Limesz, Derivált, Integrál
|
|
- Veronika Papné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Modellezés Limesz, Derivált, Integrál Direkt (normál) értékadás (=) p legyen a 6. Chebysev polinom. p ChebyshevT6, x 8 x 48 x 4 3 x 6 (Formális) derivált Dp, x 36 x9 x 3 9 x DSinx, x Cosx DSinx, x, Sinx DSinx, x, x Sinx Dx ^ y ^, x, y 0 TableDSinx, x, i, i, 0, 7 Sinx, Cosx, Sinx, Cosx, Sinx, Cosx, Sinx, Cosx TableFormTableDSinx, x, i, i, 0, 7 Sinx Cosx Sinx Cosx Sinx Cosx Sinx Cosx Dx ^ y ^, y y Ugyanez, ha polinomfüggvényt definiálunk hozzárendelési szabállyal: qx : ChebyshevT6, x;
2 q Dqx, x 36 x9 x 3 9 x Határértékek Limitp, x Infinity Limitx ^ x 3x ^, x Infinity 3 LimitSinxx, x 0 p 8 x 48 x 4 3 x 6 ReverseCoefficientList p, x 3, 0, 48, 0, 8, 0, Integrálok Integratex ^, x x 3 3 Integratex ^, x, 0, 3 E x x Erfx E x x exp Erf N.4936 E x x
3 Nexp.4936 NIntegrateE ^x ^, x,,.4936 IntegrateE ^x ^, x,, Erf 3 x ^ x Sorozatok, Függvények Értékadás A ;? A Global`A A? B Table véges listák generálásához Tablei ^, i,, 4, 9, 6, Random 0.34 ClearMyFunction függvény definíciója (n_!) MyFunctionnList : n ^ függvényhívás MyFunction
4 MyFunction,, 3,, 0 SinPi, Pi 4, 0,, 0 Magyarázat az értékadáshoz '=' (Set) és ':=' (SetDelayed) Normál és késleltetett értékadás. Fontos ismerni a különbséget, hibák forrása lehet! V Random; V : Random; TableV, i, , , , , TableV, i, , , , , Sorozat: Hozzárendelési szabály vagy a képhalmaz egy véges szelete vagy grafikon := (SetDelayed, késleltetett értékadás) an : n ; n a 6 a 9 Na 0. Véges sorozatok generálása Tablei ^, i, 9, 8, 00,, 44 Tablei ^ 3, i,,,, 7, Az a sorozat elsõ tíz eleme Tablean, n, 0 6, 9, 3 4, 4, 6, 6 4, 7 4, 8 69, 9 86,
5 t Tablen, an, n, 0, 6,, 3 4, 3,, 4, 9 4,, , 6,, 7,, 8,, 9, , 0, TableFormt Ábrák ListPlott ? ListPlot y y x x y x y x y list list
6 OptionsListPlot AlignmentPoint Center, AspectRatio, Axes True, AxesLabel None, GoldenRatio AxesOrigin Automatic, AxesStyle, Background None, BaselinePosition Automatic, BaseStyle, ClippingStyle None, ColorFunction Automatic, ColorFunctionScaling True, ColorOutput Automatic, ContentSelectable Automatic, DataRange Automatic, DisplayFunction $DisplayFunction, Epilog, Filling None, FillingStyle Automatic, FormatType TraditionalForm, Frame False, FrameLabel None, FrameStyle, FrameTicks Automatic, FrameTicksStyle, GridLines None, GridLinesStyle, ImageMargins 0., ImagePadding All, ImageSize Automatic, InterpolationOrder None, Joined False, LabelStyle, MaxPlotPoints, Mesh None, MeshFunctions &, MeshShading None, MeshStyle Automatic, Method Automatic, PerformanceGoal $PerformanceGoal, PlotLabel None, PlotMarkers None, PlotRange Automatic, PlotRangeClipping True, PlotRangePadding Automatic, PlotRegion Automatic, PlotStyle Automatic, PreserveImageOptions Automatic, Prolog, RotateLabel True, Ticks Automatic, TicksStyle ListPlott, PlotStyle RGBColor, 0, 0, PointSize.03, AxesOrigin 0, 0, PlotRange 0,, 0, g ListPlotTablen, an, n, 0, 00, PlotStyle RGBColor, 0, 0, PointSize.03, PlotRange 49, 0, 0, g InputForm Graphics[{Hue[0.67, 0.6, 0.6], RGBColor[, 0, 0],
7 PointSize[0.03], Point[{{0., }, {., }, {., }, {3., }, {4., }, {., }, {6., }, {7., }, {8., }, {9., }, {60., }, {6., }, {6., }, {63., }, {64., }, {6., }, {66., }, {67., }, {68., }, {69., }, {70., }, {7., }, {7., }, {73., }, {74., }, {7., }, {76., }, {77., }, {78., }, {79., }, {80., }, {8., }, {8.,
8 }, {83., }, {84., }, {8., }, {86., }, {87., }, {88., }, {89., }, {90., }, {9., }, {9., }, {93., }, {94., }, {9., }, {96., }, {97., }, {98., }, {99., }, {00., }}]}, {AspectRatio -> GoldenRatio^ (-), Axes -> True, PlotRange -> {{49, 0}, {0, }}, PlotRangeClipping -> True}] Grafikus objektumok ábrázolása
9 ShowGraphicsPointSize.0, Red, Point0, 0, GraphicsPoint, ShowTableGraphicsPointSize.03, Pointan, 0, n, 0, Axes True, PlotRange 0,,.0, Függvény: Hozzárendelési szabály vagy grafikon fx : x x; Plotfx, x,,
10 Plotx, x ^, x,, MyFunx : ArcTanx; MyDFunx : DMyFunx, x; MyDFunx x? Plot?? Plot PlotSinx, Cosx, x,,, PlotStyle, RGBColor, 0, 0, Axes False
11 PlotEvaluateMyFunx, MyDFunx, x,,, PlotStyle, RGBColor, 0, Feladatok?Hogyan lehetne az x^+y^== és x^+y^== ellipszisek grafikonját felrajzolni és a metszetük területét kiszámolni? Hint: pl. ContourPlot, RegionPlot,Impr. integrál, Boole Andexpr, expr IntegrateIntegrateBoolex ^ y ^ x ^ y ^, y, Infinity, Infinity, x, Infinity, Infinity ArcCos 3 ArcSin 3 FullSimplify ArcSec3 N.74084
12 RegionPlotx ^ y ^ x ^ y ^, x,,, y,, ContourPlotx ^ y ^, x ^ y ^, x,,, y,,, Axes True IntegrateIntegrate, y, 0, Sqrtx ^, x, Sqrt3, Sqrt ArcCos 3 N.74084
13 Solvex ^ y ^, x ^ y ^, x, y x 3, y 3, x 3, y 3, x 3, y 3, x 3, y 3 f[x]:=x/(x^-x+6) Ábrázoljuk, lok. glob, limeszek derivált mon., szimb. szám is! stb. In[]:= In[]:= In[3]:= Out[3]= Clearf fx : xx x 6 Solvefx 0, x x 0 OptionsLimit Analytic False, Assumptions $Assumptions, Direction Automatic féloldali limeszek Limitfx, x 3, Direction Limitfx, x 3, Direction SolveDenominatorfx 0, x x, x 3 Plotfx, x,,, PlotRange 0, x. SolveDfx, x 0 6, 6
14 ReduceDfx, x 0, x 6 x x 6 NSqrt PlotEvaluateDfx, x, x,, 0, PlotRange., PlotEvaluateDfx, x, x,,, PlotRange., Ábrázolások Plotx ^, x,,, ImageSize 00, 00, ListPlotRange ,
15 Variánsok ParametricPlott, t, t, 0, ContourPlotx ^ y ^, x,,, y,, In[4]:= PolarPlot,, 0, 4 6 Out[4]= 3 4
16 Ábrázoljunk különböz (algebrai) görbéket, pl. kör, hiperbola, lemniszkáta, cusp etc. Keressünk rá a helpben a térgörbék, felületek ábrázolására! Ábrázoljunk pl. a csavargörbét, síkot, félgömböt stb. Interaktív prezentációk In[]:= ManipulatePlota x b, x,,, PlotRange 0, 0, a,,,., b, 4, 4,. 0 Out[]= 4 4 0
Számítógépes Modellezés 3. Limesz, Derivált, Integrál. Direkt (normál) értékadás (=) p legyen a 6. Chebysev polinom.
Számítógépes Modellezés 3 Limesz, Derivált, Integrál Direkt (normál) értékadás (=) p legyen a. Chebysev polinom. p ChebyshevT, x 8 x 48 x 4 3 x Helyettesítési érték meghatározásához a változó/határozatlan
Számítógépes Modellezés. Egyváltozós függvénydiszkusszió
Számítógépes Modellezés Egyváltozós függvénydiszkusszió Függvédiszkusszió számítógéppel (ÉT, zéróhelyek, limeszek (lokális/globális/aszimpt viselkedés), monotonitás, szimb+num+viz) f@x_d = Hx ^ 6 - x ^
Név: RV 1. ZH. Számítógépes Modellezés (Mathematica) A csoport Okt. 15. csütörtök
Név: RV 1. ZH. Számítógépes Modellezés (Mathematica) A csoport Okt. 15. csütörtök Oldjuk meg az alábbi problémákat. Ügyeljünk a mukafüzet struktúrájára, használjunk szöveges cellát a megjegyzésekhez, vagy
anal2_03_szelsoertek_demo.nb 1
anal szelsoertek_demo.nb parciális deriválás f x^ y^; f Sin x Cos y ; g D f, x ; h D f, y ; Show GraphicsArray PlotD f, x,,, y,,, AxesLabel StringForm "f ``", f, None, None, DisplayFunction Identity, PlotD
Alapvető műveletek és operátorok
Mathematica bevezető Alapfogalmak è Kernel: kiértékel és tárolja a kiszámított értékeket è notebook - ok ( *.nb file): munkafzet è cellák (jobb oldalon zárójelezés): a notebook alapeleme; hierarcikus felépítés;
anal2_04_implicit_es_integral.nb 1
anal implicit_es_integral.nb H L H Implicit függvény tétel L H L
Számítógépes Modellezés 11. Differenciálegyenletes modellek. Inga
Számítógépes Modellezés Differenciálegyenletes modellek Inga Tekintsük a következő egyparaméteres differenciálegyenletes modellt: Φ' Ω, Ω' g l sin Φ, l 0, g 9.8. Keresd meg az egyensúlyi helyzetet. Oldd
1. dolgozat Számítógéppel segített matematikai modellezés "A" változat 2009 október 20, kedd
Név:. dolgozat Számítógéppel segített matematikai modellezés "A" változat 9 október, kedd Oldd meg a következ: feladatokat. Készíts szép notebook-ot, figyelj a korrekt strukturált megoldásokra.. feladat
Galton- deszka Számítógéppel segített matematikai modellezés Prezentációs projektmunka Kertész Balázs
Galton- deszka Számítógéppel segített matematikai modellezés Prezentációs projektmunka Kertész Balázs 2 galton2.nb Történeti áttekintő Sir Francis Galton (1822-1911) Polihisztor Társadalomfilozófia, eugenetika,
A Newton-Raphson iteráció kezdeti értéktől való érzékenysége
Szénási Eszter SZTE TTIK Matematika BSc, Numerikus matematika projekt 2015. november 30. A Newton-Raphson iteráció kezdeti értéktől való érzékenysége Medencék (attraktorok) színezése 2 Newton_project-szenasi.nb
NUMERIKUS MÓDSZEREK X. GYAKORLAT. 10a Lagrange Interpoláció
NUMERIKUS MÓDSZEREK X. GYAKORLAT 10a Lagrange Interpoláció Adjuk meg az Lagrange alapinterpolációs polinomokat, majd ezek segítségével állítsuk elõ a Lagrange interpolációs polinomot! Próbáljuk ki a következõ
Többváltozós függvények Feladatok
Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk
Wolfram Mathematica. Aritmetika. Informatika 1, 12. előadás. Alapműveletek. Csikja Rudolf notebook-jai alapján.
Wolfram Mathematica Informatika 1, 12. előadás Csikja Rudolf notebook-jai alapján. Aritmetika Alapműveletek Aritmetikai műveleteket a szokásos módon végezhetjük. Az ENTER billentyű leütésével új sort kezdhetünk,
I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex
Nem ekvidisztáns alappontrendszer, n pont esetén [-1,1]-en minden(!) (2n-1)-ed fokú polinomra pontos.
Num. Math. Gauss kvadratúra Általánosított kvadratúra probléma: a b f x Ω x x Most csak azzal foglakozunk, amikor Ω=, [a,b]=[-,]. Nem ekvidisztáns alappontrendszer, n pont esetén [-,]-en minden(!) (n-)-ed
Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
Maple: Grafikonok rajzolása
Maple: Grafikonok rajzolása A Maple számos lehetőséget kínál adatok és matematikai relációk grafikus megjelenítésére a plots függvény különböző formái által. Számtalan rajzoló függvényei között olyan függvényeket
Num. Math. 12. Numerikus Integrálás: Gauss-kvadratú ra. Általánosított kvadratúra probléma: a. Most csak azzal foglakozunk, amikor Ω=1, [a,b]=[-1,1].
Num. Math. Numerikus Integrálás: Gauss-kvadratú ra Általánosított kvadratúra probléma: a b f x Ω x x Most csak azzal foglakozunk, amikor Ω=, [a,b]=[-,]. Nem ekvidisztáns alappontrendszer, n pont esetén
>> x1 = linspace( ); plot(x1,sin(x1),'linewidth',1,'color',[1 0 0]);
1 5. GYAKORLAT SAJÁT FÜGGVÉNYEK, GRAFIKA, FÜGGVÉNYVIZSGÁLAT A PLOT UTASÍTÁS A plot utasítás a legegyszerűbb esetben (x, y) pontpárok összekötött megjelenítésére szolgál (a pontok koordinátáit vektorok
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,
25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit
Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt
27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,
Tartalomjegyzék. Az EULER 3D program
Tartalomjegyzék Tartalomjegyzék... 1 Az EULER 3D program... 1 Gyakorló poliéder: a kocka... Gyakoribb beállítások... Második alakzat: a tetraéder... 5 A Mathematica program... 7 A másodfokú függvények
n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,
205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:
Matematika I. NÉV:... FELADATOK:
24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n
Komputeralgebra rendszerek
XVII. A Maple grafikus képeségei Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010-2011 ősz Index I 1 Az alapok A plot és plot3d Implicit függvény ábrázolása Késleltetett
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
First Prev Next Last Go Back Full Screen Close Quit
Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.
Régebbi Matek B1 és A1 zh-k. deriválás alapjaival kapcsolatos feladatai. n )
Régebbi Matek B1 és A1 zh-k Sorozatok és függvények határértékével, folytonossággal és a deriválás alapjaival kapcsolatos feladatai. 1. Számítsuk ki: (a) n ( 2n 1) n+3 1 + arccos( 2n + 1 n ) (b) n ( n
6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények
6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai
Grafika. Egyváltozós függvény grafikonja
Grafika Egyváltozós függvény grafikonja Egyváltozós függvény grafikonját a plot paranccsal tudjuk kirajzolni. Elsı paraméter egy függvény képlete, a második paraméter változónév=intervallum alakú: plot(x^3-16*x+2,x=-6..6);
A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
Komputeralgebrai Algoritmusok
Komputeralgebrai Algoritmusok Adatábrázolás Czirbusz Sándor, Komputeralgebra Tanszék 2015-2016 Ősz Többszörös pontosságú egészek Helyiértékes tárolás: l 1 s d i B i i=0 ahol B a számrendszer alapszáma,
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Konstansok, változók, típusok Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. február 24. TARTALOMJEGYZÉK 1 of 110 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Nevek kezelése
Függvények csoportosítása, függvénytranszformációk
Függvények csoportosítása, függvénytranszformációk 4. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények csoportosítása p. 1/2 Függvények nevezetes osztályai Algebrai függvények
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl
Felületábrázolás és alkalmazásai Maple-ben
Debreceni Egyetem Informatikai Kar Felületábrázolás és alkalmazásai Maple-ben Témavezető: Dr. Hoffmann Miklós egyetemi docens Készítette: Szlahorek András informatikatanár Debrecen 2009 Tartalomjegyzék
(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e
Az. gyakorlat HF-inak megoldása. Deriváljuk az alábbi függvényeket. sin x cos x = cos x sin x, x ln x = x / ln x + x x x, x x = x / = x/ = = e x cos x+e x sin x e x cos x cos x, x sin x ln x = + x x, x
Megjegyzés: A Gnuplot rendelkezik előre definiált függvényekkel, mint a sin(x), cos(x), tan(x), erf(x), atan(x), exp(x) stb.
Gnuplot Jegyzetben az 3. fejezet (36-től 52. oldalig). http://stegerjozsef.web.elte.hu/teaching/szamalap.pdf (http://stegerjozsef.web.elte.hu/teaching/szamalap.pdf) A gnuplot egy sokoldalú parancssorvezérelt
1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log
1. Fuggveny ertekek 1 Szamtsuk ki az alabbi fuggvenyek erteket a megadott helyeken! a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I b) f (x) = sin x 1 x = π 2, π 4, 3 3 2π, 10π I arcsin(x) ha 1 x 0 1 c) f
4_Gnuplot1. October 11, Jegyzetben az 3. fejezet (36-től 52.-ig oldalig).
4_Gnuplot1 October 11, 2016 1 Gnuplot Jegyzetben az 3. fejezet (36-től 52.-ig oldalig). http://stegerjozsef.web.elte.hu/teaching/szamalap.pdf 1.1 Előkészületek Hozzunk létre a latex mappában egy fig nevű
Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
Maple. Maple. Dr. Tóth László egyetemi docens Pécsi Tudományegyetem, 2007
Maple Dr. Tóth László egyetemi docens Pécsi Tudományegyetem, 2007 A Maple egy matematikai formula-manipulációs (vagy számítógép-algebrai) rendszer, amelyben nem csak numerikusan, hanem formális változókkal
Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra
Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus függvény
A Maple és a határozott integrál alkalmazásai
A Maple és a határozott integrál alkalmazásai A Maple programcsomag egy nagyon jól kidolgozott algebrai és vizuális megjelenítésre alkalmas rendszer. A gondosan megszerkesztett súgók köszönhetõen könnyen
Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek... 8 3.1. Elsőfokú egyenletek... 8 3.2. Valós szám abszolút értéke...
Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 5 2.1. A függvény
Komplex számok. A komplex számok algebrai alakja
Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos
Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4.
Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 2017. október 4. Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus
Határozatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
Sage alapok. A Sage program használható egyszerő számolási feladatok elvégzésére: #Összeadás #Kivonás
1 / 13 2009.09.09. 15:48 To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. If the math symbols print as black boxes, turn off image alpha
I. feladatsor. (t) z 1 z 3
I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.
1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.
Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7
Számítógéppel támogatott geometriai kutatás és oktatás Debrecen 2009.
Debreceni Egyetem Informatikai Kar Számítógéppel támogatott geometriai kutatás és oktatás Témavezetı: Dr. Bácsó Sándor tanszékvezetı Készítette: Boda Judit informatikatanári-matematika Debrecen 2009. Köszönetnyilvánítás
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése
8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,
3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5
Komputeralgebra rendszerek
Komputeralgebra rendszerek III. Változók Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2009-2010 ősz Index I 1 Szimbolikus konstansok kezelés A konstansok Nevek levédése
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)
Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)
Komputeralgebra rendszerek
Komputeralgebra rendszerek III. Változók Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2009-2010 ősz Index I 1 Szimbolikus konstansok kezelés A konstansok Nevek levédése
A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei. Atomerőművek üzemtana
A MATLAB alapjai Kezdő lépések - Matlab Promt: >> - Help: >> help sqrt >> doc sqrt - Kilépés: >> quit >> exit >> Futó script leállítása: >> ctrl+c - Változók listásása >> who >> whos - Változók törlése
5. fejezet. Differenciálegyenletek
5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y
Maple: Deriváltak és a függvény nevezetes pontjai
Maple: Deriváltak és a függvény nevezetes pontjai Bevezető Tudjuk, hogy a Maple könnyűszerrel képes végrehajtani a szimbólikus matematikai számításokat, ezért a Maple egy ideális program differenciál-
Kalkulus 2., Matematika BSc 1. Házi feladat
. Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben
A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei
A MATLAB alapjai Atomerőművek üzemtanának fizikai alapjai - 2016. 03. 04. Papp Ildikó Kezdő lépések - Matlab Promt: >> - Help: >> help sqrt >> doc sqrt - Kilépés: >> quit >> exit - Változók listásása >>
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
Feladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!
Analízis ZH konzultáció
Analízis ZH konzultáció 1. Teljes indukció Elméleti segítség: n=1-re bebizonyítani (vagy arra az n-re, ahonnan az állítást igazolni szeretnénk) feltesszük, hogy n-re igaz az állítás -> n+1-re is igaz lesz?
2012. október 9 és 11. Dr. Vincze Szilvia
2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények
Num. Math. 2. Mathematica. Lineáris Algebra. Lineáris Egyenletrendszerek. nummethods2x.nb 1. Numerikus egyenlet(rendszer) megoldó rutin
nummethods2x.nb Num. Math.2 Mathematica Lineáris Algebra Lineáris Egyenletrendszerek In[]:= Out[]= In[2]:= Solvex^250 x 5,x 5 Solvexy2, xy0,x, y Out[2]= x 3 0, y 5 Numerikus egyenlet(rendszer) megoldó
Numerikus matematika
Numerikus matematika Baran Ágnes Gyakorlat Numerikus integrálás Matlab-bal Baran Ágnes Numerikus matematika 8. Gyakorlat 1 / 20 Anoním függvények, function handle Függvényeket definiálhatunk parancssorban
Bevezető. Mi is az a GeoGebra? Tények
Bevezető Mi is az a GeoGebra? dinamikus matematikai szoftver könnyen használható csomagolásban az oktatás minden szintjén alkalmazható tanításhoz és tanuláshoz egyaránt egyesíti az interaktív geometriát,
Fourier sorok február 19.
Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható
NUMERIKUS MÓDSZEREK XII. GYAKORLAT. 12a Numerikus Integrálás: Simpson+Trapéz formulák. Alapötletek:
NUMERIKUS MÓDSZEREK XII. GYAKORLAT a Numerikus Integrálás: Simpson+Trapéz formulák Alapötletek: ) a f x x a Lx x ) Ekvidisztáns alappontrendszer a x x n, x k x k h Memo: a f x x a Lx x n i a n f x i l
Alapfogalmak a Diszkrét matematika II. tárgyból
Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.
Széchenyi István Egyetem. Műszaki számítások. Matlab 4. előadás. Elemi függvények és saját függvények. Dr. Szörényi Miklós, Dr.
Matlab 4. előadás Elemi függvények és saját függvények Dr. Szörényi Miklós, Dr. Kallós Gábor 2017 2018 Tartalom Bevezetés, motiváció Elemi függvények Trigonometrikus és exponenciális csoport Maximális/minimális
Számítástechnika I. BMEKOKAA152 BMEKOKAA119 Infokommunikáció I. BMEKOKAA606. Dr. Bécsi Tamás 2. előadás
Számítástechnika I. BMEKOKAA152 BMEKOKAA119 Infokommunikáció I. BMEKOKAA606 Dr. Bécsi Tamás 2. előadás Console I/O bővebben Lásd mintaprogram 2015.09.21. Számítástechnika I. 2. Előadás 2 Számábrázolásról
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 10 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
E-tananyag Matematika 9. évfolyam 2014. Függvények
Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet. old.. feladat a. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés:
Mérési adatgyűjtés és adatfeldolgozás 2. előadás
Mérési adatgyűjtés és adatfeldolgozás 2. előadás BME TTK Fizika Tanszék 2011/2012 tavaszi félév Copyright 2008-2009 Geresdi Attila, Halbritter András Számítógépes mérésvezérlés Az előző rész tartalmából
Példa: Síkbeli rugalmasságtani feladat megoldása végeselemes módszerrel
Példa: Síkbeli rugalmasságtani feladat megoldása végeselemes módszerrel Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME Műszaki Mechanikai Tanszék 213. november 17. Javítva: - Határozzuk meg az ábrán
Függvények határértéke és folytonossága
Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f
2019, Funkcionális programozás. 2. el adás. MÁRTON Gyöngyvér
Funkcionális programozás 2. el adás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2019, tavaszi félév Mir l volt szó? Követelmények, osztályozás Programozási
Komputeralgebra rendszerek
Komputeralgebra rendszerek P L O T Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2009. október 12. Index I 1 Az alapok plot és plot3d Késleltetett megjelenítés Egyszerűbb
Bevezetés a MATLAB programba
Bevezetés a MATLAB programba 1. Mi az a MATLAB? A MATLAB egy olyan matematikai programcsomag, amely mátrix átalakításokat használ a komplex numerikus számítások elvégzésére. A Mathematica és Maple programokkal
[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [
Bodó Beáta 1 FÜGGVÉNYEK 1. Határozza meg a következő összetett függvényeket! g f = g(f(x)); f g = f(g(x)) (a) B f(x) = cos x + x 2 ; g(x) = x; f(g(x)) =?; g(f(x)) =? f(g(x)) = cos( x) + ( x) 2 = cos( x)
Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit
Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos
Descartes-féle, derékszögű koordináta-rendszer
Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért
Függvények vizsgálata
Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =
Dierenciálhatóság. Wettl Ferenc el adása alapján és
205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási
Programozás C- és Matlab nyelven C programozás kurzus BMEKOKAM603 Előfeldolgozó rendszer Tömbök. Dr. Bécsi Tamás 4. Előadás
Programozás C- és Matlab nyelven C programozás kurzus BMEKOKAM603 Előfeldolgozó rendszer Tömbök Dr. Bécsi Tamás 4. Előadás A?: operátor Nézzük meg a következő kifejezést: if (a>b) z=a; else z=b; Ez felírható
MATLAB. 5. gyakorlat. Polinomok, deriválás, integrálás
MATLAB 5. gyakorlat Polinomok, deriválás, integrálás Menetrend Kis ZH Polinomok Numerikus deriválás Numerikus integrálás (+ anonim függvények) pdf Kis ZH Polinomok Sok függvény és valós folyamat leírható
Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév
Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen
FÜGGVÉNYEK. A derékszögű koordináta-rendszer
FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot