Desztilláció. Vegyipari és biomérnöki műveletek segédanyag Simándi Béla, Székely Edit BME, Kémiai és Környezeti Folyamatmérnöki Tanszék
|
|
- Lajos Kiss
- 8 évvel ezelőtt
- Látták:
Átírás
1 Desztilláció Vegipari és biomérnöki műveletek segédanag Simándi Béla, Székel Edit BME, Kémiai és Körnezeti Folamatmérnöki Tanszék 1
2 A desztilláció altémakörei A desztilláció előfordulása az iparban, mintapéldák. Jelentősége a múltban a jelenben és a jövőben. Alapfogalmak. Gőz-foladék egensúl mérése és számítása. A egszerű szakaszos desztilláció és jellemző készüléke. Folamatos egensúli desztilláció és készülékei. A rektifikálás és készülékei. 2
3 A történelem korai desztillációi Desztillációs készülék az aleandriai korszakból Desztillációs készülék az arab korszakból 3
4 Szakaszos lepárló 1510-es ábrázolása eg német szabadállamból, Brunschweigből 4
5 Méretnövelés Olaszország, XVI. század 5
6 Rektifikálás (XIX. sz.) 6
7 Desztilláció az iparban Etanol előállítása Élelmiszeripar Vegipar Bioetanol Etanol = etil-alkohol Molekulatömege: 46 g/mol Összegképlete: C2H6O Szerkezeti képlete: CH3CH2OH Főbb tulajdonságok: színtelen, szobahőmérsékleten foladék halmazállapotú anag. Vízzel korlátlanul elegedik. eggakrabban fermentációval állítják elő, majd desztillációval töménítik. A vízzel minimális forráspontú azeotrópot képez. Térszerkezete: H H O H H H H 7
8 Desztilláció az iparban Etanol előállítása Kőolajipari elválasztások frakcionálás (további átalakítások után: üzemanagok, vegipari alapanagok pl. a műanagok előállításához, oldószerek pl festékipar számára, bitumen az útépítésekhez és még sok egéb termék) 8
9 Etanol előállítása Kőolajipari elválasztások Szennvíztisztítás Desztilláció az iparban Elsősorban nag oldószertartalmú ipari szennvizek Gázmosók vizei (lsd abszorpció) 9
10 A desztilláció múltja, jelene, jövője Két vag több illékon komponenst tartalmazó homogén foladékeleg legelterjedtebb elválasztási művelete. Az elválasztás alapja a komponensek eltérő forrpontja. Segédanag hozzáadását nem igénli, ezért körnezetkímélő, de az energiaigéne nag. Számos elválasztási feladatnál más elválasztó műveletekkel (még) nem helettesíthető. 10
11 Alapfogalmak - forráspont Forráspont: eg tiszta anag (eg komponensű anag) forráspontja adott nomáson jellemző az anagra. Tehát a forráspont függ: Az anagi minőségtől (több összetevő, azaz komponens esetén ezek aránától) És a nomástól. Nagobb nomáson a tiszta anagok forráspontja magasabb. Ennek oka, hog eg foladék (akár eg, tiszta komponens akár foladékeleg) akkor forr fel, ha a gőznomása (tenzió, foladékeleg esetén a parciális nomások összege) eléri a foladék felett uralkodó nomást. A víz magasabb hőfokon forr a tengerszinten mint a magas hegségekben, mert a légnomás a tengeszinten nagobb, mint a hegekben. 11
12 Alapfogalmak tenzió A tenzió (gőznomás) eg egkomponensű (tiszta) anag felett, a gőzterében, egensúli körülmének között mérhető nomás. A tenzió függ az anagi minőségtől és a hőmérséklettől. Minden anag tenziója nő a hőmérséklettel. A tenzió (p 0 ) és a hőmérséklet (T) közötti összefüggést az Antione-egenlettel (1888) írhatjuk le (A, B, C az adott anagra jellemző konstansok, T a hőmérséklet): lg p 0 A C B T 12
13 Alapfogalmak - illékonság Az az anag az illékonabb, amelik forráspontja eg adott nomáson alacsonabb. Ha eg foladékeleg forr, akkor (általános esetben) az illékonabb komponens dúsul a gőztérben, a foladékban pedig nagobb hánadban lesz a kevésbé illékon komponens. Több komponensű eleg esetén a j komponens illékonsága számszerűsíthető a gőzfázisban () és a foladékfázisban () mérhető moltört hánadosával j j 13
14 Alapfogalmak - Raoult és Dalton törvének Dalton-törvén Parciális nomásnak hívjuk azt a nomást, amel az adott gázhalmazállapotú komponens részesedése az össznomásból. Ezt fejezi ki a Dalton-törvén, ahol p j a j-edik komponens parciális nomása (Pa), j a j-edik komponens móltörtje a gőzfázisban P a rendszer össznomása (Pa). p j j P Raoult-törvén Ideálisnak tekinthető gakorlati szempontból eg eleg, ha bármel összetételnél (a teljes vizsgált hőmérséklettartománban) igaz az elegre a Raoult-törvén, ahol p 0 j a j-edik komponens tenziója (Pa) adott hőmérsékleten j a j-edik komponens móltörtje a foladékfázisban. p j p 0 j j 14
15 John Dalton( ) Fizikus és kémikus (New College, Manchester) Atomelmélet felelevenítése, atomsúl (D atom tömegegség) ( ) Dalton-törvén (1803) Egéb munkái: térfogatos analízis színvakság meteorológiai megfigelések az angol nelvtan elemei 15
16 Francoise-Marie Raoult ( ) Kémikus (kémia professzor, Sens lcée, PhD Párizsi Egetem) Oldatok fagáspontcsökkenése (molekulatömeg meghatározás) ( ) Oldatok tenziócsökennése, Raoult-törvén (1887) Egéb munkái: Volta-cella vizsgálata elektromos erő 16
17 Alapfogalmak forrpont-harmatpont és egensúli diagramok A diagramok megszerkeszthetőek mérési adatokból. A méréshez tartozó nomáson érvénesek. 17
18 Gőz-foladék egensúli adatok mérése A rendszert elektromos fűtéssel forrásba tartjuk. A nomásállandóságot biztosítjuk. A gőzfázist kerintgetjük, hog bizotsan beálljon az egensúl (az átbuborékoló gőz keveri a foladékot is). Mintát veszünk mind a gőz mind a foladékfázisból, meghatározzuk ezek összetételét. 18
19 Alapfogalmak forrpont-harmatpont és egensúli diagramok A diagramok megszerkeszthetőek mérési adatokból. A méréshez tartozó nomáson érvénesek. Ideális elegeknél jól számolhatóak egszerű modellekkel. Ideális eleg: Igaz a Raoult-törvén. Foladék fázisban is korlátlanul elegednek. Általában kémiailag közeli szerkezetűek, pl. szénhidrogének. 19
20 Egensúli adatok számítása ideális elegek esetén Az Antoine-egenlettel kiszámítjuk az eges komponensek tenzióit a két tiszta komponens forráspontja közötti, lehetőleg egenletesen felosztott hőmérsékleteken. 1-es az illékonabb komponens: p p 1 B1 A1 T C P 1 A Raoult-törvén igaz, kifejezhetjük a parciális nomást, de ismeretlen : 0 p és p p 1 p 2 p p 2 B2 A2 T C Az összenomás a parciális nomások összege: 2 20
21 p p p P P p P p Igaz a Dalton-törvén is, amivel az illékonabb komponens móltörtjét kifejezhetjük a gőzfázisban: p 1 p 2 P 0 1 p 1 p p 2 p p p P p p p P p p p P Azaz kiszámoltuk minden T értékhez az és összetételeket. 21
22 Forrpont-harmatpont és egensúli diagram közel ideális eleg Benzol Molekulatömege: 78 g/mol Összegképlete: C 6 H 6 Eg aromás gűrű alkotja. Főbb tulajdonságok: színtelen, jellegzetes szagú, szobahőmérsékleten foladék halmazállapotú anag. Vízzel nem elegedik. A kőolaj feldolgozása során állítják elő, majd desztillációval tisztítják. Korábban fontos oldószer volt, azonban rákkeltő hatása miatt korlátozták az alkalmazását. A benzin kis menniségben jelenleg is tartalmazza adalékanagként. Térszerkezete: Toluol=metil-benzol Molekulatömege: 92 g/mol Összegképlete: C 7 H 8 Főbb tulajdonságok: színtelen, jellegzetes szagú, szobahőmérsékleten foladék halmazállapotú anag. Vízzel nem elegedik. A kőolaj feldolgozása során állítják elő, majd desztillációval tisztítják. Sok esetben használják a benzol kiváltására. Térszerkezete: CH 3 Benzol-toluol eleg, atmoszférikus nomáson 22
23 Forrpont-harmatpont és egensúli diagram közel ideális eleg Benzol-toluol eleg, atmoszférikus nomáson 23
24 Nem ideális elegek forrpont-harmatpont görbéi és egensúli diagramja Nem ideális eg eleg, ha az azonos és eltérő molekulák közötti kölcsönhatás jelentősen különbözik. Ebben az esetben a Raoult-törvén nem igaz, a számítások során módosítások szükségesek. A T(), T(), () görbék aszimmetrikussá válnak. Minimális vag maimális forráspontú azeotrópok képződhetnek (az azeotróp összetételt adott nomáson desztillációval átlépni nem lehet) További információ: ajánlott irodalom. 24
25 Minimális forráspontú azeotróp izopropil-éter izopropanol atmoszférikus nomáson 25
26 Maimális forráspontú azeotróp aceton-kloroform eleg atmoszférikus nomáson 26
27 Minimális forráspontú heteroazeotróp eleg etil-acetát - víz eleg atmoszférikus nomáson 27
28 Üst. A duplafalú tartált általában gőzzel fűtik úg, hog a belsejében levő foladék folamatosan forrásban legen. Egszerű szakaszos desztilláció Kondezátor: a csövekben hűtővíz áramlik, a csövek hideg külső falán lekondenzál a pára. A vízszintes vonalon hegén álló háromszög foladékszintet jelől Desztillátum gűjtő tartál. A desztillátum a lekondenzált és összegűjtött pára. Kondenzedén. Csak a lekondenzált (foladék halmazállapotú) fűtőgőzkondenzátumot engedi ki a túlnomású 28 térből, a még használhatő fűtőgőzt nem.
29 (t) Egszerű szakaszos desztilláció (t) Hűtővíz BE Fűtőgőz BE Fűtőgőzkondenzátum KI Hűtővíz KI T3 T T2 T1 T0 A foladékfázis összetétele a desztilláció során folamatosan változik, de minden időpillanatban egensúli összetételű a felette levő gőzfázissal. Az üst hőmérséklete folamatosan emelkedik, ahog a visszamaradó anag forráspontja nő. A desztillátum 3 2 és a 1 maradék is folmatosan szegénedik az, illékonabb komponensben, ahog a desztillátum mennisége nő. t 23 1 időpillanat Átlagos D 29
30 Egszerű szakaszos desztilláció A pára mennisége V, ami megegezik desztillátum menniségvel (D). Mindenkori összetétele (illékonabb komp. moltört) amel egensúlban van az uganabban a pillanatban az üstben mérhető moltörttel. Kiindulási anagmenniség, 0. Illkonebb komp. moltörtje 0 A maradék mennisége t 1 időpillanatban, A desztillátum anagmennisge 1 Illékonabb komp. Moltörtje D (mol) összetételét az a maradékben illékonabb komponens 1 30 moltörtjével adjuk meg ( D )
31 Egszerű szakaszos desztilláció matematikai leírás Az egszerű egszerű szakaszos desztilláció matematikai leírásakor az alábbi egszerűsítő feltételezésekkel élünk: az üstben forrásban levő foladék és a belőle keletkező pára minden időpillanatban egensúlban van, a pára nem visz magával foladékcseppeket (a cseppelragadás elkerülhető, ha nem használnak túlzottan intenzív fűtést fontos a fűtési sebesség szabálozása), a pára részlegesen sem kondenzál le a kondenzátorig vezető úton (üst páratere és csővezetékek). Az üst és a páravezeték tökéletesen szigetelt (nincs hőveszteség). A matematikai leírása differenciálegenleteket igénel az állandósult állapot hiána miatt, mint hog minden egszerű szakaszos művelet időben változó körülméneket jelent. 31
32 Egszerű szakaszos desztilláció matematikai leírás A Raleigh-egenlet és levezetése Írjuk fel az anag- és komponensmérleget eg elemi időegségre (nagon rövid időre), amit dt-vel jelölünk! A dt idő alatt dv menniségű, összetételű pára keletkezett (uganenni desztillátum, hiszen a lekondenzáltatott pára a desztillátum) és az üstben levő foladék mennisége is d-nivel csökkent. Az anagmérleg tehát: d dv d D 32
33 Egszerű szakaszos desztilláció matematikai leírás A Raleigh-egenlet és levezetése 2 V d ) d )( d ( V d d d d d V d d d 0 d d d 0 ) ( d d d d d d ln d a differenciális komponens-mérlegegenlet és kifejtése: hanagoljuk el a dd tagot és rendezzük 0-ra: behelettesítve az anagmérlegből, hog d=dv szeparáljuk a változókat 33
34 0 Egszerű szakaszos desztilláció matematikai leírás A Raleigh-egenlet és alkalmazása d ln ahol és az egmással egensúlban levő gőz- illetve foladékfázisbeli moltörtek, ameleket az egensúli diagramról lehet leolvasni; 0 a kezdeti (t 0 időpillanat) 1 a végső (t 1 ) időpillanatra vonatkozó érték; a foladék anagmennisége (mol) az üstben. Ha tehát ismert a kiindulási anagmenniség ( 0 ) és összetétel ( 0 ), valamint az előírt tisztaság ( 1 ) a Raleigh-egenlettel a maradék 34 mennisége ( 1 ) számolható.
35 Egszerű szakaszos desztilláció matematikai leírás A desztillátummenniség és -összetétel számítása Ismert már 0, 1, 0, 1 A teljes anag- és komponensmérlegből a keresett menniségek kifejezhetőek: D D D D D D az átlagosdesztillátumösszetétel ahol D 35
36 Az egszerű szakaszos desztilláció alkalmazása Egszerű szakaszos desztillációval elvileg bármekkora maradéktisztaság elérhető, de a gakorlatban csak kisebb mértékű tisztításra használják. Az ok gazdasági: a nag tisztasághoz a foladék jelentős részét el kell párologtatni, aminek jelentős az energiaigéne. Egszerű szakaszos desztillációnál a desztillátum összetétele mindig kisebb, mint a kiindulási eleggel egensúlban levő páráé és nagobb, mint a kiindulási elegé. Az illékonabb komponensből viszonlag nag tisztaságot csak több egmás utáni desztillációval lehet elérni (lsd. egensúli diagram és pálinkafőzés). Az egszerű szakaszos deszitllációt előszeretettel alkalmazzák kisebb léptékben, minél nagobb menniségeket kell desztillálni annál inkább a folamatos műveletek válnak gazdaságossá. 36
37 Folamatos egensúli desztilláció, flash desztilláció Eg egensúli fokozatnak megfelelő, állandósult állapotban üzemeltetett desztillációs művelet, A betáplálást részlegesen elpárologtatják. A keletkező foladék (a maradék) és a pára (desztillátum) egmással egensúlban vannak, azaz az és összetételek az egensúli görbe egetlen pontjának koordinátái. A forrási hőmérséklet a desztilláció alatt állandó. Készülék szempontból három különböző megoldása van. 37
38 Folamatos egensúli desztilláció állandó A betáplálás mólárama F. Összetétele F (illékonabb komp. moltört). Az állandósult állapot feltétele, hog a betáplálás is időben állandó legen. nomáson A pára mólárama V. Összetétele (illékonabb komp. moltört) amel időben állandó és egensúlban van az üstben mérhető (és az üstből távozó) moltörttel. Fűtőgőz betáplálás. A duplafalú tartál belső falán lekondenzál a fűtőgőz és íg melegíti a belső falat. A belső fal belső oldala hőt ad át a foladéknak, ami íg folamatosan forr. A maradékelvétel mólárama. Összetétele (illékonabb komp. moltört). Fűtőgőzkondenzátum elvétel kondenzedénen keresztül 38
39 Flash desztilláció nomáscsökkentéssel Foladék halmazállapotú betáplálás. Előmelegítő. Nomás alatt olan magas hőmérsékletre melegítjük a foladékot, hog még ne forrjon fel, de a nomáscsökkentés után már a forrpontja felett legen. Nomáscsökkentő szelep Pára Cseppleválasztó ciklon. A nomáscsökkentés hatására a forró foladék eg része elpárolog. A párából az el nem párolgott foladékcseppeket kiülepítjük, ez lesz a maradék. Maradék. 39
40 Folamatos egensúli desztilláció részleges kondenzáltatással Gőz halmazállapotú Betáplálás. Pára Részleges kondenzátor. A gőz halmazállapotú betáplálást annira lehűtjük, hog a kívánt összetételű foladék kondenzáljon le. Cseppleválasztó ciklon. A a hűtés hatására kivált foladékcseppeket párából kiülepítjük, ez lesz a maradék. Maradék. 40
41 A folamatos egensúli desztilláció matematikai leírása Anagmérleg V F Komponensmérleg V F F Fejezzük ki az -t az függvénében, majd ábrázoljuk az egenletet az egensúli diagramon! Az és értékek egensúli értékek, ezért a munkapontban az egensúli görbe eg pontja jelképezi. A munkapontot a kifejezett egenes és az egensúl görbe metszéspontja adja meg. V V F V V F V F V F F F F 41
42 A folamatos egensúli desztilláció matematikai leírása V F V F Az egenes meredeksége a maradék és a pára mólaránának arána. Ezeket mi állítjuk be a fűtés (esetleg hűtés) mértékével. ha V F F F V F F Tehát az egenest eg pontja és a meredeksége ismeretében ábrázolhatjuk. 42
43 A folamatos egensúli desztilláció matematikai leírása Folamatos egensúli desztillációval nem lehet tetszőleges tisztaságú párát és maradékot előállítani. 43
44 Folamatos egensúli desztilláció összefoglalás Ritkán használják önálló műveletként, mert csak korlátozott tisztaság érhető el. Eg elméleti fokozatnak megfelelő elválasztást lehet elérni. Nem ideális elegek esetében (pl. heteroazeotrópok) speciális esetben közvetlenül is alkalmazható. Egéb folamatos desztillációs elválasztásoknál, pl. rektifikálás, a visszaforraló üst folamatos egensúli desztillációnak tekinthető. 44
45 Folamatos rektifikálás Folamatos, állandósult állapotban végzett elválasztó művelet. Mivel folamatos művelet, jellemzően nag betáplálási áramok esetén gazdaságos. Elterjedten alkalmazzák az iparban (szénhidrogénipar; oldószerek tisztítása, visszanerése; ipari szennvizek tisztítása). Foladék-gőz egensúlon alapul. Az órán csak két komponensű rendszerekről esik szó, de a valóságban sok komponens (összetevő) lehet. Kétkomponensű elegnél az illékonabb komponens a gőzfázisban (majd a desztillátumban), a kevésbé illékon komponens a foladékfázisban (majd a maradékban) dúsul. A folamatos rektifikálást rektifikáló oszlopban végzik. 45
46 Folamatos rektifikálás = többszöri részleges elforralás illetve kondenzáltatás Alsó oszloprész Felső oszloprész 46
47 Rektifikáló oszlop Az oszlop eg hengeres kialakítású, leggakrabban fémből vag kisebb léptékben üvegből készült cső. Ezen belül helezkednek el a tánérok vag töltetek, amelek a felfelé haladó pára és a lefelé csorgó foladék intenzív érintkeztetését (keveredését) biztosítják. A rektifikáló oszlopba érkezik a betáplálás (F) és két anagáramot veszünk el, a desztillátumot (D) és a maradékot (W). Ahhoz, hog a felső oszloprészben is legen lefelé csorgó foladék, a kondenzátorban lekondenzáltatott pára (immár foladék) eg részét visszavezetjük az oszlop tetejére (ez a reflu). Az üstbe bevezetett foladék eg részét elforraljuk, és a keletkező párát az oszlop aljára vezetjük, íg biztosítjuk a felfelé szálló párát az oszlopban. 47
48 Rektifikálás - mérlegegenletek Teljes anagmérleg F DW A betáplálás (F), desztillátum elvétel (D) és a maradék elvétel (W) mind móláramban (pl. mol/s vag kmol/h) helettestíthetőek be. Komponensmérleg F F D D W Az összetételek moltörtben helettesítendőek be. W 48
49 A legfontosabb, egszerűen elvégezhető közelítő számítások Minimális elméleti tánérszám meghatározása: A minimális elméleti tánérszám az előírt elválasztásra jellemző. Minél nagobb ez a számérték, annál nehezebb a desztillációs feladat. A számításhoz (szerkesztéshez) a desztilláció nomásán érvénes egensúli diagram, valamint az előírt desztillátum- és maradékösszetétel szükséges. 49
50 A legfontosabb, egszerűen elvégezhető közelítő számítások Minimális elméleti tánérszám meghatározása: A minimális elméleti tánérszám az előírt elválasztásra jellemző. Minél nagobb ez a számérték, annál nehezebb a desztillációs feladat. A számításhoz (szerkesztéshez) a desztilláció nomásán érvénes egensúli diagram, valamint az előírt desztillátum- és maradékösszetétel szükséges. Minimális refluarán meghatározása 50
51 Rektifikálás refluarán, Refluarán: R=/D munkavonalak A reflu (), desztillátum elvétel (D) és mind móláramban (pl. mol/s vag kmol/h) helettestíthetőek be, íg a refluarán dimenzió nélküli. Az állandó moláris elpárolgás tétele alapján a pára illetve a foladék mólárama oszloprészenként állandó. 51
52 Rektifikálás állandó móláris túlfolás tétele Hívják még állandó moláris párolgás tételének vag ewis feltételnek is. Feltételezések: Az oszlop adiabatikusan működik (az oszlop jól van szigetelve, ezért nincs hőveszteség). A komponensek elegítésénél felszabaduló hő (elegítési hő) elhanagolható. Az oszlopban végbemenő felmelegedési és lehűlési entalpiaváltozások elhanagolhatók a párolgáshőhöz viszonítva. A komponensek moláris párolgáshője egenlő. Következmén: Foladék és páraáramok oszloprészenként állandóak 52
53 Rektifikálás refluarán, munkavonalak Az oszlopban a tánérokat egezménesen felülről lefelé számozzuk. Az adott tánért elhagó (egmással egensúlban levő) pára és foladékáramok indee a tánér száma. Az állandó moláris túlfolás tétele alapján: V 1 V... V 2 n V n 53
54 A komponensmérleg a felső oszloprészre: Rektifikálás felső munkavonal D n n D V 1 Anagmérleg a felső oszloprészre (uganez az egenlet írható fel a kondenzátorra is): D V Az n+1 -et kifejezve a komponensmérlegegenletből, és behelettesítve az anagmérlegegenletet: D n D n n D D D V D V 1 54
55 Rektifikálás felső munkavonal D n D n n D D D V D V 1 Helettesítsük be a refluaránt (R=/D): R R R D n n Az indeek elhagásával általánosítva megkapjuk a felső munkavonal egeletet, ami a tánérok közötti térben az egmás mellett elhaladó áramok összetétele között teremt kapcsolatot: 1 1 R R R D 55
56 Rektifikálás alsó munkavonal Hasonló módon felírhatjuk az anagés komponens-mérlegegenleteket az alsó oszloprészre is. A V és különbözteti meg a móláramokat az alsó oszloprészben a felső oszloprész V és mólaramaitól: ' V' W 'm V m1 W W 56
57 Rektifikálás alsó munkavonal W V ' ' W m m W V ' 1 Az -t kifejezve megkapjuk az alsó oszloprész munkavonalegenletét is: W m m V W V ' ' ' 1 W V W V ' ' ' 57
58 Rektifikálás refluarán, munkavonalak A refluarán ismeretében (mi szabálozzuk) a felső munkavonalat meg lehet szerkeszteni az egensúli diagramon. Az alsó munkavonal megszerkesztéséhez azonban ismernünk kell a betáplálás hőállapotát. A betáplálás hőállapota szabja meg, hog a felső oszloprészbeli (ismert) pára és foladék móláramoktól mennire tér el az alsó oszloprészbeli áramoktól. ' V ' W V ' W 58
59 q H F h F F Rektifikálás a betáplálás hőállapota, ahol H F az F összetételű telített gőz fajlagos entalpiája (J/mol), h F a betáplálás fajlagos entalpiája (J/mol), pedig az F összetételű eleg párolgáshője (J/mol). A betáplálás halmazállapota és h F q jellemzője forráspont alatti foladék, ún. hideg h F < H F 1 < q foladék forrponti foladék h F = H F -λ F q = 1 gőz és foladék keverék, q értéke h F = H F q r 0 < q < 1 megegezik a foladékhánaddal telített gőz h F = H F q = 0 túlhevített gőz h F > H F q < 0 59
60 Rektifikálás a betáplálás hatása a móláramokra q H F h F F Írjuk fel az anagmérleget a betáplálási tánérra: V F V A gőz foladék veges betáplálás esetén a foladékhánad (q) a lecsurgó foladékhoz, a gőzhánad (1-q) a felszálló gőzhöz adódik. qf V V ( 1q) F 60
61 Rektifikálás a betáplálás hőállapota F q q q A q ismeretében kifejezhető és megszerkeszthető a q-vonal. Vonjuk ki a felső munkavonal egenletét az alsó munkavonal egenletéből: W W D D V V ) ( ) ( W W W V V W V ' ' ' ' ' D D n D V V D V F F F q F q ) ( 1 F q q ) ( 1 F q F q V V ) 1 ( 61
62 A legfontosabb, egszerűen elvégezhető közelítő számítások Minimális refluarán meghatározása: Ahhoz, hog eg előírt desztillátum összetételt ( D ) elő lehessen állítani adott betáplálás összetétel ( F ) és hőállapot (q) mellett, a refluaránnak el kell érnie eg minimális értéket. 62
63 A legfontosabb, egszerűen elvégezhető közelítő számítások Minimális refluarán meghatározása: Ahhoz, hog eg előírt desztillátum összetételt ( D ) elő lehessen állítani adott betáplálás összetétel ( F ) és hőállapot (q) mellett, a refluaránnak el kell érnie eg minimális értéket. Elméleti tánérszám meghatározása: A felső és az alsó munkavonal megszerkesztése után, McCabe Thiele lépcsőszerkesztéssel. 63
64 McCabe-Thiele-féle lépcsőszerkesztés 1 D = D 0,8 0,6 0,4 D R 1 Felső munkavonal tg 6 R R q vonal q tg q Adott: Tehát: N elm =7 0,2 7 Alsó munkavonal R, q, w, D, F N elm =? w = w 0 0 0,2 0,4 0,6 0,8 1 w F D 64
65 Hűtővíz BE Hűtővíz KI REKTIFIKÁÁS 1 D = D 1 D 1 Desztillátum 0, D ,6 Betáplálás , , w = w 0 0 0,2 0,4 0,6 0,8 1 w F D Fűtőgőz BE Fenéktermék w Fűtőgőz kondenzátum KI 65
66 A legfontosabb, egszerűen elvégezhető közelítő számítások Minimális refluarán meghatározása: Ahhoz, hog eg előírt desztillátum összetételt ( D ) elő lehessen állítani adott betáplálás összetétel ( F ) és hőállapot (q) mellett, a refluaránnak el kell érnie eg minimális értéket. Elméleti tánérszám meghatározása: A felső és az alsó munkavonal megszerkesztése után, McCabe Thiele lépcsőszerkesztéssel. Minimális elméleti tánérszám meghatározása: A minimális elméleti tánérszám az előírt elválasztásra jellemző. Minél nagobb ez a számérték, annál nehezebb a desztillációs feladat. A számításhoz (szerkesztéshez) a desztilláció nomásán érvénes egensúli diagram, valamint az előírt desztillátum- és maradékösszetétel szükséges. 66
67 A legfontosabb, egszerűen elvégezhető közelítő számítások Minimális refluarán meghatározása: Ahhoz, hog eg előírt desztillátum összetételt ( D ) elő lehessen állítani adott betáplálás összetétel ( F ) és hőállapot (q) mellett, a refluaránnak el kell érnie eg minimális értéket. Elméleti tánérszám meghatározása: A felső és az alsó munkavonal megszerkesztése után, McCabe Thiele lépcsőszerkesztéssel. Minimális elméleti tánérszám meghatározása: A minimális elméleti tánérszám az előírt elválasztásra jellemző. Minél nagobb ez a számérték, annál nehezebb a desztillációs feladat. A számításhoz (szerkesztéshez) a desztilláció nomásán érvénes egensúli diagram, valamint az előírt desztillátum- és maradékösszetétel szükséges. Oszlopátmérő számítása: terhelési ténező segítségével. 67
68 Rektifikálás - terhelési ténező m s F G faktor v kg Pa 3 m P P P M R T P 1 2 G 0 N valós A terhelési ténező (F faktor ) meghatározza a gőz-foladék érintkeztetés hatásosságát. Függ a pára üres oszlopra vonatkoztatott áramlási sebességétől (v) és a pára sűrűségétől (ρ G ). A pára sűrűsége függ: átlagos moltömeg (összetétel!), hőmérséklet (mindig forrponti az oszlopban, azaz a nomás és az összetétel határozza meg), nomás. A nomás az oszlop tetejétől az alja felé nő. 68
69 Rektifikálás tánérhatásfok A működési tartomán az, ahol a görbék vízszintesek 69
70 Rektifikálás oszlopátmérő számítása Kiválasztunk eg olan terhelési ténező értéket (tartománt) amelnél az oszlop működése az optimális tartománba esik. 70
71 Rektifikálás tánérhatásfok A működési tartomán az, ahol a görbék vízszintesek 71
72 Rektifikálás oszlopátmérő számítása v F P 0 faktor Térfogatáram az oszlop tetején és alján R T V t V R T V V P D o V v A 4V v G V 2 D 4V 2 o D o 4 a Kiválasztunk eg olan terhelési ténező értéket (tartománt) amelnél az oszlop működése az optimális tartománba esik. A rögzített terhelési ténező mellett az oszlop tetején és az alján is kiszámítjuk az oszlopátmérőt (D 0 ). Olan átmérőt választunk amel mellett az oszlop összes tánérja megfelelő tartománban múködik. 72
73 A legfontosabb, egszerűen elvégezhető közelítő számítások Minimális elméleti tánérszám meghatározása: A minimális elméleti tánérszám az előírt elválasztásra jellemző. Minimális refluarán meghatározása: Ahhoz, hog eg előírt desztillátum összetételt ( D ) elő lehessen állítani adott betáplálás összetétel ( F ) és hőállapot (q) mellett, a refluaránnak el kell érnie eg minimális értéket. Elméleti tánérszám meghatározása: A felső és az alsó munkavonal megszerkesztése után, McCabe Thiele lépcsőszerkesztéssel. Oszlopmagasság számítása: tánéros oszlop esetében az oszlop aktív magasságát a valódi tánrészám és a tánértávolság segítségével számolhatjuk. Oszlopátmérő számítása: terhelési ténező segítségével. Oszlopmagasság számítása: tánéros oszlop esetében az oszlop aktív magasságát a valódi tánérszám és a tánértávolság segítségével számolhatjuk 73
74 Rektifikálás oszlopmagasság számítása Meghatározzuk szerkesztéssel az elméleti tánérszámot (N elm ). A tánérhatásfok (η tánér ) felhasználásával kiszámoljuk a valódi tánérok számát. Mindig felfelé kerekítünk. A tánérhatásfok függ: Tánér típusa (szerkezete) Nelm Nvalós A tánér terhelési ténezője (F faktor ). tánér 74
75 Rektifikálás tánérhatásfok A működési tartomán az, ahol a görbék vízszintesek 75
76 Rektifikálás oszlopmagasság számítása Meghatározzuk szerkesztéssel az elméleti tánérszámot (N elm ). A tánérhatásfok (η tánér ) felhasználásával kiszámoljuk a valódi tánérok számát. Mindig felfelé kerekítünk. A tánérhatásfok függ: Tánér típusa (szerkezete) N Nvalós A tánér terhelési ténezője (F terhelési ). A tánérok számát megszorozzuk a tánértávolsággal. H N valós H elm tánér 76
77 Főbb témakörök - tánéros oszlop Elméleti és valós tánérok Az üzemeltetés N min, R min meghatározása, a McCabe Thiele szerkesztés, hatásfok Gőzterhelés, F-faktor A tánéros oszlopok szerkezete, a tánérok működése 77
78 Harangsapkás tánér 78
79 Szitatánér 79
80 Szelepes tánér 80
81 Szelepes tánér működési elve G ő z G ő z G ő z 81
82 Rektifikálás töltött oszlopok Rendezetlen illetve rendezett töltetek lehetségesek. A rendezetlen töltet olcsóbb, de kisebb hatásfokú (azonos töltetmagassághoz lénegesen kisebb elválasztóképesség tartozik). A modern, rendezett töltetek laboratóriumi mérettől nagüzemi méretig elérhetőek. 82
83 Oszlopmagasság meghatározása 1. H N HETP HETP= Height Equivalent of Theoretical Plate Sulzer Mellapak töltet 83
84 Oszlopmagasság meghatározása 2. A McCabe-Thiele tánérszám számítás helett tötlött oszlopok esetén gakran használják az átviteli egségek fogalmát. Az átviteli egségek száma az NTU (Number of Transfer Units) Az átviteli egségek magassága a HTU (Height of Transfer Unit) Az alsó és felső oszloprészre külön-külön meghatározzák. A teljes oszlopmagasság az alsó és a felső oszloprészbe levő aktív töltetmagasság összege. H HTU a NTU a HTU f NTU f 84
85 Elméleti háttér V d K a A( ) d H V K a A m páraáram a felső oszloprészben (mol/s), anagátbocsátási ténező (mol/(m 2 s)), a töltet fajlagos felülete (m 2 /m 3 ), nedvesítési ténező (-), oszlopkeresztmetszet (m 2 ), az a hipotetikus koncentráció, amel a foladékfázissal egensúlban lenne (-). 85
86 Elméleti háttér - kétfilm elmélet m K 1 1 Ai m Ai ) ( Ai A A J ( A ) Ai A J Ai A A m J A Ai A J ( A ) A A K J ) ( ) ( Ai A Ai A m m m A Ai Ai A A m J 1 86
87 Oszlopmagasság számítása H A a K V d ) ( d D F f H A a K V H H d d 0 A a K V H d d A a K V HTU f D F f NTU d A a K V HTU a ' F W a NTU d 87
88 HTU számítása adott: F, R, q, F, D, W D W F D w F D W F D w D w F W F W D W F D W D F F W W F D D R V 1 A a K V HTU f F q V V 1 ' A a K V HTU a ' 88
89 NTU számítása 89
90 Rendezetlen töltetes oszlop 90
91 Rendezetlen töltetek / gűrűk Raschig-gűrű Pall-gűrű 91 Kaszkád gűrű
92 Rendezetlen töltetek / nergek Berl-nereg Intalo-nereg 92 Szuper intalonereg
93 További rendezetlen töltetek Hópehel Konjugált gűrű 93 essing-gűrű
94 További rendezetlen töltetek Kerámia golók Envipack gömb 94 Spirális töltet
95 Rendezett töltetes oszlop 95
96 Rendezett töltetek 96
97 Foladék elosztók 97
98 Töltet alátámasztások 98
99 Töltet lefogók 99
100 Összeszerelés 100 tonnás elem (fal + töltet) behelezése régi kolonna felújítása során. foladékelosztó összeszerelése fénképek: Sulzer kolonnafelújítás 100
101 Gazdasági optimum Csökken a szükséges oszlopmagasság (tánérszám) Jelentősen nő az oszlop átmérője 101
102 Gazdasági optimum Hűtés és fűtés költsége W W W F q D R F q V V Q 1 1 1) üst D D D R V Q 1 kond 102
103 Összefoglalás A rektifikálás a egik legnagobb léptékben alkalmazott művelet (kőolajfeldolgozás, gógszeripar, stb.). Tervezése, méretnövelése az anagátadó műveletek közül a legjobban számítható, modellezhető. Az oszlopok kialakítása rendkívül változatos, sokszínű. A tervezéshez a durva becsléstől a pontos optimalizálásig rendelkezésre áll az eszköztár és a szakcégek. 103
104 Ajánlott irodalom Vegipari műveletek 2. elektronikus tananag ( fejezetek gőz- foladék egensúlok fejezet desztilláció, rektifikálás alapjai fejezet a rektifikálás készülékei Vegipari és biomérnöki számolási gakorlat segédlete és a garkolat vonatkozó anaga ( 104
Vegyipari műveletek II. Témakör: desztilláció Székely Edit BME VBK
Vegipari műveletek II Témakör: desztilláció Székel Edit BME VBK sz-edit@mail.bme.hu A desztilláció altémakörei A desztilláció előfordulása az iparban, mintapéldák. Jelentősége a múltban a jelenben és a
Desztilláció: gyakorló példák
Desztilláció: gyakorló példák 1. feladat Számítsa ki egy 40 mol% benzolt és 60 mol% toluolt tartalmazó folyadékelegy egyensúlyi gőzfázisának összetételét 60 C-on! Az adott elegyre érvényes Raoult törvénye.
Kiegészítő desztillációs példa. 1. feladatsor. 2. feladatsor
Kiegészítő desztillációs példa D3. példa: Izopropanol propanol elegy rektifikálása tányéros oszlopon 2104 kg/h 45 tömeg% izopropanol-tartalmú propanol izopropanol elegyet folyamatos üzemű rektifikáló oszlopon,
Gépészeti Eljárástechnika Tanszék. Szakaszos rektifikálás mérés
BME Gépészeti Eljárástechnika Tanszék zakaszos rektifikálás mérés Budapest, 006 1. Elméleti összefoglaló A mérés célja: laboratóriumi rektifikáló oszlopban szakaszos rektifikálás elvégzése, etanol víz
8.9. Folyamatos rektifikálás vizsgálata félüzemi méretű rektifikáló oszlopon.
8.9. Folyamatos rektifikálás vizsgálata félüzemi méretű rektifikáló oszlopon. 8.9.1. Bevezetés. Az egyszerű, egyfokozatú reflux nélküli desztillációnál az elválasztás egyetlen egyensúlyi fokozatnak felel
TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI
TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI EMLÉKEZTET Termikus, mechanikai és anagátmeneti egensúl intenzív állaotjelzkkel kifejezett feltételrendszerét már kidolgoztuk! Alkalmazzuk több komonens és több
Lepárlás. 8. Lepárlás
eárlás 8. eárlás csefolós elegek szétválasztására leggakrabban használt művelet a leárlás. Míg az egszeri leárlás desztilláció néven is ismerjük az ismételt leárlás vag ismételt desztillációt rektifikálásnak
8.8. Folyamatos egyensúlyi desztilláció
8.8. olyamatos egyensúlyi desztilláció 8.8.1. Elméleti összefoglalás olyamatos egyensúlyi desztillációnak vagy flash lepárlásnak nevezzük azt a desztillációs műveletet, amelynek során egy folyadék elegyet
Gőz-folyadék egyensúly
Gőz-folyadék egyensúly UNIFAC modell: csoport járulék módszer A UNIQUAC modellből kiindulva fejlesztették ki A molekulákat különböző csoportokból építi fel - csoportokra jellemző, mért paraméterek R és
8.9. Folyamatos rektifikálás vizsgálata félüzemi méretű rektifikáló oszlopon.
8.9. Folyamatos rektifikálás vizsgálata félüzemi méretű rektifikáló oszlopon. 8.9.1. Bevezetés Az egyszerű, egyfokozatú reflux nélküli desztillációnál az elválasztás egyetlen egyensúlyi fokozatnak felel
Fiziko-kémiai módszerek a finomkémiai ipar hulladékvizeinek kezelésére
Fiziko-kémiai módszerek a finomkémiai ipar hulladékvizeinek kezelésére Környezettudományi Doktori Iskolák Konferenciája 2012. 08. 31. Tóth András József 1 Dr. Mizsey Péter 1, 2 andras86@kkft.bme.hu 1 Kémiai
= és a kínálati függvény pedig p = 60
GYAKORLÓ FELADATOK 1: PIACI MECHANIZMUS 1. Adja meg a keresleti és a kínálati függvének pontos definícióját! Mikor beszélhetünk piaci egensúlról?. Eg piacon a keresletet és a kínálatot a p = 140 0, 1q
Szénhidrogén elegy rektifikálásának modellezése
Hőmérséklet C Szénhidrogén elegy rektifikálásának modellezése 1. Elméleti összefoglalás Napjainkban a kőolaj az egyik legfontosabb bányászott és feldolgozott nyersanyag, meghatározó primer energia hordozó.
MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.
MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált
Általános és szervetlen kémia Laborelıkészítı elıadás I.
Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció
Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) .
Szabadsugár Tekintsük az alábbi ábrán látható b magasságú résből kiáramló U sebességű sugarat. A résből kiáramló és a függőleges fal melletti térben lévő foladék azonos. A rajz síkjára merőleges iránban
8.9. Folyamatos rektifikálás vizsgálata félüzemi mérető rektifikáló oszlopon.
8.9. Folyamatos rektifikálás vizsgálata félüzemi mérető rektifikáló oszlopon. 8.9.1. Bevezetés. Az egyszerő, egyfokozatú reflux nélküli desztillációnál az elválasztás egyetlen egyensúlyi fokozatnak felel
Többváltozós analízis gyakorlat, megoldások
Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,
Töltött rektifikáló oszlopok vizsgálata
Töltött rektifikáló oszlopok vizsgálata Az ipari gyakorlatban rektifikálásra tányéros vagy töltött oszlopokat használnak. A töltött oszlopokban az 1960-as évekig golyókat, gyűrűket vagy nyeregtesteket
Mechanika. II. előadás március 4. Mechanika II. előadás március 4. 1 / 31
Mechanika II. előadás 219. március 4. Mechanika II. előadás 219. március 4. 1 / 31 4. Merev test megtámasztásai, statikai feladatok megtámasztás: testek érintkezése útján jön létre, az érintkezés során
Az extrakció. Az extrakció oldószerszükségletének meghatározása
Az extrakció Az extrakció oldószerszükségletének meghatározása Az extrakció fogalma és fajtái olyan szétválasztási művelet, melynek során szilárd vagy folyadék fázisból egy vagy több komponens kioldását
Technológiai hulladékvizek kezelése fiziko-kémiai módszerekkel a körforgásos gazdaság jegyében
Technológiai hulladékvizek kezelése fiziko-kémiai módszerekkel a körforgásos gazdaság jegyében Ipari Szennyvíztisztítás Szakmai Nap Budapest, 2017. 11. 30. Mizsey Péter 1,2, Tóth András József 1, Haáz
R E K T I F I K Á C I Ó
R E K T I F I K Á C I Ó Bevezetés A foladékelegek szétválasztásáak egik leggakrabba alkalazott ódszere a gőzfoladék egesúlo alapuló desztilláció ill. az isételt desztilláció: a rektifikálás. Midkét űvelet
Folyamattan gyakorlat. 2017/ félév BME-KKFT Készítette: Stelén Gábor
Folyamattan gyakorlat 2017/18. 1. félév BME-KKFT Készítette: Stelén Gábor 1 Gőz-folyadék egyensúly Folyadékelegyek szétválasztása rektifikálás Szükségesek a gőz-folyadék egyensúlyi adatok Ideális elegyek
18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK
18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK Kertesi Gábor Világi Balázs Varian 21. fejezete átdolgozva 18.1 Bevezető A vállalati technológiák sajátosságainak vizsgálatát eg igen fontos elemzési eszköz,
10. elıadás: Vállalati kínálat, iparági kínálat Piaci ár. A versenyzı vállalat kínálati döntése. A vállalat korlátai
(C) htt://kgt.bme.hu/ 1 /8.1. ábra. A versenzı vállalat keresleti görbéje. A iaci árnál a vállalati kereslet vízszintes. Magasabb árakon a vállalat semmit nem ad el, a iaci ár alatt edig a teljes keresleti
Matematika szintfelmérő szeptember
Matematika szintfelmérő 015. szeptember matematika BSC MO 1. A faglaltok éjszakáján eg közvéleménkutatásban vizsgált csoport %-ának ízlett az eperfaglalt, 94%-ának pedig a citromfaglalt. A két gümölcsfaglalt
VASBETON LEMEZEK. Oktatási segédlet v1.0. Összeállította: Dr. Bódi István - Dr. Farkas György. Budapest, 2001. május hó
BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építőmérnöki Kar Hidak és Szerkezetek Tanszéke VASBETON LEMEZEK Oktatási segédlet v1.0 Összeállította: Dr. Bódi István - Dr. Farkas Görg Budapest, 001. május
A fogyasztói döntés. Hasznosságelméletek. 3. előadás. Egyváltozós hasznossági függvény. kardinális hasznosságelmélet. ordinális hasznosságelmélet
3. előadás fogasztói döntés Hasznosságelméletek: kardinális és ordinális hasznosságelmélet. Hasznossági függvén, határhaszon. Fogasztói preferenciarendezés, közömbösségi görbék, helettesítési határráta.
7. Kétváltozós függvények
Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és
László István, Fizika A2 (Budapest, 2013) Előadás
László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben
SZAKASZOS REKTIFIKÁLÁS
SZAKASZOS REKTIFIKÁLÁS mérési segédlet Mérés helyszíne: Stokes Laboratórium Ellenőrizte: Dr. Hégely László Készítette: Deák Gábor, Kádár Péter, Tőzsér Eszter, Verrasztó László Budapest, 2018.05.17. Budapesti
Néhány érdekes függvényről és alkalmazásukról
Néhán érdekes függvénről és alkalmazásukról Bevezetés Meglehet, a középiskola óta nem kedveltük az abszolútérték - függvént; most itt az ideje, hog változtassunk ezen. Erre az adhat okot, hog belátjuk:
Művelettan 3 fejezete
Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási
1. Feladatok a termodinamika tárgyköréből
. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi
Vegyipari műveletek II. Témakör: abszorpció Székely Edit BME VBK
Vegyipari műveletek II Témakör: abszorpció Székely Edit BME VBK sz-edit@mail.bme.hu Abszorpció Abszorpció esetében a komponensátadás jellemzően a gázfázisból a folyadékfázisba történik. Egyensúlyi vagy
Mechanika II. Szilárdságtan
echanika II. Szilárdságtan Zalka Károl / q / B Budapest, 05 Zalka Károl, 05, e-kiadás Szabad ezt a kiadvánt sokszorosítani, terjeszteni és elektronikus vag bármel formában tárolni. Tilos viszont a kiadvánt
BEPÁRLÁS. A bepárlás előkészítő művelet is lehet, pl. porlasztva szárításhoz, kristályosításhoz.
Bepárlás fogalma: Az olyan oldatok esetében amelyekben az oldott anyag gőztenziója gyakorlatilag nulla, az oldatot forrásban tartva, párologtatással az oldószer eltávolítható, az oldat besűríthető. Az
A. mértékegységek (alap és származtatott mértékegységet, átváltások) neve: jele: neve: jele: hosszúság * l méter m. tömeg * m kilogramm kg
Vegyipari és biomérnöki műveletek (BSc) tárgy számolási gyakorlat, segédlet Általános tudnivalók: Ez a segédlet tartalmazza az órai feladatokat és témakörönként néhány gyakorlófeladatot, valamit a feladatok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola
O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg
Kémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
XXIII. SZERVES KÉMIA (Középszint)
XXIII. SZERVES KÉMIA (Középszint) XXIII. 1 2. FELELETVÁLASZTÁSOS TESZTEK 0 1 2 4 5 6 7 8 9 0 E D D A A D B D B 1 D D D C C D C D A D 2 C B D B D D B D C A A XXIII.. TÁBLÁZATKIEGÉSZÍTÉS Az etanol és az
Statika gyakorló teszt I.
Statika gakorló teszt I. Készítette: Gönczi Dávid Témakörök: (I) közös ponton támadó erőrendszerek síkbeli és térbeli feladatai (1.1-1.6) (II) merev testre ható síkbeli és térbeli erőrendszerek (1.7-1.13)
1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.
Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)
Általános Kémia Gyakorlat II. zárthelyi október 10. A1
2008. október 10. A1 Rendezze az alábbi egyenleteket! (5 2p) 3 H 3 PO 3 + 2 HNO 3 = 3 H 3 PO 4 + 2 NO + 1 H 2 O 2 MnO 4 + 5 H 2 O 2 + 6 H + = 2 Mn 2+ + 5 O 2 + 8 H 2 O 1 Hg + 4 HNO 3 = 1 Hg(NO 3 ) 2 +
3. Az Sn-Pb ötvözetek termikus analízise, fázisdiagram megszerkesztése. Előkészítő előadás
3. Az Sn-Pb ötvözetek termikus analízise, fázisdiagram megszerkesztése. Előkészítő előadás 2018.02.05. A gyakorlat célja Ismerkedés a Fizikai Kémia II. laboratóriumi gyakorlatok légkörével A jegyzőkönyv
Az alkalmazott matematika tantárgy oktatásának sokszínűsége és módszertanának modernizálása az MSc képzésében
DIMENZIÓK 35 Matematikai Közlemének III. kötet, 5 doi:.3/dim.5.5 Az alkalmazott matematika tantárg oktatásának sokszínűsége és módszertanának modernizálása az MSc képzésében Horváth-Szováti Erika NME EMK
- anyagmérlegek felírása a szakaszos üzemű berendezés teljes üzemidejére;
Szakaszos rektifikálás üveg harangtányéros kolonnán A laboratóriumi méretű, üveg harangtányérokkal ellátott rektifikáló kolonnán heptán-toluol elegy szétválasztásának vizsgálata, valamint az oszlop hatásfokának
Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6
Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja
8. oldaltól folytatni
TARTÁLY ÉS TORONY JELLEGŰ KÉSZÜLÉKEK KIVÁLASZTÁSA, MEGHIBÁSODÁSA, KARBANTARTÁSA 8. oldaltól folytatni 2015.09.15. Németh János Tartály jellegű készülékek csoportosítása A készülékekben uralkodó maximális
Kidolgozott feladatok a gyökvonás témakörhöz (10.A osztály)
1. Számítsuk ki a következő szorzatok értékét! (a) 3 3 3 (b) 7 3 7 3 1 9. Számítsuk ki a következő hánadosokat! (a) (b) 1 0 1 0 3. Döntsük el, melik szám a nagobb! (a) ( 3) vag ( ) 3 (b) Mivel tudjuk,
5. Laboratóriumi gyakorlat
5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:
10. OPTIMÁLÁSI LEHETŐSÉGEK A MŰVELET-ELEMEK TERVEZÉSEKOR
10. OPIMÁLÁSI LEHEŐSÉGEK A MŰVELE-ELEMEK ERVEZÉSEKOR A technológiai terezés ezen szintén a fő feladatok a köetkezők: a forgácsolási paraméterek meghatározása, a szerszám mozgásciklusok (üresárati, munkautak)
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
9. évfolyam Javítóvizsga felkészülést segítő feladatok
Halmazok: 9. évfolam Javítóvizsga felkészülést segítő feladatok. Adott két halmaz. A : a ; a : páros és B : ;;8;0;;;8;0;. Add meg a következő halmazműveleteket az elemek felsorolásával és készíts Venn
Y 10. S x. 1. ábra. A rúd keresztmetszete.
zilárdságtan mintafeladatok: tehetetlenségi tenzor meghatározása, a tehetetlenségi tenzor főtengelproblémájának megoldása két mintafeladaton keresztül Először is oldjuk meg a gakorlatokon is elhangzott
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Analízis I. jegyzet. László István. 2008. november 3.
Analízis I. jegzet László István 2008. november 3. Tartalomjegzék 1. Halmazok 5 1.1. Halmaz fogalma............................ 5 1.2. Halmaz megadása........................... 6 1.2.1. Eplicit megadás.......................
Allotróp módosulatok
Allotróp módosulatok Egy elem azonos halmazállapotú, de eltérő molekula- vagy kristályszerkezetű változatai. Created by Michael Ströck (mstroeck) CC BY-SA 3.0 A szén allotróp módosulatai: a) Gyémánt b)
Kémia I. 6. rész. Halmazállapotok, halmazállapot változások
Kémia I. 6. rész Halmazállapotok, halmazállapot változások HALMAZÁLLAPOTOK I a körülöttünk lévő anyagok többsége a körülményektől függően háromféle halmazállapot -ban létezhet: elvileg minden anyag mindhárom
Kettős és többes integrálok
Kettős és többes integrálok ) f,) + + kettős integrálja az, tartománon Megoldás: + + dd 6 + 6 + 8 + 9 + ] + + ] d 8 + 8 + ) f,) sin + ) integrálja a, tartománon Megoldás: ] d + 9 + d + + 68 8 7,5 + sin
2018. MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA.
MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Vegyipari műszaki feladatok Elérhető
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
Mit jelent az optimalizálás?
Mikroökon konómiai optimumfeladatok megoldási módszereim Alapvetõ deriválási szabálok. Feltételes szélsõ érték feladatok megoldása. Mit jelent az optimalizálás? feltételes szélsõérték-feladat döntési helzet
Ideális gáz és reális gázok
Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:
(2006. október) Megoldás:
1. Állandó hőmérsékleten vízgőzt nyomunk össze. Egy adott ponton az edény alján víz kezd összegyűlni. A gőz nyomását az alábbi táblázat mutatja a térfogat függvényében. a)ábrázolja nyomás-térfogat grafikonon
EXPONENCIÁLIS EGYENLETEK
Sokszínű matematika /. oldal. feladat a) = Mivel mindegik hatván alapja hatván, ezért átírjuk a -et és a -ot: = ( ) Alkalmazzuk a hatván hatvána azonosságot! ( ) = A bal oldalon az azonos alapú hatvánok
Többjáratú hőcserélő 3
Hőcserélők Q = k*a*δt (a szoftver U-val jelöli a hőátbocsátási tényezőt) Ideális hőátadás Egy vagy két bemenetű hőcserélő Egy bemenet: egyszerű melegítőként/hűtőként funkcionál Design mód: egy specifikáció
Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak
ábra: Ábra Bodó Bea, Somonné Szabó Klára Matematika. közgazdászoknak III. modul: Többváltozós üggvének 5. lecke: Többváltozós üggvének, parciális deriválás Tanulási cél: Megismerkedni a többváltozós üggvének
3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra
SZÉCHENYI ISÁN EGYEEM AAMAZO MECHANIA ANSZÉ 6. MECHANIA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szüle eronika, eg. ts.) I. előadás. okális aroimáció elve, végeselem diszkretizáció egdimenziós feladatra.. Csomóonti
1. feladat Összesen 8 pont. 2. feladat Összesen 18 pont
1. feladat Összesen 8 pont Az ábrán egy szállítóberendezést lát. A) Nevezze meg a szállítóberendezést!... B) Milyen elven működik a berendezés?... C) Nevezze meg a szállítóberendezést számokkal jelölt
Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással
Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris
2011/2012 tavaszi félév 2. óra. Tananyag:
2011/2012 tavaszi félév 2. óra Tananyag: 2. Gázelegyek, gőztenzió Gázelegyek összetétele, térfogattört és móltört egyezősége Gázelegyek sűrűsége Relatív sűrűség Parciális nyomás és térfogat, Dalton-törvény,
VEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Vegyész ismeretek emelt szint 1712 ÉRETTSÉGI VIZSGA 2019. május 15. VEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének
Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és
2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend
Sokszínû matematika 12. A KITÛZÖTT FELADATOK EREDMÉNYE
Sokszínû matematika. A KITÛZÖTT FELADATOK EREDMÉNYE Számsorozatok SOKSZÍNÛ MATEMATIKA A KITÛZÖTT FELADATOK EREDMÉNYE. A számsorozat fogalma, példák sorozatokra. A pozitív páros számok sorozatának n-edik
Bolyai János Matematikai Társulat. Rátz László Vándorgyűlés Baja
Bolai János Matematikai Társulat Rátz László Vándorgűlés 06. Baja Záródolgozat dr. Nag Piroska Mária, Dunakeszi Dunakeszi, 06.07.. A Vándorgűlésen Erdős Gábor az általános iskolai szekcióban tartott szemináriumot
Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10
9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;
1. Lineáris transzformáció
Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható
Lemezeshőcserélő mérés
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Lemezeshőcserélő mérés Hallgatói mérési segédlet Budapest, 2014 1. A hőcserélők típusai
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo
Hidrotermális képződmények genetikai célú vizsgálata Bevezetés a fluidum-kőzet kölcsönhatás, és a hidrotermális ásványképződési környezet termodinamikai modellezésébe Dr Molnár Ferenc ELTE TTK Ásványtani
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
8. Gőz-folyadék egyensúly tanulmányozása kétkomponensű elegyekben. Előkészítő előadás 2015.02.09.
8. Gőz-folyadék egyensúly tanulmányozása kétkomponensű elegyekben Előkészítő előadás 2015.02.09. Elméleti áttekintés Gőznyomás: adott hőmérsékleten egy anyag folyadék fázisával egyensúlyt tartó gőzének
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
az eredő átmegy a közös ponton.
M Műszaki Mechanikai Tanszék STTIK dr. Uj József c. egetemi tanár g közös ponton támadó koncentrált erők (centrális erőrendszer) Két erő eredője: = +, Több erő eredője: = + ++...+ n, az eredő átmeg a közös
VEGYIPARI MŰVELETEK II. Anyagátadó műveletek és kémiai reaktorok
Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék Szerkesztette: SIMÁNDI BÉLA Írta: CSÉFALVAY EDIT, DEÁK ANDRÁS, FARKAS TIVADAR,
Oldatok - elegyek. Többkomponensű homogén (egyfázisú) rendszerek. Elegyek: komponensek mennyisége azonos nagyságrendű
Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott
1. gyakorlat. Oktatási segédlet hallgatók számára
másik termék mennisége. gakorlat Transzformációs görbe, mikroökonómiai optimumfeladatok megoldásának alapmódszere Oktatási segédlet hallgatók számára Eg fontos közgazdasági alapmodell TLH, alternatív költség,
MÉRÉSI JEGYZŐKÖNYV. A mérési jegyzőkönyvet javító oktató tölti ki! Kondenzációs melegvízkazám Tanév/félév Tantárgy Képzés
MÉRÉSI JEGYZŐKÖNYV Kondenzációs melegvízkazám Tanév/félév Tantárgy Képzés 2008/09 I félév Kalorikus gépek Bsc Mérés dátuma 2008 Mérés helye Mérőcsoport száma Jegyzőkönyvkészítő Mérésvezető oktató D gépcsarnok
KI TUD TÖBBET A KŐOLAJ-FELDOLGOZÁSRÓL? 2. FORDULÓ TESZT CSAPATNÉV
KI TUD TÖBBET A KŐOLAJ-FELDOLGOZÁSRÓL? 2. FORDULÓ TESZT CSAPATNÉV 1. A kőolaj egyszerű lepárlásához képest az alábbiak közül mely termék mennyisége csökken a finomítás során? (c és d választ is elfogadtuk
8.10. Töltött rektifikáló oszlopok vizsgálata
8.10. Töltött rektifikáló oszlopok vizsgálata 8.10.1. Bevezetés Az ipari gyakorlatban rektifikálásra tányéros vagy töltött oszlopokat használnak. A töltött oszlopokban a 60-as évekig golyókat, győrőket
Fázisátalakulások. A víz fázisai. A nem közönséges (II-VIII) jég kristálymódosulatok csak több ezer bar nyomáson jelentkeznek.
Fázisátalakulások A víz fázisai. A nem közönséges (II-VIII) jég kristálymódosulatok csak több ezer bar nyomáson jelentkeznek. Fából vaskarika?? K Vizes kalapács Ha egy tartályban a folyadék fölötti térrészből
Tiszta anyagok fázisátmenetei
Tiszta anyagok fázisátenetei Fizikai kéia előadások 4. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív
Mérnöki alapok 5. előadás
Mérnök alapok 5. előadás Készítette: dr. Várad Sándor Budapest Műszak és Gazdaságtudomán Egetem Gépészmérnök Kar Hdrodnamka Rendszerek Tanszék, Budapest, Műegetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).
Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez, kvantitatív leírásához. Szerkezeti anyagok tulajdonságainak változása
A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.
Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például: