíts értéktáblázatot, és ábrázold derékszögű

Részletesebben

Példa: Síkbeli rugalmasságtani feladat megoldása végeselemes módszerrel

Példa: Síkbeli rugalmasságtani feladat megoldása végeselemes módszerrel Példa: Síkbeli rugalmasságtani feladat megoldása végeselemes módszerrel Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME Műszaki Mechanikai Tanszék 213. november 17. Javítva: - Határozzuk meg az ábrán

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete) Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)

Részletesebben

A gradiens törésmutatójú közeg I.

A gradiens törésmutatójú közeg I. 10. Előadás A gradiens törésmutatójú közeg I. Az ugrásszerű törésmutató változással szemben a TracePro-ban lehetőség van folytonosan változó törésmutatójú közeg definiálására. Ilyen érdekes típusú közegek

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Geometriai alapok Felületek

Geometriai alapok Felületek Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus

Részletesebben

Az egyenes ellipszishenger ferde síkmetszeteiről

Az egyenes ellipszishenger ferde síkmetszeteiről 1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges

Részletesebben

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.

Részletesebben

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25) I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =

Részletesebben

A Maple és a határozott integrál alkalmazásai

A Maple és a határozott integrál alkalmazásai A Maple és a határozott integrál alkalmazásai A Maple programcsomag egy nagyon jól kidolgozott algebrai és vizuális megjelenítésre alkalmas rendszer. A gondosan megszerkesztett súgók köszönhetõen könnyen

Részletesebben

25 i, = i, z 1. (x y) + 2i xy 6.1

25 i, = i, z 1. (x y) + 2i xy 6.1 6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =

Részletesebben

MATLAB. 5. gyakorlat. Polinomok, deriválás, integrálás

MATLAB. 5. gyakorlat. Polinomok, deriválás, integrálás MATLAB 5. gyakorlat Polinomok, deriválás, integrálás Menetrend Kis ZH Polinomok Numerikus deriválás Numerikus integrálás (+ anonim függvények) pdf Kis ZH Polinomok Sok függvény és valós folyamat leírható

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Lagrange-féle multiplikátor módszer és alkalmazása

Lagrange-féle multiplikátor módszer és alkalmazása Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János,

Részletesebben

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben. Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

Analízis II. gyakorlat

Analízis II. gyakorlat Analízis II. gyakorlat Németh Adrián 4. január 7. Tartalomjegyzék Előszó.................................................... Ismétlés................................................... Integrálás...............................................

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben