BEVEZETÉS 5 BEVEZETÉS A kísérletezés em volt mdg az ember megsmerés elsmert módszere. A görög flozófusok az deák vlágába éltek, a középkor Európa tudósa előbbre tartották a spekulácót és a tektélekre hvatkozást. Csak hosszú folamat eredméekét, R. Bacotól (~00) Galleg (~600), sok tudós mukássága omá, az újkor kezdeté jutott el oda a természettudomá, hog felsmerje a kísérletezés jeletőségét a megsmerés folamatába. Hosszú fejlődés eredmée tehát, hog a kísérletezés, a mérés a természettudomáos megsmerés alapvető részévé vált. A tudatosa megtervezett és kvtelezett kísérlet tapasztalatokat, adatokat szolgáltat a mélebb összefüggések felsmeréséhez, az általáos törvéek leírásához. Másrészről az elmélet eredméek helességéről smét kísérlet útjá gőződhetük meg. A Klasszkus Fzka Laboratórum gakorlataak a célja alapvető mérés módszerek, eszközök, kértékelés eljárások, jegzőkövkészítés techkák megsmerése. A kísérletek sorá egúttal közvetle tapasztalatok szerezhetők ola jeleségekről, amelek eddg csak az elmélet előadások sorá kerültek szóba. A mérések megértéséhez és elvégzéséhez szükséges elősmeretek köre em lép túl a klasszkus fzka határat. A taköv megírása sorá a klasszkus fzka fogalmakat általába smertekek tételeztük fel, bár a mérésleírások elejé a legszükségesebb fogalmakat és összefüggéseket összefoglaljuk. A mérések leírása ola, hog azok ömagukba s érthetők, vags a mérések bármle sorredbe elvégezhetők. A laboratórumba található mérés összeállítások elektrokus műszereket és számítástechka eszközöket s tartalmazak. A mérések végzéséhez ezekek felhaszáló smerete szükséges, működésük részlete más tatárgak aagát képezk. Ahol szükségesek látszott, ott a felhaszáló alapsmereteket a mérésleírások tartalmazzák. A kísérlet mukába egre agobb szerep jut a számítógépekek. Szerepük hármas: a) ag meségű és gors adatgűjtés, amel számítógép élkül fáradságos, esetekét em s megvalósítható; b) a mérés adatok redezésébe, kértékelésébe és megjeleítésébe a számítógépek számoló, táblázatkezelő és grafkus lehetőséget haszáljuk k; c) a számí-
6 MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN tógépek sajátos kísérlet eszközkét szolgálak, amkor valód kísérlet helzeteket, eszközöket szmulálak. A Klasszkus Fzka Laboratórumba mdhárom felhaszálásra találuk példákat. A laboratórumba belső számítógépes hálózat működk, amelek része a labor összes számítógépe. Ezeket eg ag teljesítméű közpot egség, a szerver szolgálja k. A számítógépes hálózatak része eg lézeromtató s, amel valame gépről elérhető. A gépeke mérésvezérlő, kértékelő, táblázatkezelő, ábrakészítő és szövegszerkesztő programok működek. A labormuka három részből áll: a felkészülés, a mérés elvégzése és kértékelése, valamt a jegzőkövkészítés. A felkészülésről Az elvégzedő mérések általába összetettek, és több feladatot tartalmazak. A mérések kvtelezésére a redelkezésre álló 4 óra általába elegedő, de csak akkor, ha eg alapos ottho felkészülés előzte meg. A felkészülés alapeszköze ez a taköv. A Bevezetés és a Hbaszámítás alapja fejezetek smerete valame méréshez szükséges. Ezeke túlmeőe az eges mérésleírások öállóa s megérthetők. Valame méréssel kapcsolatba, a fogalmak és összefüggések átfogó feleleveítésére, elsősorba Budó Á.: Kísérlet Fzka I., II., III. kötete ajálottak. Azok számára, akk tovább, mélebb smereteket kíváak szerez, az eges témákál, ezekívül s található ajálott rodalom. A felkészülés kapcsá heles eljárás az, ha a mérést megelőző héte, a ap mérés feladat elvégzését követőe, szemrevételezzük a következő mérés összeállítását, esetleg az azap mérőt megkérdezzük a tapasztalataról. A felkészülésbe segíthet a labor teretes holapja s, amel a Szlárdtest Fzka Taszék holapjá keresztül érhető el. Itt a mérőeszközről, az eges műszerekről féképeket találuk, és az adott méréssel kapcsolatos esetleges változásokról értesülhetük. A háos felkészülés azt eredméezhet, hog a redelkezésre álló dő elégtele a feladatok maradéktala elvégzéséhez, lletve a kapkodás és az smeretek háa a beredezések meghbásodásához vezethet. Ezt elkerüledő a mérés megkezdése előtt beszélgetés sorá a laborvezető meggőződk a mérést végző felkészültségéről.
BEVEZETÉS 7 A jegzőköv készítéséről A laboratórum mérésekről jegzőkövet készítük. A jegzőkövet legcélszerűbb üres A4-es méretű lapra készíte. Az első oldal a mérés számát és címét, a mérés és a beadás dőpotját, a mérő evét és évfolamát tartalmazza. A következő oldalak a laborba végzett muka dokumetuma. Soroljuk fel, hog mle eszközökkel dolgoztuk, adjuk meg a mták jelét vag számát, készítsük vázlatot a mérés összeállításról, jegezzük fel mde ola körülmét, amt a méréssel kapcsolatba fotosak tartuk, és természetese jegezzük fel a mérés adatokat! A mérés adatok felsorolásáak legcélszerűbb módja a táblázatos megadás. Mtatáblázatokat a taköv s tartalmaz. Törekedjük arra, hog a laborba készült feljegzések, ha gorsa készülek s, vlágosak, egértelműek és mások számára s áttekthetők legeek! A mérés végeztével az adatlapot a laborvezető aláírásával látja el. A jegzőköv több része a kértékeléshez tartozk. A kértékelést általába ottho végezzük, de a laborvezető által megadott dőbe a laboratórum a labormérése kívül s látogatható, és a számítógépek kértékelés céljára haszálhatók. A kértékelés sorá a számításokál tütessük fel, hog mle összefüggés alapjá számoluk! A számítások legeek áttekthetőek! A részszámolásokat em kell a jegzőkövbe rögzíte, a részeredméeket azoba célszerű. Íg a javítás sorá az esetleges hbák forrása köebbe felderíthető. Külöös fgelmet fordítsuk arra, hog az eges meségeket mle egségekbe mértük, lletve számoljuk! Haszáljuk a szabváos SI egségeket! A mértékegségeket az adatok és a számolt meségek mellett mdg tütessük fel! Mérésük csak akkor értékelhető, ha a mért és számolt meségek mellett megadjuk azok hbáját s. A hbaszámításak se csak a végeredméét tütessük fel, haem rövde dokoljuk, hog mle godolatmeettel, mle adatokból kaptuk a hbát! A mérés adatokat ábráko s meg kell jeleíte! Az ábrákról sokkal köebbe leolvashatók a tedecák, mt a táblázatokból. A valamle okból kugró potok s köebbe fedezhetők fel az ábrá, mt a táblázatba. Az ábrák készíthetők kézzel mllméterpapírra, de egszerűbb és gorsabb a számítógépes ábrázolás. A laboratórum számítógépe táblázatkezelő és ábrakészítő programot s tartalmazak. Az ábrakészítés első lépése a megfelelő lépték megválasztása. Durva közelítéskét a lép-
8 MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN ték akkor jó, ha a görbe a ±45 fokos egees körezetébe helezkedk el. A tegeleke lege beosztás, ezeket jelző számok, az ábrázolt fzka meségek jele és mértékegsége! Ha eg ábrá több görbét s megjeleítük, akkor a hozzájuk tartozó potokat célszerű külöböző jelekkel ábrázol. Az ábráak lege száma, és az ábraaláírás tájékoztasso arról, hog az ábra mt mutat! A mérés potokat e kössük össze lázgörbeszerűe egees szakaszokkal! A mérés potokra llesszük görbét! Ez a görbe, a hbaszámítás fejezetbe modottak értelmébe, a legtöbb esetbe egees lesz. A takövbe számos ábra található, ezeket s a fet elvek fgelembevételével készítettük. Mukavédelm előírások A Klasszkus Fzka Laboratórum em tartozk a külööse veszéles kategórába. Eek elleére a mukavédelm előírásokat mde esetbe szgorúa be kell tarta! Fotos előírás az, hog a legksebb redelleességről azoal értesítsük a laborvezetőt! Bármle vegszert megkóstol, vegszeres üvegbe közvetleül beleszagol em szabad! A laboratórumba e étkezzük, és e doháozzuk! A foladékokat, vegszereket haszálato kívül mdg zárt edébe tartsuk! Mukahelük mdg lege száraz! Az esetleg lecseppeő foladékot azoal töröljük fel! Az esetleg eltört hőmérőből kkerülő hgat papírlappal godosa össze kell gűjte, és a hgaal szeezett köréket képorral be kell szór! A laboratórumba az egk mérésél fémeket olvasztuk. Az olvasztókálha meleg részehez csak cspesszel szabad úl! A forró tetőt, lletve a már megdermedt fémet csak a részükre kalakított tartóra tegük le! A kálhából a fémet olvadt állapotba kve tlos! Ne feledkezzük el arról, hog a megdermedt fém s még éhá száz fokos lehet! Eg másk mérésél féforráskét ks teljesítméű lézert haszáluk. Vgázzuk rá, hog a lézer drekt alábja még valahoa vszszaverődve se juthasso a szemükbe! Nag godot kell fordíta az elektromos készülékek haszálatára. 30 V-ál agobb feszültség vag az ember szervezete átfoló - maes áram már életveszéles!
BEVEZETÉS 9 A laboratórumokba redszert em tartható be a vízvezeték és elektromos hálózat között mmáls m-es távolság. Bár elektromos eszközek a szabváak megfelelőe kettős szgetelésűek, és a házuk földelt, mégs ügeljük arra, hog a vízvezetéket és a feszültség alatt levő eszközöket egszerre e értsük! Mde elektromos baleset eseté első teedő a feszültségforrás kkapcsolása. Ezt legegszerűbbe a mérőasztalál lévő bztosítékok kkapcsolásával tehetjük meg. Tűz eseté az elektromos beredezés vízzel vag haboltóval em oltható! A poroltóval a műszerekbe hatalmas károkat okozák. A tűz elfojtására lekor leghelesebb, az áramtalaítást követőe, a laborba található gázzal oltó készülékeket vag a tűzoltó kedőket haszál. Bedított kísérleteket, bekapcsolt áramokat a mukahele otthag még rövd dőre sem szabad! Ha valamle ok matt rövd dőre elhagjuk a labor helségét, a kálha fűtőtekercsébe, a máges tekercsébe stb. foló áramot csökketsük ullára, helezzük az eszközöket alapállapotba! A műszereket, számítógépet azoba em kell kkapcsol! A kés bekapcsolás em tesz jót ezekek az eszközökek. A gakorlat befejezése utá mde feszültségforrást kapcsoljuk k, és ezt követőe az automata bztosítékokat s kapcsoljuk le! A vízcsapok elzárására kérjük meg a laborvezetőt!
0 MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN
A HIBASZÁMÍTÁS ALAPJAI A HIBASZÁMÍTÁS ALAPJAI A mérések potossága A mérés célja a méredő meség többre em smert, valód értékéek meghatározása. A mért adatak azoba általába hbával terheltek, ezért a valód értéket csak közelíte tudjuk a mérés adatok segítségével. A mérés hbák megfelelő kezelése azért fotos, mert íg tudjuk meghatároz azt, hog a mért érték mle potossággal közelít a méredő meség valód értékét. A mérés eredmé közlése azt jelet, hog emcsak a mért meség értékét adjuk meg, haem azt s, hog a mért adat ag valószíűséggel mle tervallumo belül közelít meg a valód értéket. Ezért fotos, hog megadjuk a mért érték hbáját s. Sokszor úg tűhet, hog a hba kszámítása körülméesebb, mt a méredő meség értékéek meghatározása. Lehet, hog íg va, de ez a muka em takarítható meg. Mérésük hbájáak meghatározása része a mérés folamatáak. Mérés eredméük a hba megadása élkül tudomáos és műszak értelembe értéktele. A mérés hbák három típusba sorolhatók: szsztematkus (redszeres) hba, leolvasás hba, statsztkus (véletle) hba. Ezek eredete s külöböző, és külöböző kezelés módokat s géelek. Szsztematkus hba A szsztematkus hbák a mérés többször megsmétlésekor s ugaola mértékbe jeletkezek. Ezek a hbák elsősorba a mérőeszköz potatlaságából eredek. Ha például a mérőrúd hossza, a ráírt m helett, csak 99,9 cm, akkor az le méterrúddal mért távolságok eg álladó értékkel mdg eltérek a potosabb rúddal mért értéktől, függetleül attól, hog hászor smételjük meg a mérést. Tehát a mérések smétlésével ez a hba em küszöbölhető k. A szsztematkus hbák felderítése sokszor em egszerű feladat. A legjobb eljárás az, ha beredezésüket eg htelesített mérőeszközzel hasolítjuk össze, azaz htelesítjük (kalbráljuk). Ezáltal meghatározhatjuk azt a kalbrácós értéket, amellel módosítva a mért értéket kküszöbölhető a szsztematkus hba. Ha kalbrácóra cs mód, akkor s megbecsülhető eszközük szsztematkus h-
MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN bájáak agsága a gártó által megadott adat alapjá (pl. a mért értékre voatkoztatva 0, %, % stb.). A szsztematkus hbákak va eg másk fajtája s, amel a mérés módszerből ered, esetleg a mérés sorá smeretle külső körülmé okozza. Példakét le jellegű szsztematkus hbát okoz, ha mágeses tér mérésekor eg smeretle külső forrásból eredő tér adódk hozzá mde mérés eredméükhöz. Az le hbákat úg csökkethetjük, ha a mérést több módszerrel s elvégezzük, vag esetleg eg másk laboratórumba megsmételjük. Ha a mért meségből számolással újabb meségeket származtatuk, tovább szsztematkus hbát okozhat, ha potatla (esetleg közelítő) képletet haszáluk. Ilekor meg kell vzsgál, hog az íg okozott hba agobb-e az egéb hbákál, és ha ge, akkor potosabb képletet vag korrekcókat kell alkalmaz. Leolvasás hba A hosszmérésél maradva ha a méterrúd cm beosztású, akkor ezzel az eszközzel az 5, cm és az 5,3 cm hosszú méredő tárgat azoos hoszszúságúak mérjük. Ebbe az esetbe a méredő hosszat ±0,5 cm potossággal tudjuk meghatároz. Általába a leolvasás hbát az utolsó értékes számjeg (dgt) felével szoktuk megad. Jobb mutatós (aalóg) műszerek eseté, a leolvasás hba csökketése érdekébe, tükörskálákat szoktak haszál, amellel kzárható a leolvasó szem helzetéből adódó ú. parallaxs hba. Statsztkus hba A mérés sorá a méredő meséget számos em smert vag em elleőrzhető téező befolásolja. Ezekek a téezőkek a hatása általába kcs, egmástól függetleek, és mérésről-mérésre változak. Ha megsmételjük a mérést, akkor e téezők hatására általába kssé külöböző eredmét kapuk. Ile külső téezők lehetek például a külső mechakus zajok, ks légmozgások, a körezet hőmérsékletéek ks gadozása, elektrokus vag mágeses zajok stb. A méredő meség maga s lehet statsztkus jellegű, mt például eg rúd átmérője,
A HIBASZÁMÍTÁS ALAPJAI 3 amel a megmukálás bzotalasága matt a hossz meté kssé gadozk. Másk példakét, tulajdoságaból adódóa, statsztkus jellegű meség a radoaktív aagba az dőegség alatt elbomló atomok száma. Az le jellegű hbák statsztkus törvészerűségeket követek, elevezésük s e származk. Leírásukkal a valószíűség-elmélet és a matematka statsztka foglalkozk. A statsztkus hbák eseté a mérés többször megsmétlése a méredő meség valód értékéek egre jobb megközelítését tesz lehetővé. A statsztkus jelleg azt jelet, hog ha az meség mérését -szer megsmételjük, akkor általába külöböző eredméeket kapuk. Jelöljük ezeket a mérés eredméeket az,, szmbólumokkal! A matematka statsztka szert a méredő meség valód értékéek legjobb becslését az meségek átlaga adja: =. () Az () átlagot a statsztkába emprkus várható értékek evezk. Mvel az emprkus várható érték közelít meg legjobba a méredő meség (em smert) valód értékét, ezért célszerű -t tekte a mérés eredmééek. Kérdés az, hog mt tektsük a mérés eredmé hbájáak? Abszolút hba Az eges mérések eredmée szórak az átlag körül. Ez azt jelet, hog a =, =, = átlagtól való eltérések hol poztív, hol egatív értéket veszek fel (az eltérések összege ullát ad). Az átlagtól való eltérés agságára például becslést adhat az ú. abszolút hba: + +... + =. ()
4 MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN Szokás még gors becsléskét a mérés abszolút hbájáak tekte a = max (3) meséget s. A (3) kfejezés eseté lvávaló, de a () kfejezés számlálójába szereplő összegről s köe belátható, hog túlbecsül a hbát. Az abszolút hbát csak a statsztkus hbák első becsléséek tekthetjük. A matematka statsztka szert a mérés hbájára a fetekél jobb becslés s adható. Eek elleére sok esetbe elfogadható mérés hbakét az abszolút hba megadása. Emprkus szórás Az alábbakba rövde összefoglaljuk a matematka statsztka azo eredméet, amelek a statsztkus hbák potosabb kezelését teszk lehetővé. Mt azt korábba már említettük, a statsztkus hba sok véletle, egmástól függetle ks hatás összegéből tevődk össze. A valószíűségelméletből smert, hog lekor az meségekre érvées a közpot határeloszlás tétel. Eek alapjá az meségek ola valószíűség változók, amelek ormáls eloszlást (Gauss-eloszlást) követek. Mt jelet ez? A ormáls eloszlás sűrűségfüggvée harag alakú görbe (. ábra). Ha az tegelt beosztjuk ks tervallumokra, és az tervallumok fölé ola téglalapokat rajzoluk, melek magassága az tervallumba eső mérés adatok relatív gakorsága, osztva az tervallum szélességével (íg kapuk sűrűség jellegű meséget), akkor eg hsztogramot kapuk (. ábra). Az, hog a mérés adatok eloszlása ormáls, azt jelet, hog meél agobb a mérések száma, a hsztogram aál jobba közelít a ormáls eloszlás haraggörbéjéhez, ahog ezt az. ábra s mutatja. A haraggörbe maxmuma értékél va. Bár a haraggörbe eg elmélet függvé, szélessége a mérés adatokból származtatott s meséggel s jellemezhető:
A HIBASZÁMÍTÁS ALAPJAI 5 s = ( ). (4) Az s meség elevezése emprkus szórás. Ez a kfejezés csak kssé külöbözk az átlagos eltéréségzet égzetgökétől, hsze a evezőbe helett - szerepel. A matematka statsztka megmutatja, hog ez a heles és torzítatla becslése a görbe elmélet szélességéek. Gauss-eloszlás sűrűségfüggvée s + s. ábra. A ormáls eloszlás harag alakú görbéje és a hsztogram A sűrűséggörbe alapjá kszámítható, hog ha az meség mérését -szer megsmételjük, akkor mle gakorsággal esek az mért értékek az körül valamel ± tervallumba. A görbe (, + ) tervallumba eső része alatt terület adja meg ezt a gakorságot. Megmutatható például, hog az ± s tervallumba várhatóa a mérés értékek 68%-a esk. Az ábrá ez a besatírozott terület. Az s megmutatható, hog az ± s tervallumba már várhatóa a mérés értékek 95%-a esk.
6 MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN Az s meség tehát az értékek körül szórását jellemz. Beüket azoba elsősorba az érdekel, hog mt tektsük az mért érték hbájáak. Köe belátható, ha több mérés sorozatot végzük, akkor általába külöböző értékeket kapuk. Nlvávaló tehát, hog szté valószíűség változó, amelek szté va szórása. A matematka statsztka szert az átlagérték szórására (hbájára) a legjobb becslést az alább s meség adja: s = s = ( ) = ( ). (5) Az s meséget az átlag emprkus szórásáak evezzük. Látható, hog mél agobb számú mérést végzük, vags mél agobb, aál ksebb az s, gaz em túl gors ez a csökkeés. Az meség hbájáak tehát az átlag emprkus szórását tektjük: =s. (6) Ahhoz, hog a statsztkus törvészerűségeket khaszálhassuk, megfelelő számú mérést kell végrehajta. -3 mérésből legfeljebb a (3) kfejezés alapjá becsülhető a hba. 0 körül mérésszám eseté már alkalmazható az (5) kfejezés. A mérés eredmé megadása Bármle jellegű hbáról va s szó, és a statsztkus hbákat akár a (), (3) vag (5) kfejezés alapjá számoljuk, ezt követőe a mérés eredmééek felírása az alábbak szert törték: = ±. (7)
A HIBASZÁMÍTÁS ALAPJAI 7 A hba mértékegsége megegezk a mért meség mértékegségével. Szokás még a hbát a mért meséghez vszoítva, ú. relatív hbakét megad, amelet az alább kfejezéssel defáluk:. (8) A relatív hba mértékegség élkül szám, amelet kfejezhetük százalékba s. Ilekor a relatív hbát a 00% (9) kfejezés defálja. Ha például a ehézség gorsulás mérés eredméeképpe azt kapjuk, m m hog g = 9,793584, és g = 0,03057, akkor a szokásos eljárás a s s következő. Először a hbát eg értékes jegre kerekítjük, tehát m g = 0,03. Ezutá a g értékét a hbáak megfelelő értékes jegre s m kerekítjük, tehát g = 9,79. A mérés végleges eredméét íg írjuk fel: s m g = ( 9,79 ± 0,03). s Még elfogadható felírások az alábbak: m m g = 9,79 ± 0,03, vag g 9,79 0,3% s = s ±. Ha az eredmét ormál alakba adjuk meg, akkor az alább formába írjuk fel: 0 E = (7,05 ± 0,04 ) 0 Pa.
8 MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN Megjegzések: A számolások sorá a részeredméek kerekítését célszerű legalább eggel több értékes jegre végez, ehog a kora kerekítések megváltoztassák a végeredmé értékét. A mértékegség a fzka meség része. Mértékegség élkül tehát e írjuk fel fzka meségeket, kvéve ha a szóba forgó meség mértékegség élkül szám! Hbaterjedés Mérések sorá sokszor em a műszerről leolvasott, közvetleül mért meség érdekel beüket, haem az abból valamle függvékapcsolattal értelmezett, származtatott meség. Mvel a mért meség hbával terhelt, természetes, hog a származtatott meségek s lesz hbája. A kérdés az, hog a hba a mért meségről hoga terjed át a származtatott meségre? A meghatározadó z meséget a függvékapcsolat határozza meg. Keressük a z = f ( ) (0) z ± z = f ( ± ) () kfejezéssel defált z értéket. Fejtsük Talor-sorba a (0) kfejezést értéke körül: df ( ) d f ( ) z + z = f ( ) + + ( ) +.... () d d Mvel z mért értékéek a = = z = f ( ) (3)
A HIBASZÁMÍTÁS ALAPJAI 9 értéket tektjük, a () és (3) egeletek külöbségéből adódk z értéke: df ( ) d f ( ) z = + ( ) +.... (4) d d = Ha kcs, akkor a magasabb redű tagok elhaagolhatók. A z származtatott meség hbája tehát: = df ( ) z =. (5) d Ha a számolásból z egatívak adóda, akkor az abszolút értékét kell ve, hsze z a z származtatott érték körül tervallum hosszát jelet. A z meség relatív hbája a = z z df ( ) = (6) f ( ) d = kfejezéssel adható meg. Hbaterjedés több változó eseté Sokszor a származtatott meség em eg, haem több egmástól függetle változó függvée. Ilekor például három, u,v,w változó eseté: z = f ( u,v,w ). A függetleség azt jelet, hog mdegk változót külö-külö, egmástól függetle mérés folamatból erjük. Az előbb godolatmeethez hasolóa, a (5) kfejezés három változóra kterjesztett alakja: f f f z = u + v + w. (7) u v w
0 MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN Mvel (7)-be az eges tagok egatív értékeket s felvehetek, azt vszot tovább meggodolások élkül em tudjuk, hog az eges hbák mle törvészerűség szert csökketk egmást, ezért a (7) kfejezésbe szereplő tagok abszolút értékét szokás összead, vags: f f f z = u + v + w. (8) u v w Azzal azoba, hog az abszolút hbákat összeadjuk, z hbáját túlbecsüljük. A valószíűség-elmélet fgelembe vesz azt, hog va aak valószíűsége, hog ellekező előjel eseté a tagok hbá csökketsék egmást, és ezért jobb becslést tud ad. Eszert több függetle változó eseté a hba optmáls becslése (8)-sal szembe: z f f f = + +. (9) u ( u ) v ( v ) w ( w ) Mdazoáltal, mvel a (8) kfejezés egszerűbb, valamt a (8) és (9) kfejezésekkel számolt hbák agságredleg általába em külöbözek, ezért az esetek többségébe mérések sorá megelégszük a (8) kfejezés alapjá kapható hba megadásával. A hbaterjedéssel kapcsolatos következméek Az alábbakba éhá esetbe kszámítjuk azt a hbaterjedés szabált, amelet eges esetekbe a számolásokba célszerű felhaszál. Megadjuk md a hbabecslésre haszálható (8), md pedg a potosabb számolásokra ajálott (9) kfejezésből adódó formulákat.. Szorzás álladóval Ha a z=f(u) függvé z = cu alakú, ahol c eg álladó, akkor a (8) és a (9) kfejezés egarát a
A HIBASZÁMÍTÁS ALAPJAI z = c u (0) egszerű alakot ölt, vags a mért u meség abszolút hbáját meg kell szoroz az álladó értékével. Az abszolút érték bztosítja, hog az eredmé mdg poztív szám lesz. A relatív hba z u =. () z u Ebbe az esetbe tehát a z származtatott meség relatív hbája megegezk az u mért meség relatív hbájával.. Összeg és külöbség Két változó esetét tektjük. Lege z = f ( u,v ) = u ± v! Ha a durvább (8) becslés alapjá dolgozuk, akkor A (9) kfejezés alakja pedg: z = u + v. () z + = ( u ) ( v ). (3) A relatív hba összetettebb alakú, ezért összeg eseté célszerű az abszolút hbákkal számol. 3. Szorzat és háados Ha a z = f ( u,v ) = uv, akkor a (8) kfejezés alakja ahoa a relatív hba: z = v u + u v, z u v = +. (4) z u v
MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN A (9) kfejezésből adódó alak: z + = v ( u ) u ( v ), és a relatív hba: z = z u u v +. (5) v Köű elleőrz, hog háados eseté s gaz a (4) és a (5) öszszefüggés. Szorzat és háados eseté tehát a relatív hbákra adódó egszerű összefüggések matt célszerű ezek alkalmazása. 4. Hatváfüggvé A z = f ( u,v ) = u m v alak eseté smét a relatív hbák adak egszerűbb összefüggést. A (8) kfejezés alapjá kapott alak: z z u v = m +, (6) u v a (9) kfejezés alapjá pedg a z = z u m u v + v, (7) alakra jutuk. Vags a relatív hbák a ktevővel súlozódak mdkét esetbe. A (7) kfejezés a mérésre voatkozóa s tartalmaz utasítást. Látjuk, hog a kfejezésekbe szereplő relatív hbák em egforma súllal szerepelek a számított meség hbájába. A magasabb hatváo szereplő meségek agobb súllal szerepelek. A mérés sorá törekedük kell tehát arra, hog a agobb súllal szereplő meségeket potosabba mérjük, hsze az eredmé hbáját ezek többszöröse befolásolják.
A HIBASZÁMÍTÁS ALAPJAI 3 A legksebb égzetek módszere A tudomáos vzsgálatok sorá gakra a mért meségek között függvékapcsolat aaltkus alakját kell meghatároz. Tegük fel, hog darab (x, ), (x, ), (x, ) mérés potuk va, és az x, mért meségek között leárs kapcsolatot tételezük fel, vags: =mx+b. (8) A mérés célja lekor az m és b értékek meghatározása, és a leárs kapcsolat gazolása. A leggorsabb, de sokszor em kelégítő potosságú módszer, ha grafkusa oldjuk meg a feladatot. Koordáta-redszerbe ábrázoljuk az (x, ) értékpárokat és a hozzájuk tartozó hbákat. Mvel a mért potok véletle hbákat tartalmazak, ezért em leszek potosa rajta eg egeese. Hoga próbálhatuk legjobba lleszkedő egeest keres? A voalzót úg fektetjük a potokra, hog követve a potok övekvő vag csökkeő meetét hozzávetőleg azoos számú pot kerüljö az egees alá és fölé (. ábra). x. ábra. A legjobba lleszkedő egees grafkus megkeresése Ezt követőe meghatározzuk a kapott egees meredekségét és tegelmetszetét. A meredekség és a tegelmetszet hbája s megbecsülhető grafkusa, hsze húzhatuk két egeest, az optmálsál ksebb és a-
4 MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN gobb meredekséggel, ameleket még összeegeztethetőek tartuk a mérés potokkal és azok hbával (. ábrá a szaggatott voallal rajzolt egeesek). Az íg kapott egeesek meredekségéből és tegelmetszetéből az optmáls egees paramétereek hbája becsülhető. Potosabb eredmét kapuk azoba, ha az llesztést aaltkus úto végezzük. Erre ad lehetőséget a legksebb égzetek módszere. Elvleg az alább smertetett módszer akkor alkalmazható, ha csak az mért érték redelkezk statsztkus hbával, valamt az értékek szórása mde x potba azoos, ugaakkor az x értékek cs hbája. A gakorlatba ez sokszor úg jeletkezk, hog x értékét sokkal potosabba tudjuk meghatároz, mt értékét. Ha mdkét változó értéke egformá hbás, akkor s alkalmazható a legksebb égzetek módszere, de az eljárás az alább smertetettél boolultabb. Elmélet megfotolásokból tudjuk, hog a mért (x,) meségek között gaz a (8) leárs összefüggés. Az (x, ) mért értékpárok azoba hbával redelkezek, ezért csak azt teszk lehetővé, hog meghatározzuk azt az = mˆ x + bˆ (9) egeest, amel legjobba lleszkedk a mért darab potra. mˆ és bˆ az m és b paraméterek valód értékéek a mérés potok alapjá becsült értéke. Tegük fel, hog már meghatároztuk a legjobba lleszkedő egees meredekségét ( mˆ ) és tegelmetszetét (bˆ )! Az ezekkel a paraméterekkel felrajzolt egees az x potokba az = mˆ x + bˆ (30) értékeket vesz fel. Képezzük a mért potok és az íg kapott egees potjaak eltérését (3. ábra): = ( mˆ x bˆ ). (3) + A legjobb lleszkedés feltétele úg s megfogalmazható, hog ezekek az eltérésekek a égzetösszege lege mmáls, azaz
( ( mˆ x + bˆ )) A HIBASZÁMÍTÁS ALAPJAI 5 S ( mˆ,bˆ ) = (3) kfejezés mmumát keressük, mˆ és bˆ függvéébe. Az összeg ola értékekél mmáls, ahol a S( mˆ,bˆ ) = 0 ; mˆ S( mˆ,bˆ ) = 0 bˆ (33) feltételek teljesülek. A (33) két feltétel két egelet felírását tesz lehetővé: ( ( mˆ x + bˆ ))( x ) 0 = ( ( mˆ x + bˆ ))( ) 0 = Átredezve (34)-ből és (35)-ből azt kapjuk, hog = mˆ x + = mˆ x +, (34). (35) x bˆ x, (36) bˆ. (37) A keresett két paraméter ebből az egeletredszerből a mért x, értékekkel kfejezhető. Számolásra alkalmasabb és áttekthetőbb formulát kapuk, ha bevezetjük a következő új változókat: x x =, (38)
6 MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN Ezekkel kfejezve a két keresett meséget: =. (39) x x mˆ =, (40) x x bˆ = mˆ x. (4) A másodk derváltakkal belátható, hog az íg kapott mˆ és bˆ értékekél S( mˆ,bˆ )-ak mmuma va. A 3. ábrá a (40) és (4) paraméterekkel húzott egeest ábrázoltuk. Ezt az egeest regresszós egeesek s szokták evez, az eljárást pedg leárs regresszóak. 0 * értékek 6 8 4 0 0 4 6 8 0 x x értékek 3. ábra. A legksebb égzetek módszerével kapott regresszós egees
A HIBASZÁMÍTÁS ALAPJAI 7 Ha az értékek s emprkus szóráségzete valahoa smert (például oa, hog eg potba sokszor mértük, és a (4) kfejezés alapjá meghatároztuk az emprkus szórást), akkor a hbaterjedés törvée alapjá (40)-ből és (4)-ből egszerű számolással kszámolhatjuk az mˆ és bˆ számított értékek szóráségzetét: s s mˆ =, (4) x x A meredekséget tehát úg adjuk meg, hog x s = s +. (43) bˆ x x m = mˆ ±, (44) s mˆ a tegelmetszetet pedg úg, hog b = bˆ ±. (45) s bˆ Ha az mérés potok s szórása em smert, akkor eek jó közelítése az s r = * ( ) =, (46) a külöböző x potokba mért étékek alapjá számolt ú. rezduáls szóráségzet. A evezőbe tt azért szerepel -, mert a számlálóba szereplő darab külöbségégzet em md függetle, közöttük a (34) és (35) két egelet kapcsolatot teremt. A függetle adatok száma -.
8 MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN A számítógépes programok, amelek a legksebb égzetek módszerével lleszteek regresszós egeest, a (40) (46) kfejezések alapjá számolak. Súlozott legksebb égzetek módszere Va ola eset, amkor em teljesül az a feltétel, hog mde x potba azoos az mérés adatok szórása, azaz s em álladó. Ilekor a (3) összegbe szereplő tagokat külöböző súlfaktorokkal vesszük fgelembe az lleszkedő egees paramétereek számításához. A ag szórású potokat ks súllal, a ks szórású potokat pedg ag súllal szerepeltetjük az összegbe: ( ( mˆ x + bˆ ) S ( mˆ,bˆ ) = w, (47) ) ahol w -k a súlfaktorok. A matematka statsztka szert a súlfaktorok legjobb választása: w =. (48) s Va a súlozásak eg szokásos, hétközap változata. Előfordul, hog a műszer mutatta értéket elézzük, vag az adat lejegzésekor hbát követük el. Ilekor az ábrázolás sorá a több pot meetétől durvá eltérő, kugró potot kapuk. Ha ezt a potot s fgelembe veék a többhez hasoló ag súllal, akkor az erőse módosítaá az llesztett egees meetét. Ile lvávaló esetbe a súlozás azt jelet, hog ezt a potot elhagjuk az llesztés sorá, ahoga azt a 3. ábra esetébe s tettük a kugró pottal. Nem-leárs paraméterbecslés A legksebb égzetek módszere akkor s alkalmazható, ha az x és változók között em leárs a kapcsolat. Ilekor azoba a (33) feltéte-
A HIBASZÁMÍTÁS ALAPJAI 9 lek általába em leárs egeletredszerre vezetek. A számítógépes em-leárs llesztő programok le összefüggések alapjá működek. Nem feltétleül kell azoba a em-leárs esetbe ezt az eljárást követ. Va mód arra, hog a em-leárs kfejezést leárssá alakítsuk. Lege például a függvé bx = ae (49) alakú! A (49) összefüggés mdkét oldaláak logartmusát véve l = la + bx (50) leárs kfejezésre jutuk, amelek paramétere a leárs regresszóval becsülhetők. Meg kell azoba jegez, hog az íg kapott értékek csak első közelítések tekthetők. Az eredet mérés hbák, amelek esetleg egelők voltak, a traszformácó sorá külöbözőkké válhatak. Az íg kapott paraméterek torzítottak lehetek, és hbákról s csak godos aalízst követőe lehet latkoz. Ilekor például dokolt lehet a súlozott legksebb égzetek módszeréek alkalmazása. Az llesztés jósága A görbellesztéssel kapcsolatba eg másk kérdés s felmerülhet, evezetese az, hog heles volt-e a feltevés az llesztedő görbe jellegét lletőe. Másképpe fogalmazva valóba egeest kellett-e lleszte a mérés potokra, vag valamel másk függvé jobba leírta vola a mérés potok meetét. A regresszó jóságát szokás az r korrelácós egütthatóval jellemez: ( x x)( ) r =. (5) ( x x) ( ) Belátható, hog r, és hog r előjele megegezk az llesztett egees meredekségével. Ha a mért potok mdegke potosa az
30 MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN egeese va, akkor r =. Meél kább eltér a szóró potok meete az egeestől, aál ksebb r értéke. Nem túl érzéke mutató. Egésze rossz lleszkedés eseté s agobb lehet 0,9-él. A számítógépes llesztő programok sokszor r értékét s megadják. Fotos tuduk, hog ezt az értéket mérés hbakét em adhatjuk meg. Megjegzedő, hog a regresszó vzsgálatára a matematka statsztka eél jobb próbákat s kíál. Példa a hbaszámításra Összefoglalásképpe a lehajlásmérés példája segít a hbaszámítással kapcsolatba modottak megértését. Kör keresztmetszetű rúd eseté az s lehajlás és az F deformáló erő között a mérés leírása szert az alább öszszefüggés érvées: 3 l s = F, (5) 48 EI ahol l a rúd hossza, E a Youg-modulusza. I az R sugarú keresztmetszet másodredű felület omatéka: I π 4 4 = R. A mérés sorá az F erő függvéébe mérjük az s lehajlást. Az F értékek potosak tekthetők (legfeljebb szsztematkus hba terhelhet), ezért ez kerül a vízsztes tegelre. A mérést legalább 0 külöböző erőérték eseté elvégezzük, és a legksebb égzetek módszerével regresszós egeest llesztük a mérés potokra. A számítógépes llesztő programmal meghatározzuk a regresszós egees m meredekségét és eek m hbáját. A meredekség (5)-ből kfejezve: Ie kfejezve E-t: 3 l m =. 48 EI
A HIBASZÁMÍTÁS ALAPJAI 3 3 l E =. 48 mi A hbaterjedés egszerűbb (6) kfejezése alapjá a Youg-modulusz méréséek relatív hbája: E E l = 3 l + m R + 4. (53) m R A hossz mérését a beredezéshez rögzített skálával végezzük. Ez a skála mm beosztású, a leolvasás hba tehát ±0,05 cm. A hosszat íg adhatjuk meg: l=(30,00±0,05) cm, vag l=30,00 cm ±0,%. Az llesztésből kapott meredekség értéke: 3 cm 3 cm m = (3,85 ± 0,0) 0, vag m = 3,85 0 ± 0,3%. N N (53)-ból látszk, hog a rúd sugaráak (átmérőjéek) mérésére külöös godot kell fordíta, hsze relatív hbája égszeres szorzóval szerepel. Az átmérő (D) mérésére két eszköz jöhet szóba. Vag tolómérővel, vag csavarmkrométerrel mérük. Ha a tolómérőt választjuk, és a hossz meté több hele megmérjük a rúd átmérőjét, akkor észrevesszük, hog a potos megmukálás eredméekét azoos értékeket mérük, vags a mérés hbája a leolvasás hbájával egezk, azaz: D = 6,95 ± 0,05 mm, vag D = 6,95 cm ± 0 7, %. A hossz meté csavarmkrométerrel mérve az átmérőt, az eges mérések sorá külöböző értékeket kapuk. A mérés eredméeket az. táblázat másodk oszlopa tartalmazza. A mérés egedk jege becsült érték, lekor azt célszerű ksebb számmal jelöl. A (5) kfejezés alapjá kszámítjuk az átmérő hbáját:
3 MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN Az átmérő mért értéke tehát: D = s = 0,00 mm. D D = (6,97 ± 0,00 ) mm, vag D = 6,97 mm ± 0,0%. A sugár mért értéke: R = ( 3,486 ± 0,00) mm, vag R = 3,486 mm ± 0,0%. Megér tehát a potosabb mérés, hsze 0,7% helett 0,0%-os hbát kaptuk, és ezzel léegese csökketettük a végeredmé hbáját. D [mm] D D D [mm] = ( D ) 0-5 [mm ] 6,96 5-0,0057 3,49 6,97 3 0,003 0,59 3 6,97 0-0,0007 0,049 4 6,97 5 0,0043,849 5 6,96 4-0,0067 4,489 6 6,97 5 0,0043,849 7 6,98 5 0,043 0,449 8 6,97 0,003 0,69 9 6,96 0-0,007,449 0 6,96 8-0,007 0,79 0 D =6,9707 D = 0 s 0 ( D ) = = D ( ) 0,003. táblázat Megjegezzük, hog ha az egszerűbb () kfejezés alapjá számoljuk az abszolút hbát, akkor D = 0,005 mm -t kapuk. Látható, hog ez az
A HIBASZÁMÍTÁS ALAPJAI 33 érték bár agobb, de agságredleg megegezk s D értékével, ezért sokszor megelégszük az egszerűbb abszolút hba megadásával. Most maradva a potosabb érték haszálata mellett, a Yougmodulusz mérés relatív hbája: E E = 3 0,00 + 0,003 + 4 0,000 = 0,00638. Az eredmét íg írjuk fel: E N m N =. m 0 0 = (7, ± 0,05 ) 0, vag E 7, 0 ± 0,6% Megjegzés: ha a potosabb (5) kfejezés alapjá számoljuk a statsztkus hbát, a számolásokat általába em kell az. táblázatba bemutatott részletességgel elvégez. A jobb kalkulátorok ugas az átlag, az emprkus szórás és az átlag emprkus szórása értékeket közvetleül számolják. A matematka statsztka függvéet a Mcrosoft Excel program s tartalmazza.
34 MÉRÉSEK A KLASSZIKUS FIZIKA LABORATÓRIUMBAN