Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek Elsőfokú egyenletek Valós szám abszolút értéke...

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek... 8 3.1. Elsőfokú egyenletek... 8 3.2. Valós szám abszolút értéke..."

Átírás

1

2 Tartalomjegyzék 1. Műveletek valós számokkal Gyökök és hatványozás Hatványozás Gyökök Azonosságok Egyenlőtlenségek Függvények A függvény fogalma Injektív, szürjektív függvények Függvények összetétele Inverz függvény Elsőfokú egyenletek és egyenlőtlenségek Elsőfokú egyenletek Valós szám abszolút értéke Másodfokú függvény Komplex számok Algebrai alak Az i hatványai A z konjugáltja Komplex szám abszolút értéke Trigonometriai alak Moivre-képlet Exponenciális alak Binom egyenlet Haladványok Számtani sorozatok Mértani sorozatok Egy alkalmazás... 20

3 7. Logaritmusok Alap logaritmikus és exponenciális egyenletek Alap logaritmikus és exponenciális egyenlőtlenségek Mértan Vektorok Nevezetes helyzetvektorokkal kapcsolatos tételek Analitikus mértan térben, síkban Egy pont és két nem párhuzamos irány által meghatározott sík egyenlete Három nem kollineáris pont által meghatározott sík egyenlete A sík tengelymetszetes egyenlete A sík általános egyenlete A koordináta-rendszerhez viszonyítva sajátos helyzetű síkok egyenletei Egyenesek egyenletei Két különböző pont által meghatározott egyenes egyenlete Az egyenes általános egyenlete Síkbeli egyenesek egyenletei Két különböző pont által meghatározott egyenes egyenlete Két térbeli egyenes szöge Pont távolsága egyenestől (síkban) Szögfelezők egyenletei (síkban) Pont távolsága egyenestől (térben) A kör Az ellipszis A hiperbola Parabola Skaláris szorzat további alkalmazásai A matematikai indukció módszere A Peano-féle axiómák A matematikai indukció módszere A matematikai indukció módszerének egy változata Kombinatorika Permutációk... 52

4 11.2. Variációk Kombinációk Newton binomiális képlete Azonos hatványösszegek Polinomok Egy polinom algebrai alakja Polinomok oszthatósága Irreducibilis polinomok Polinomok gyökei Algebrai egyenletek Polinomok melyek együtthatói R, Q, Z-ből vannak Permutációk, mátrixok és determinánsok Permutációk Mátrixok Műveletek mátrixokkal Determinánsok Mátrix inverse A mátrix nyoma, Tr(A) További képletek Lineáris rendszerek Jelölések Összeférhetőség Trigonometria Trigonometriai képletek Trigonometria alkalmazása a mértanban Matematikai analízis Rekurziók Elsőrendű rekurziók Másodrendű rekurziók Sorozatok határértéke Általános határértékek, konvergencia kritériumok Függvényhatárértékek Műveletek függvényhatárértékekkel Alaphatárértékek... 82

5 16.5. Függvények folytonossága Folytonosságra vonatkozó tételek Deriválható függvények Derivált értelmezése egy pontban Deriválási szabályok Néhány függvény deriváltja Összetett függvény deriváltja Magasabbrendű deriváltak Deriválható függvények tulajdonságai Integrálok Határozatlan integrálok Primitiválhatósága Racionális függvények primitívje Integrálok amelyek tartalmazzák az r = (x 2 + a 2 ) 1/ Integrálok amelyek tartalmazzák az s = (x 2 a 2 ) 1/ Integrálok amelyek tartalmazzák a t = (a 2 x 2 ) 1/ Integrálok amelyek tartalmazzák az R = (ax 2 + bx + c) 1/ Trigonometrikus integrálok, amelyek csak a sin-t tartalmazzák Trigonometrikus integrálok, amelyek csak a cos-t tartalmazzák Trigonometrikus integrálok, amelyek csak a tan-t tartalmazzák Trigonometrikus integrálok, amelyek tartalmazzák a sin-t és cos-t Logaritmikus integrálok A határozott integrál tulajdonságai Integrálok additivitása intervallumokon Fundamentális tétel (Alaptétel) Egyenlőtlenségek Más tételek Primitiválható függvények Integrálható függvények Algebrai struktúrák Csoportok Tulajdonságok és nevezetes tételek Monoidok Gyűrűk Testek Vektorterek

6 1 Műveletek valós számokkal 1.1 Gyökök és hatványozás Hatványozás 1. a m n = a m a n 2. a m b m = (a b) m 3. a m : a n = a m n 4. a m : b m = (a : b) m 5. a m = 1 a m 6. (a m ) n = a mn. A valós számok hatványai kiterjeszthetőek racionális, irracionális, illetve valós hatványokkál is sorok segítségével. Ezek a hatványok is rendelkeznek azokkal a tulajdonságokkal amivel a természetes kitevöjű hayványok Gyökök Az alábbi képletekben értelemszerűen az n, m 2, valamint az a, b, c számok olyan valós számok, amelyekre az adott kifejezéseknek van értelme: 1 1. n a = a n, a > 0; n 1 2. a = n 1 = a n 1 ; a 3. ( n a) n = a; 4. n n a b = n ab; ( ) n n 1 5. = 1 a a ; 1

7 n a n b n c = n abc; n a : n b = n a b ; m a n a = nm a n+m ; m a : n nm a = a n m ; n a nm = a m ; m a n = a m n ; mn a mp = n a p ; m a p n b q = nm a pn b qm ; m n a = nm a; a 2 = a ; 2n+1 a = 2n+1 a; a ± a + c a c b = ± ahol a c egynlőségből határozzuk meg a c értékét. = a 2 b Tekintsük a következő példát a 17 képletre. Hozzuk egyszerűbb alakra kifejezést. Ebben az esetben nehéz dolgunk van és nem igazán tudunk vele mit kezdeni, ezért folyamodunk a fenti képlethez: c 2 = = 1, tehát = + = Azonosságok Bármely x, y, z, t, a, b, c, d R és n N esetén: 1. a 2 b 2 = (a b)(a + b) 2. (a 2 + b 2 )(x 2 + y 2 ) = (ax by) 2 + (ay + bx) 2 2

8 8.2.1 Egy pont és két nem párhuzamos irány által meghatározott sík egyenlete Tekintjük az A(x 0, y 0, z 0) S rögzített pontot és a d 1(p 1, q 1, r 1) d 2(p 2, q 2, r 2) V egymással nem párhuzamos vektorokat. Jelölje a és b a d 1 illetve a d 2vektorok tartóegyeneseit. Ekkor létezik egy és csakis egy a egyenes úgy, hogy a a, A a és létezik egy és csakis egy b egyenes úgy, hogy b b, A b. Ekkor dir a = dir d 1 és dir b = dir d 2. Mivel a b = {A} kapjuk, hogy az (a, b ) = α sík jól meghatározott. Tehát egy sík egyértelműen meghatározott egy pont és két nem párhuzamos irány által Ėgy sík egyenlete meghatározott, ha bármely M pontjának ismerjük a helyzetvektorát. Legyen M egy tetszőleges pont az A pont valamint a d 1, d 2 vektorok által meghatározott α síkban. Felírható, hogy r M = r A + AM. Mivel az AM vektor koplanáris a d 1, d 2 vektorokkal, léteznek a λ, µ R valós számok úgy, hogy AM = λ d 1 + µ d 2. Tehát a sík vektoriális egyenlete: r M = r A + λ d 1 + µ d 2, λ, µ R. (12) Az alábbi egyenletrendszert tekintve { x = x0 + λ p 1 + µ p 2 y = y 0 + λ q 1 + µ q 2 z = z 0 + λ r 1 + µ r 2, λ, µ R 35

9 megkapjuk { sík paraméteres egyenleteit. λ p1 + µ p 2 = x x 0 λ q 1 + µ q 2 = y y 0. λ r 1 + µ r 2 = z z 0 Ennek az egyenletrendszernek a λ és µ ismeretlenekkel akkor van megoldása, ha: p 1 p 2 x x 0 q 1 q 2 y y 0 = 0, r 1 r 2 z z 0 vagy átírva x x 0 y y 0 z z 0 p 1 q 1 r 1 p 2 q 2 r 2 = 0. (13) Az így kapott egyenletet a sík algebrai vagy kanonikus egyenletének nevezzük. Ha a determinánst az első sora szerint kifejtjük, akkor az A(x x 0) + B(y y 0) + C(z z 0) = 0 (14) egyenletet kapjuk, ahol A = B = C = q1 r1 q 2 r 2 r1 p1 r 2 p 2 p1 q1 p 2 q Három nem kollineáris pont által meghatározott sík egyenlete Legyen R = {O, e 1, e 2, e 3} egy Descartes koordinátarendszer és M 1(x 1, y 1, z 1), M 2(x 2, y 2, z 2), M 3(x 3, y 3, z 3) S három nem kollineáris pont. Ekkor az M 1, M 2, M 3 pontok 36

10 egyértelműen meghatároznak egy (M 1M 2M 3) = α síkot. Hasonlóan, mint a fentiekben, kapjuk, hogy { x = (1 λ µ)x1 + λx 2 + µx 3 y = (1 λ µ)y 1 + λy 2 + µy 3 z = (1 λ µ)z 1 + λz 2 + µz 3, ahol λ, µ R amelyet a sík parametrikus egyenletének nevezünk. Ha átrendezzük a fenti rendszert kapunk λ, µ -ben egy két ismeretlenes egyenletrendszert: { x x1 = λ(x 2 x 1) + µ(x 3 x 1) y y 1 = λ(y 2 y 1) + µ(y 3 y 1) z z 1 = λ(z 2 z 1) + µ(z 3 z 1) Rouché tételből következik, hogy az egyenletrendszernek akkor és csakis akkor van megoldása, ha: x x 1 y y 1 z z 1 x 2 x 1 y 2 y 1 z 2 z 1 x 3 x 1 y 3 y 1 z 3 z 1 = 0. (15) Ezt az egyenletet nevezzük a három nem kollineáris ponton áthaladó sík algebrai egyenletének. Ez az egyenlet még átírható a következő alakba: x y z 1 x 1 y 1 z 1 1 x 2 y 2 z 2 1 x 3 y 3 z 3 1 = 0. (16) A sík tengelymetszetes egyenlete Legyenek az A(a, 0, 0), B(0, b, 0) és a C(0, 0, c) pontok a térben. Ekkor az (ABC) sík egyenlete: x a y z a b 0 = 0. a 0 c 37

11 Kiszámolva a determinánst és átrendezve az egyenletet megkapjuk a sík tengelymetszetes egyenletét : x a + y b + z = 1. (17) c A sík általános egyenlete Tétel 8.5. A sík általános egyenlete alakú, ahol A, B, C, D R úgy, hogy rang[a, B, C] = 1. Ax + By + Cz + D = 0 (18) Mivel rang[a, B, C] = 1 következik, hogy az Ax + By + Cz + D = 0 egyenletnek létezik legalább egy megoldása, vagyis (x 0, y 0, z 0) R 3 Ax 0 + By 0 + Cz 0 + D = 0. (19) Az A(x x 0) + B(y y 0) + C(z z 0) + D = 0, amely egy síkot ábrázol, amely áthalad az (x 0, y 0, z 0) ponton. Adott ponton átmenő adott normálvektorú sík egyenlete A koordináta-rendszerhez viszonyítva sajátos helyzetű síkok egyenletei Azt vizsgáljuk, hogy amennyiben a sík 38 Ax + By + Cz + D = 0

12 8.5 Pont távolsága egyenestől (térben) Legyen R{O, i, j, k} egy descartes féle koordináta-rendszer, M 0(x 0, y 0, z 0) egy rögzített pont és e : x x1 p = y y1 q = z z1 r egy egyenes. Legyen pr e(m 0) = M. Ekkor az M 0 pont e egyenestől való távolságán az alábbi számot értjük d(m 0, e) = M 0M. Legyen M 1(x 1, y 1, z 1) és A két pont az e egyenesről úgy, hogy M 1A = d(p, q, r), ahol d vektorral az e egyenes irányvektorát jelöltük. Ekkor az M 1M 0A háromszög területét kétféleképpen felírva a következő egyenlőséghez jutunk: σ(m 0M 1A) = 1 2 M 0M M 1A = = 1 2 M 1M 0 d. Ha ebből a képletből kifejezzük az M 0M = d(m 0, e) számot kapjuk, hogy: d(m 0, e) = M 1M 0 d d, (34) 45

13 8.6 A kör Legyen M 0 egy rögzített pont a P síkban és legyen r > 0 egy rögzített szám. Értelmezés Az M 0 középpontú és r sugarú C kör azon M pontok mértani helye a síkból, amelyeknek az M 0 ponttól vett távolsága állandó és egyenlő r-rel, vagyis C(M 0, r) = {M P : MM 0 = r.} (35) Tétel 8.7. Az M(x, y) pont akkor és csakis akkor van az M 0(x 0, y 0) középpontú, r sugarú körön, ha (x x 0) 2 + (y y 0) 2 = r 2. (36) Tétel 8.8. Az (x x 0) 2 + (y y 0) 2 = r 2 egyenletű kör M 1(x 1, y 1) pontjában szerkesztett érintő egyenlete: (x x 0)(x 1 x 0) + (y y 0)(y 1 y 0) = r 2, amelyet még a kör duplázott egyenletének is nevezünk az M 1(x 1, y 1) pontban. 8.7 Az ellipszis Értelmezés Azon pontok mértani helyét a síkból, amelyeknek két rögzített ponttól mért távolságuk összege állandó, ellipszisnek nevezzük. Legyen c > 0 és F, F két rögzített pont a síkban úgy, hogy F F = 2c és legyen a > c. A sík azon M pontjainak mértani helyét, amelyre MF + MF = 2a, ellipszisnek nevezzük: 46 E = {M P : MF + MF = 2a}.

14 vagy lim h 0,x 0 +h A Ekkor értelmezhető f(x 0 + h) f(x 0). h f s (x0) = lim f(x) f(x 0) x x 0 x x x<x 0 0 és f d (x0) = lim f(x) f(x 0). x x 0 x x x>x 0 0 Ekkor f (x 0) létezik ha f s (x0) = f d (x0), és f (x 0) = f s (x0) = f d (x0) Deriválási szabályok Tétel Legyenek f, g : A R f, g deriválhatóak az x A pontban. Ekkor 1. (f + g) (x) = f (x) + g (x); 2. (cf) (x) = cf (x) 3. (f g) (x) = f (x) g(x) + g (x) f(x) 4. Ha g(x) 0, ( ) f(x) (x) g(x) 88 = f (x)g(x) g (x)f(x) g 2 (x)

15 5. Ha f : I J, g : J R, f deriválható az x 0 I-ben és g deriválható y 0 = f(x 0), akkor (g f) (x 0) = g (y 0)f (x 0) 6. Ha f : I J folytonos, bijektív, deriválható x 0 pontban úgy, hogy f (x 0) 0, akkor f 1 : J I deriválható az y 0 pontban, y 0 = f(x 0) és. ( f 1) (y0) = 1 f (x 0) Néhány függvény deriváltja 1) f(x) = c f (x) = 0; 2) f(x) = x n, n N f (x) = nx n 1 ; 3) f(x) = x r, r R, x > 0 f (x) = rx r 1 ; 4) f(x) = x, x > 0 f (x) = 1 2 x ; 5) f(x) = ln(x), x > 0 f (x) = 1 x ; 6) f(x) = a x, a 1, a > 0, x > 0 f (x) = a x ln(a); 7) f(x) = e x f (x) = e x ; 8) f(x) = sin(x) f (x) = cos(x); 89

16 9) f(x) = cos(x) f (x) = sin(x); 10) f(x) = tan(x), x (2k + 1) π 2, k Z f (x) = 1 cos 2 (x) ; 11) f(x) = cot(x), x kπ, k Z f (x) = 1 sin 2 (x) ; 12) f(x) = arcsin(x), x [0, 1] f 1 (x) = ; 1 x 2 13) f(x) = arccos(x), x [0, 1] f 1 (x) = ; 1 x 2 14) f(x) = arctan(x) f (x) = x Összetett függvény deriváltja 1) f(u) = c f (u) = 0; 2) f(u) = u n, n N f (u) = nu n 1 u ; 3) f(u) = u r, r R, u > 0 f (u) = ru r 1 u ; 4) f(u) = u, u > 0 f (u) = 1 2 u u ; 5) f(u) = ln(u), u > 0 f (u) = 1 u u 6) f(u) = a u, a 1, a > 0, u > 0 f (u) = a u ln(a) u ; 7) f(u) = e u f (u) = e u u ; 90

17 8) f(u) = sin(u) f (u) = cos(u) u ; 9) f(u) = cos(u) f (u) = sin(u) u ; 10) f(u) = tan(u), cos(u) 0, f 1 (u) = cos 2 (u) u ; 11) f(u) = cot(u), sin(u) 0 f (u) = 1 sin 2 (u) u ; 12) f(u) = arcsin(u), u [0, 1] f 1 (u) = 1 u 2 u ; 13) f(u) = arccos(u), u [0, 1] f 1 (u) = 1 u 2 u ; 14) f(u) = arctan(u) f (u) = u 2 u Magasabb rendű deriváltak 1) f(x) = x m, m N, m n f (n) (x) = m(m 1)(m 2)...(m n + 1)x m n ; 2) f(x) = e x f (n) (x) = e x ; 3) f(x) = a x, f (n) (x) = (ln(a)) n a x ; 4) f(x) = ln(x) 91

Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 2. Függvények... 8 12 3. Elsőfokú egyenletek és egyenlőtlenségek... 13 16

Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 2. Függvények... 8 12 3. Elsőfokú egyenletek és egyenlőtlenségek... 13 16 Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 1.1. Gyökök és hatványozás... 1 3 1.1.1. Hatványozás...1 1.1.2. Gyökök... 1 3 1.2. Azonosságok... 3 4 1.3. Egyenlőtlenségek... 5 8 2. Függvények... 8

Részletesebben

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 4 2.1. A függvény

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

KIDOLGOZÁSA - MATEMATIKA SZAK - 1. Analitikus mértan térben 2

KIDOLGOZÁSA - MATEMATIKA SZAK - 1. Analitikus mértan térben 2 ANALITIKUS MÉRTANBÓL KITŰZÖTT ÁLLAMVIZSGA TÉTELEK KIDOLGOZÁSA - MATEMATIKA SZAK - Tartalomjegyzék 1. Analitikus mértan térben 1.1. Térbeli egyenesek egyenletei Descartes-féle koordináta rendszerhez viszonyítva.........

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

1. Bevezetés Differenciálegyenletek és azok megoldásai

1. Bevezetés Differenciálegyenletek és azok megoldásai . Bevezetés.. Differenciálegyenletek és azok megoldásai Differenciálegyenlet alatt olyan függvény egyenleteket értünk, melyekben független változók, függvények és azok deriváltjai szerepelnek. Legegyszerűbb

Részletesebben

Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához

Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához ciklus óra óra anyaga, tartalma 1 1. Év eleji szervezési feladatok, bemutatkozás Hatvány, gyök, logaritmus (40 óra) 2. Ismétlés: hatványozás 3. Ismétlés: gyökvonás 4. Értelmezési tartomány vizsgálata 2

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

TARTALOM. Előszó 9 HALMAZOK

TARTALOM. Előszó 9 HALMAZOK TARTALOM Előszó 9 HALMAZOK Halmazokkal kapcsolatos fogalmak, részhalmazok 10 Műveletek halmazokkal 11 Számhalmazok 12 Nevezetes ponthalmazok 13 Összeszámlálás, komplementer-szabály 14 Összeszámlálás, összeadási

Részletesebben

A matematika írásbeli vizsga tematikája

A matematika írásbeli vizsga tematikája A matematika írásbeli vizsga tematikája Megjegyzés. A tematika megegyezik az aktuális érettségi programjával (a X. osztályos gazdasági matematika tartalmának kivételével) IX. OSZTÁLY Halmazok és a matematikai

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

2012. október 9 és 11. Dr. Vincze Szilvia

2012. október 9 és 11. Dr. Vincze Szilvia 2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények

Részletesebben

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében? Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

ÖSSZEVONT ÓRÁK A MÁSIK CSOPORTTAL. tartósság, megerősítés, visszacsatolás, differenciálás, rendszerezés. SZÁMTANI ÉS MÉRTANI SOROZATOK (25 óra)

ÖSSZEVONT ÓRÁK A MÁSIK CSOPORTTAL. tartósság, megerősítés, visszacsatolás, differenciálás, rendszerezés. SZÁMTANI ÉS MÉRTANI SOROZATOK (25 óra) Tantárgy: MATEMATIKA Készítette: KRISTÓF GÁBOR, KÁDÁR JUTKA Osztály: 12. évfolyam, fakultációs csoport Vetési Albert Gimnázium, Veszprém Heti óraszám: 6 Éves óraszám: 180 Tankönyv: MATEMATIKA 11 és MATEMATIKA

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

Oeconomicus Napocensis Verseny Március 24 és május IV. szekció Tantárgy: MATEMATIKA I

Oeconomicus Napocensis Verseny Március 24 és május IV. szekció Tantárgy: MATEMATIKA I Str. Teodor Mihali nr. 58-6 Cluj-Napoca, RO-495 Tel.: 64-4.86.5-5 Fa: 64-4.5.7 Március 4 és május 5 8 IV. szekció Tantárgy: MATEMATIKA I TEMATIKA: Valós számok; komple számok; számtani és mértani sorozatok;

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y

Részletesebben

Osztályozó- és javítóvizsga. Matematika tantárgyból

Osztályozó- és javítóvizsga. Matematika tantárgyból Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,

Részletesebben

Matematika 11. évfolyam

Matematika 11. évfolyam Matematika 11. évfolyam Tanmenet Másodfokúra visszavezethető magasabb rendű egyenletek, másodfokú egyenletrendszerek 1. Másodfokú egyenletek (ismétlés) 2. Másodfokú egyenletrendszerek (behelyettesítő módszer)

Részletesebben

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK MATEMATIKA TÉMAKÖRÖK 11. évfolyam 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége, részhalmaz, üres halmaz, véges,

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

NT Matematika 11. (Heuréka) Tanmenetjavaslat

NT Matematika 11. (Heuréka) Tanmenetjavaslat NT-17302 Matematika 11. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 11. tankönyv a Heuréka-sorozat harmadik tagja. Ebben a segédanyagban ehhez a könyvhöz a tizenegyedikes tananyag

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Tasnádi Tamás 2014. szeptember 11. Kivonat A tárgy a BME Fizika BSc szak kötelező, alapozó tárgya a képzés 1. félévében. A tárgy

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

MATEMATIKA. Szakközépiskola

MATEMATIKA. Szakközépiskola MATEMATIKA Szakközépiskola Az osztályozóvizsga írásbeli feladatlap. Az osztályozó vizsgán az osztályzás a munkaközösség által elfogadott egységes követelményrendszer alapján történik. A tanuló az osztályozó

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

MATEMATIKA tanterv emelt szint 11-12. évfolyam

MATEMATIKA tanterv emelt szint 11-12. évfolyam MATEMATIKA tanterv emelt szint 11-12. évfolyam Batthyány Kázmér Gimnázium, 2004. 1 TARTALOM 11.osztály (222 óra)... 3 1. Gondolkodási műveletek (35 óra)... 3 2. Számelmélet, algebra (64 óra)... 3 3. Függvények,

Részletesebben

= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1

= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1 Egyenes és sík a térben Elméleti áttekintés Az egyenes paraméteres egyenlete: X = u 1 λ + x 0 Y = u λ + y 0, Z = u λ + z 0 ahol a λ egy valós paraméter Az u = (u 1, u, u ) az egyenes irányvektora és P

Részletesebben

Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.

Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2. MATEMATIKA ÉRETTSÉGI ELŐKÉSZTŐ 11. évfolyam Óra A tanítási óra anyaga Ismeretek, 1. Év eleji szervezési feladatok 2. A hatványozásról tanultak ismétlése, feladatok az n- edik gyök fogalmára, azonosságaira

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012 2012 2. Számhalmazok (a valós számok halmaza és részhalmazai), oszthatósággal kapcsolatos problémák, számrendszerek. 4. Hatványozás, hatványfogalom kiterjesztése, azonosságok. Gyökvonás és azonosságai,

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.

Részletesebben

FELVÉTELI VIZSGA, szeptember 12.

FELVÉTELI VIZSGA, szeptember 12. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy

Részletesebben

Reiman István: Matematika

Reiman István: Matematika Reiman István: Matematika Reiman István Matematika Budapest, 2011 Reiman István, Typotex, 2011 Az 1992-es kiadás alapján készült. Lektorálták: Laczkó László, Pálmay Lóránt, Urbán János ISBN 978 963 279

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

9. előadás. Térbeli koordinátageometria

9. előadás. Térbeli koordinátageometria 9. előadás Térbeli koordinátageometria Koordinátageometria a térben Descartes-féle koordinátarendszerben dolgozunk. A legegyszerűbb alakzatokat fogjuk vizsgálni. Az ezeket leíró egyenletek első-, vagy

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

differenciálegyenletek

differenciálegyenletek Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben

Mit emelj ki a négyjegyűben?

Mit emelj ki a négyjegyűben? Mit emelj ki a négyjegyűben? Már többször észrevettem, hogy az érettségi előtt állók, nem tudják használni a négyjegyű függvénytáblázatot. Ez nem az ő hibájuk... sajnos az oktatás nem tér ki erre... ezt

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

NT-17312 Az érthető matematika 11. Tanmenetjavaslat

NT-17312 Az érthető matematika 11. Tanmenetjavaslat NT-17312 Az érthető matematika 11. Tanmenetjavaslat Idézet a 3.2.04. kerettantervből (11 12. évfolyam, bevezetés): Ez a szakasz az érettségire felkészítés időszaka is, ezért a fejlesztésnek kiemelten fontos

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax) III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp

Részletesebben

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1 Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az

Részletesebben

1. Analizis (A1) gyakorló feladatok megoldása

1. Analizis (A1) gyakorló feladatok megoldása Tartalomjegyzék. Analizis A) gyakorló feladatok megoldása.................... Egyenl tlenségek, matematikai indukció, számtani-mértani közép....... Számsorozatok............................... 5... Számorozatok................................

Részletesebben

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Tantárgy: Matematika Osztály: 10. B Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Vetési Albert Gimnázium, Veszprém Heti óraszám: 3 Éves óraszám: 108 Tankönyv: Hajdu Sándor Czeglédy István Hajdu

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Alkalmazott matematika és módszerei I Tantárgy kódja

Alkalmazott matematika és módszerei I Tantárgy kódja Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve

Részletesebben

Matematika szóbeli érettségi témakörök 2017/2018-as tanév

Matematika szóbeli érettségi témakörök 2017/2018-as tanév Matematika szóbeli érettségi témakörök 2017/2018-as tanév 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, LOGIKA, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége,

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Javítóvizsga témakörök, gyakorló feladatok 13. i osztály Témakörök

Javítóvizsga témakörök, gyakorló feladatok 13. i osztály Témakörök Javítóvizsga témakörök, gyakorló feladatok 13. i osztály Témakörök I. Gondolkodási módszerek, halmazok, logika, kombinatorika, gráfok Állítás (igazságérték), állítás tagadása, állítás megfordítása Halmazok

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben