2. Valóságos szerkezetek vonalas modelljei



Hasonló dokumentumok
4. MECHANIKA-MECHANIZMUSOK ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.)

2. E L Ő A D Á S D R. H U S I G É Z A

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

FORGATTYÚS HAJTÓMŰ KISFELADAT

1. MECHANIKA-MECHANIZMUSOK ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) 1. Alapfogalmak:

Mérnöki alapok 10. előadás

FORGÁCSNÉLKÜLI ALAKÍTÓ GÉPEK

Mechanika. Kinematika

Mit nevezünk nehézségi erőnek?

Mérnöki alapok 10. előadás

Tömegpontok mozgása egyenes mentén, hajítások

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.

VisualNastran4D. kinematikai vizsgálata, szimuláció

AZ ELEKTROMOS AUTÓZÁS ELŐNYEI, JÖVŐJE

Szakmai ismeretek II.

IPARI ROBOTOK. Kinematikai strukturák, munkatértípusok. 2. előadás. Dr. Pintér József

11. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

Mérnöki alapok 2. előadás

1. Feladatok a dinamika tárgyköréből

A kerekes kútról. A kerekes kút régi víznyerő szerkezet; egy gyakori változata látható az 1. ábrán.

Egy érdekes statikai - geometriai feladat

Forgattyús mechanizmus modelljének. Adams. elkészítése, kinematikai vizsgálata,

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

2.3 Newton törvények, mozgás lejtőn, pontrendszerek


Felső végükön egymásra támaszkodó szarugerendák egyensúlya

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

+ Egyszeres muködésu szögletes henger: +Tömlohenger: (17. ábra) Jellemzok

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon

A sebességállapot ismert, ha meg tudjuk határozni bármely pont sebességét és bármely pont szögsebességét. Analógia: Erőrendszer

A Maxwell - kerékről. Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is!

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Mozgatható térlefedő szerkezetek

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK

Négycsuklós mechanizmus modelljének. Adams. elkészítése, kinematikai vizsgálata,

Chasles tételéről. Előkészítés

35/2016. (III. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján.

Belső energia, hőmennyiség, munka Hőtan főtételei

Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig

Fizika feladatok - 2. gyakorlat

A Hamilton-Jacobi-egyenlet

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

Alkalmazott Mechanika Tanszék. Széchenyi István Egyetem

Gyakorló feladatok Egyenletes mozgások

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén

Egy érdekes mechanikai feladat

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

ÁLTALÁNOS JÁRMŰGÉPTAN

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Keresztmetszet másodrendű nyomatékainak meghatározása

Rugalmas tengelykapcsoló mérése

Tájékoztató. Értékelés Összesen: 60 pont

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Statikai egyensúlyi egyenletek síkon: Szinusztétel az CB pontok távolságának meghatározására: rcb

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA GÉPÉSZET ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

BEMUTATÓ FELADATOK (2) ÁLTALÁNOS GÉPTAN tárgyból

A magától becsukódó ajtó működéséről

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

HELYI TANTERV. Mechanika

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA

W = F s A munka származtatott, előjeles skalármennyiség.

Munka, energia, teljesítmény

Az ábrán a mechatronikát alkotó tudományos területek egymás közötti viszonya látható. A szenzorok és aktuátorok a mechanika és elektrotechnika szoros

Szelepmeghajtó motorok három-pont szabályozáshoz

Digitális tananyag a fizika tanításához

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

EGY ABLAK - GEOMETRIAI PROBLÉMA

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Csuklós mechanizmus tervezése és analízise

MUNKAANYAG. Macher Zoltán kilogramm alatti összgördülő súlyú. járművek kormányberendezéseinek. diagnosztikája, javítása, beállítása

Termodinamika. Belső energia

Modern Fizika Labor. 2. Elemi töltés meghatározása

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -

Körmozgás és forgómozgás (Vázlat)

28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály

Mérés: Millikan olajcsepp-kísérlete

Összeállítás 01 gyakorló feladat

Mérnöki alapok 2. előadás

Windcraft Development L.L.C. Környezetkímélő Energetikai Rendszer Fejlesztése

Mûszertan

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013

Tájékoztató. Értékelés Összesen: 120 pont

1. A komplex számok ábrázolása

A bifiláris felfüggesztésű rúd mozgásáról

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...

KOVÁCS BÉLA, MATEMATIKA I.

Tömegvonzás, bolygómozgás

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

MUNKAANYAG. Bukovinszky Márta. Otto motorok felépítése és működési elve I. A követelménymodul megnevezése: Gépjárműjavítás I.

Átírás:

SZÉHENYI ISTVÁN EGYETEM LKLMZOTT MEHNIK TNSZÉK. MEHNIK-MEHNIZMUSOK ELŐÁS (kidolgozta: Szüle Veronika, egy. ts.). Valóságos szerkezetek vonalas modelljei.. Robbanómotor/ dugattyús kompresszor B. ábra: Robbanómotor/dugattyús kompresszor Robbanó motorról abban az esetben beszélünk, ha a meghajtás a dugattyúnál történik, míg dugattyús kompresszorról, ha a meghajtás a forgattyús tengelynél van. 7

belső égésű motorok a benzin vagy gázolaj belső energiájának egy részét alakítják mechanikai energiává. robbanómotor működése vázlatosan: az autó beindításakor egy villanymotor/indító motor hozza mozgásba a dugattyút. dugattyú egy hengerben lefelé mozog, és beszívja a benzin és levegő keverékéből álló üzemanyagot. folyékony halmazállapotú benzint a porlasztó (amely két magyar mérnök sonka János és Bánki onát találmánya) alakítja porlasztott benzinné. Ez a motor működésének első üteme. második ütemben a dugattyú felfelé mozog és összesűríti a beszívott üzemanyagot. harmadik ütemben egy elektromos szikra a jól összenyomott benzin-levegő keveréket berobbantja, a robbanás ereje pedig a dugattyút lefelé löki, amely a szélső helyzeten átlendül és ismét fölfelé mozog. felfelé mozgó dugattyú kipufogó csövön át kinyomja az égésterméket. Ez a motor működésének negyedik üteme. dugattyúk föl-le mozgását a főtengely alakítja forgó mozgássá. legtöbb autóban négy henger működik. Magyarázat a. ábrához: Felül a gyújtógyertya látható, a hengerfalat hűtőbordák borítják. hengerben a dugatytyú függőlegesen mozog. dugattyúhoz kapcsolódik a -sel jelölt hajtórúd, végül az - sel jelölt forgattyús tengely/kar. z -val jelölt alkatrész olyan ellensúly, amely a motor/kompresszor gyorsjárásból adódó tömegerejét ellensúlyozza. Tömegkiegyensúlyozás: adott egy nagy szögsebességgel forgó forgattyús kar. Ezen forgattyús karon a forgó mozgásból adódóan gyorsulások, normál irányú gyorsulások lépnek fel, még áll. esetén is. Tehát: állandó szögsebességű forgó mozgásnál gyorsulások lépnek fel. Ha gyorsulások lépnek fel, akkor a alembert-elv értelmében tehetetlenségi erők működnek. Newton második törvénye a kiindulópont: adott egy m tömegű alkatrész, amelyen külső erők hatnak. Ezen külső erők hatására gyorsulások lépnek fel, s a alembert-elv szerint a dinamikai problémák visszavezethetők statikai problémákra, tehetetlenségi erők bevezetésével. F m a, formálisan átrendezve az egyenletet, F m a, T ahol T a tehetetlenségi erő. 8

T S. ábra: Forgattyús kar súlypont gyorsulásait berajzolva, a normál irányú összetevő a pályagörbe görbületi középpontja felé mutat, a tehetetlenségi erő viszont ezzel ellentétes irányba, kifelé mutató erő lesz. Ez a fajta kialakítás dinamikai szempontból előnytelen, mert a mozgásból is jelentős terhelés származik. terhelés kiegyenlítésére, a túloldalra is tömeget helyeznek, amit ellensúlynak nevezünk, ami a fellépő tehetetlenségi erőket kívánja akadályozni. Robbanó motor/dugattyús kompresszor vonalas vázlata: Forgattyús mechanizmus: hajtókar+forgattyús tengely által meghajtott dugattyú hengerben végez alternáló mozgást. hol - a motor háza, a motor hengere, - forgattyús kar, - hajtórúd, - dugattyú. B 4. ábra: Forgattyús mechanizmus forgattyús kar csak azon részét ábrázoljuk, amely a csapágyazáshoz képest kiáll a tengely középvonalából. ( tagok közötti kapcsolatot a kényszerek valósítják meg). forgattyús tengely a motorblokkba van csapágyazva, amely csapágyazás csuklós kapcsolatként jelenik meg, az kényszer formájában. forgattyús tengely és a hajtórúd egymáshoz képest el tudnak mozdulni, közöttük szintén csukló teremt kapcsolatot, s a hajtórúd és dugattyú között úgyszintén. súszkás kapcsolat: a henger oldalfala és a dugattyú oldalfala között, a kényszer teremt kapcsolatot.. 9

.. Varrógép tűmozgató mechanizmusának vonalas vázlata B 5. ábra: Varrógép tűmozgató mechanizmusa tű le-és felfelé mozog a varrógép állványhoz képest. szerkezet meghajtása az csuklónál történik, az -s tag gyorsan forog. hajtókar végén két egybeeső csukló található: B,. forgattyúkar az állványhoz képest forog, hozzá kapcsolódik. következő szerkezeti elem a cérnamozgató szem (nem csukló), szerepe, hogy rajta történik a cérna átfűzése. Ezt egy gépállványhoz kapcsolódó szerkezeti elem követi, ami egy merev rúd, s ezen rúdhoz képest mereven rögzített a harmadik csukló. szerkezet mozgását nem befolyásoló elem a felül levő csap, ami egy cérnatartó elem.

E B :( ) :( ) 4 4 F 5 G 6. ábra: Varrógép tűmozgató mechanizmusának vonalas vázlata

.. Gyalugép főhajtóművének (kulisszás hajtóművének) vonalas vázlata: kulisszás hajtómű kos lendkerék asztal 7. ábra: Gyalugép főhajtóműve gépállványon a felső szerkezeti rész, a kos vízszintesen mozog. kosra forgácsoló kés van rögzítve. kos nekinyomja a kést az anyagnak és végzi a forgácsolást. Ezen mozgást állítja elő a kulisszás hajtómű. koshoz kapcsolódó kar biztosítja a kos és himba közötti kapcsolatot. himba a gépállványhoz képest alsó pontja körül végezhet forgó mozgást. himbán belül csúszkavezeték található, tehát egy olyan szerkezeti elemről van szó, amelynek furatán a himbát átvezetjük. Ehhez csuklóval kapcsolódik egy forgattyús kar, ami körmozgást végez. Így képes a himba jobbra-balra forgó mozgást végezni az alsó pont körül, a kos pedig vízszintesen mozog.

B -összeköttetést biztosít a G 5 F : (4 5) : ( 4) kos és himba között, 5- forgattyúkar (csuklóval kapcsolódik a himbához illetve a csúszkához) 4 E 8. ábra: Gyalugép főhajtóművének vonalas vázlata.4. lternatív hajtású versenyautó kormányművének vonalas vázlata: G 5 F 4 E B 9. ábra: Kormánymű vonalas vázlata kormányrúdra kábelt tekerünk, ami a kormányszerkezetet mozgatja. szerkezet meghajtása az F csúszkánál/sodronynál történik. kerekek csapágyazása tengelycsonkokra/féltengelyekre történik, amelyek el tudnak fordulni egy-egy pont körül. Ezen pont körül a féltengely az alvázhoz képest el tud fordulni. féltengelyhez mereven kar kapcsolódik. Mivel csak síkbeli eseteket vizsgálunk, azzal nem foglalkozunk, hogy a kerék a féltengelyen forog. Vagyis azt feltételezzük, hogy a kerék mereven rögzített a féltengelyhez, elfordulását elhanyagoljuk, csak a kanyarodásnál bekövetkező szögelfordulást vizsgáljuk.

féltengelyhez kapcsolódó karokat mereven rúd köti össze. kormányrúdra felcsévélt kábel hozzá van kötve az,-s szerkezeti elem alsó csuklóponthoz közel eső részéhez. mikor a kormányrudat tekerjük a kábel hossza változik, vagyis egy olyan szerkezeti elemre van szükség, amelynek hossza változtatható. Legyen ez az egyik végén rögzített csúszka. Gyakorlatilag a meghajtás a csúszkánál történik. (Valóságban ez egy tekeredésként jelenik meg.) csúszkával csupán azt kívánjuk modellezni, hogy van egy olyan szerkezeti elemünk, amelynek a hossza változik. 4s tag pontjai az 5s tag pontjaihoz képest változni képesek, azaz változik a két csuklópont távolsága. (Más a modell ás más a valóság.) Ha tekerjük a kormányrudat, a kormányrúd átmérőjéből és a tekerés sebességéből ki tudjuk fejezni a hosszváltozást. Tehát a mozgása következő összetevőkből áll: kormányrúd tekerése, amely által elmozdulást hozok létre a csúszkán, s így szögelfordulás következik be a s összekötő rúdon is. 4

. Mechanizmusok szerkezeti felépítése.. Szerkezeti kialakítás alaptétele Minden mechanizmus felépíthető kinematikai láncokból. kinematikai láncok száma a mechanizmus szerkezeti jellemzője. Kinematikai lánc: merev testek/tagok/alkatrészek olyan sorozata, amelyben a tagok úgy kapcsolódnak egymáshoz, hogy egy tag legfeljebb másik két taggal lehet kényszerkapcsolatban. Vagyis a kinematikai lánc a következő alakú: TG-KÉNYSZER-TG-KÉNYSZER Zárt kinematikai lánc: amelyben a kezdő és záró tag azonos. Nyitott kinematikai lánc: amelyben a kezdő és záró tag különböző. Sematikus ábrázolás: B 4. ábra: Kinematikai lánc sematikus ábrázolása 5 E 6 F 7 tagokat sorszámozással látjuk el. Például:,,,4,5,6. tagok közötti kapcsolatokat, kényszereket továbbra is nagybetűvel jelöljük. Kinematikai lánc megadása: felsoroljuk a kinematikai láncban előforduló, egymást követő tagokat és kényszereket. Például: zárt lánc esetén: B45E6F7 Ezen megadási mód egyszerűsíthető oly módon, hogy a tagok sorszámozását elhagyjuk. zaz felsoroljuk a kinematikai láncban szereplő kényszereket. zaz: B B. kinematikai lánc egyenértékű megadási módja, vagyis nincs jelentősége annak milyen irányban haladunk végig a kinematikai láncon. Tétel: minden mechanizmus szerkezeti felépítése a mechanizmus szerkezeti képletével adható meg. szerkezeti képletben a mechanizmusban előforduló kinematikai láncokat soroljuk fel egymás után. Felépítési szabály: z első lánc első és utolsó tagjának is állványnak kell lennie. 5

következő/további kinematikai láncoknak két változata lehetséges: állványról indulunk és meglevő (már felírt) láncra érkezünk, azaz kezdő tag az állvány és záró tag valamely már felírt kinematikai lánc egy tagja, meglevő láncról indulunk és meglevő láncra érkezünk, azaz egy már felírt kinematikai lánc tagjáról indulunk és egy már felírt kinematikai lánc tagjára érkezünk. Ezen felépítésben elágazási helyeket definiálhatunk. Elágazási hely: a szerkezet azon tagja, amely kettőnél több más taggal van kapcsolatban. z elágazási helyek és kinematikai láncok száma a szerkezet szerkezeti jellemzője. Köztük meghatározott szabályszerűség áll fenn. e l, ahol e - az elágazási helyek száma, l - kinematikai láncok száma. Példa mechanizmus szerkezeti felépítésére: J K H 8 7 9 dott: az ábrán látható mechanizmus. Feladat: keresse meg a lehetséges kinematikai lánc-változatokat, és elágazási helyeket! G 6 L 4 M F B 5 E. ábra: Mechanizmus szerkezeti felépítése Feladat megoldása: Lehetséges szerkezeti képlet-változatok.. z első lánc kialakításának olyannak kell lennie, amely állványról indul és állványra érkezik. z állványt jelen esetben -sel jelöljük. második lánc esetében egy meglevő lánc -s tagjáról indulunk és egy szintén meglevő lánc -s tagjára érkezünk. Végül a. lánc 9-s tagjáról indulunk és az első lánc 4-s tagjára érkezünk. 6

zaz az első szerkezeti képlet változat a következő alakban írható: BE FGHJL KM. z nem tekinthető változatnak, ha ugyanazon kényszereket más sorrendben írunk fel.. Második szerkezeti képlet változat: BLKME FGHJ.. Harmadik szerkezeti képlet változat: FGHJKME BL. Bármennyi szerkezeti képlet változatot írunk is fel, a kinematikai láncok száma mindig ugyanannyi lesz. Elágazási hely: olyan tag, amely kettőnél több másik taggal kapcsolódik. Elágazási hely:,,9,4. Elágazási helyek száma: 4. z alábbi szabályszerűségnek kell teljesülnie: e l, 4 ( ) azaz 4 4. zaz a láncok száma és az elágazási helyek száma a mechanizmus szerkezeti jellemzője. z eddigi kényszerek mindig valamilyen geometriai kapcsolódáshoz kötődtek. Meghajtás, mint aktív kényszer: Például: forgattyús mechanizmus (robbanó motor/dugattyús kompresszor). Meghajtás megadási lehetőségei:, v. Meghajtás helyének jelölése a szerkezeti képletben: B, ahol - aktív kényszer, egyben kinematikai előírást is jelent, mivel előre meghatározzuk, hogy az adott tag, hogyan forogjon. B. ábra: Forgattyús mechanizmus Kinematikai lánc geometriai határozottsága/szabadságfoka: a láncban szereplő kényszerek geometriai szabadságfokának összeadásával állítjuk elő. g g g g z i jelű kényszer geometriai szabadságfoka: s s s s..., i B 7

ahol - a záró tag kezdő taghoz viszonyított kötöttségi foka. Például: adott az alábbi kinematikai lánc. B 4 E 5 F. ábra: Kinematikai lánc z jelű tagról indulunk. z -s tag körpályán mozoghat, mivel szabadon vál- g tozhat, azaz a csuklós kényszer geometriai szabadságfoka, s. -s tag pontjainak mozgását részben az, részben a B kényszer határozza meg, ezzel mintegy növelve a mozgási szabadságot. Ha ezt ebben a helyzetben, azaz nyitva hagyjuk, akkor a szerkezet egy szerelő robothoz hasonlóan viselkedik, amelynek a vége össze-vissza mozog. Viszont, ha -t -val összekötöm a mozgási lehetőségek drasztikusan szűkülnek. Nyitott lánc esetén:, zárt lánc esetén:. Hány szabadsági fokot kötünk le azzal, hogy a záró tagot mereven hozzákötjük a kezdő taghoz? kötöttségi szám abból adódik, hogy a láncot zárjuk, a záró tag nem végezhet tetszőleges mozgást. Síkbeli mechanizmus, 6 Térbeli mechanizmus, Bolygóművek/Fogaskerék hajtóművek. Kinematikai lánc kinematikai határozottsága/kinematikai szabadságfoka: az i jelű kinematikai lánc kinematikai határozottsági foka. s s k (ezen értéket lánconként határozzuk meg), k g i i a ahol 8

ka - láncban levő aktív kényszerek száma. kinematikai szabadságfok azonban nem csak a geometriai kialakítástól, hanem a meghajtásoktól is függ. Mechanizmus geometriai határozottsága/ szabadságfoka: összegezzük a mechanizmust alkotó láncok geometriai szabadságfokát. Így: h g L s, i g i ahol L - a mechanizmus kinematikai láncainak száma. Mechanizmus kinematikai szabadságfoka: összegezzük a mechanizmust alkotó láncok kinematikai szabadságfokát. Így: h k L s. i k i k mennyiben s, akkor az első lánc kinematikai szempontból önmagában is vizsgálható. k k mennyiben s s, akkor ezen láncok kinematikai szempontból önmagukban is vizsgálhatók. Ha ezen előbbi feltételek teljesülnek lényegesen leegyszerűsíthetik kinematikai vizsgálatainkat. Ezen feltétel teljesülése illetve nem teljesülése esetén beszélünk egyszerű és összetett mechanizmusokról. Egyszerű mechanizmus: ha valamennyi lehetséges szerkezeti képlet felírást számba véve találunk olyan szerkezeti képlet változatot, amelyben minden lánc kinematikai határozottsága zérus. láncok így külön-külön vizsgálhatók kinematikai szempontból. mennyiben találunk olyan kinematikai láncot, amelynek kinematikai határozottsága nem zérus, akkor valamennyit meg kell vizsgálni. Összetett mechanizmus: ha valamennyi lehetséges szerkezeti képlet felírást számba véve NEM találunk olyan szerkezeti képlet változatot, amelyben minden lánc kinematikai határozottsága zérus. Gyakorló feladatok:. Forgattyús mechanizmus (robbanó motor/dugattyús kompresszor): 9

B. ábra: Forgattyús mechanizmus dott: az ábrán látható mechanizmus vonalas vázlata! Feladat: a lehetséges szerkezeti képlet változatok felírása, a hozzájuk tartozó geometriai és kinematikai szabadságfok meghatározása, valamint annak eldöntése, hogy a mechanizmus egyszerű vagy összetett! Megoldás: Szerkezeti képlet: B, ahol előírt mozgást biztosít a forgattyús tengelynél. Egyláncú, egyszerű mechanizmusról van szó. g g g g g Kinematikai lánc geometriai szabadságfoka: s s sb s s, g s 4. kapott eredmény arra utal, hogy a mechanizmust hány helyen lehet meghajtani. Mivel egyláncú a mechanizmus, ezért a mechanizmus geometriai szabadságfoka: hg s. g k g Kinematikai lánc kinematikai szabadságfoka: s s k a, k s h k. Vagyis a mechanizmus egyszerű, a kinematikai lánc önmagában vizsgálható, a mechanizmus kinematikai szempontból egyértelműen meghatározott mozgást végez.. Varrógép tűmozgató mechanizmus:

B E 4 G F 5. ábra: Varrógép tűmozgató mechanizmus dott: az ábrán látható mechanizmus vonalas vázlata! Feladat: a lehetséges szerkezeti képlet változatok felírása, a hozzájuk tartozó geometriai és kinematikai szabadságfok meghatározása, valamint annak eldöntése, hogy a mechanizmus egyszerű vagy összetett! Megoldás:. szerkezeti képlet változat: EFG B mechanizmus kétláncú, a mechanizmus geometriai szabadságfoka: g g g g g g g g g h s s s s s s s s s, g E F G B g g hg s s (5 ) ( ). kapott eredmény arra utal, hogy a mechanizmust hány helyen lehet meghajtani. mechanizmus kinematikai szabadságfoka:

h s s s k s k, k k g g k a, a, k k hk s s. ahol az első lánc nem tartalmaz aktív kényszert. kapott eredmény azt jelenti, hogy maga az egész szerkezet kinematikailag határozott, de meg kell vizsgálni további szerkezeti képlet változatokat, mert a kinematikai szabadságfok lánconként nem nulla.. szerkezeti képlet változat: BEFG mechanizmus kétláncú, a mechanizmus geometriai szabadságfoka: g g hg s s (5 ) ( ). kapott eredmény arra utal, hogy a mechanizmust hány helyen lehet meghajtani. mechanizmus kinematikai szabadságfoka: k k hk s s, ahol az első lánc tartalmaz aktív kényszert. kapott eredmény azt jelenti, hogy maga az egész szerkezet kinematikailag határozott, de meg kell vizsgálni további szerkezeti képlet változatokat, mert a kinematikai szabadságfok lánconként nem nulla.. szerkezeti képlet változat: B EFG mechanizmus kétláncú, a mechanizmus geometriai szabadságfoka: g g hg s s (4 ) ( ). kapott eredmény arra utal, hogy a mechanizmust hány helyen lehet meghajtani. k k mechanizmus kinematikai szabadságfoka: hk s s, ahol az első lánc tartalmaz aktív kényszert. kapott eredmény arra utal, hogy létezik olyan szerkezeti képlet változat, amelyben a kinematikai szabadságfok lánconként nulla. zaz megállapítható, hogy a mechanizmus egyszerű és a kinematikai vizsgálat lánconként elvégezhető.