A forgó fekete lyuk metrikáját Roy Kerr adta meg 1963-ban, amit Boyer és Lindquist hozott a. r r r r a 2 r r a ds 1 dt dr d r a s s d s d dt.
|
|
- Irén Pataki
- 8 évvel ezelőtt
- Látták:
Átírás
1 Fogó Fekete Lyuk Ke Bét Metikáj fogó fekete lyuk metikáját Roy Ke dt meg 963-bn, mit Boye és Lindquist hozott m ismet lk 967-ben Ez metik következ : ds dt d d s s d s d dt g g g Itt bevezettük következ jelöléseket: s sin( ), cos ( ), GM, c g, g M = fogó fekete lyuk tömege, J, J = fogó fekete lyuk impulzusmomentum M c Ke metik c = egységendszeben vn felív metik Boye Lindquist koodinátákbn, más néven belpult szfeoidális koodinátákbn vn megdv, melyet z M = 0 válsztássl kpunk meg: ds dt d d ( )sin ( )d Ez egy göbületlen Glilei metik d, d és d együtthtóit jelöljük így: g cos ( ), g cos ( ), g ( ) sin ( ) Ke metik nem d számot fogó fekete lyuk legfelt n bb jelenségé l Ez nem más, mint fogó fekete lyuk két végénél kilép két hosszú gázsugá, melynek neve: Jet Ke metik két szinguláis helye z eseményhoizont, hol d együtthtój, zz g étéke végtelen, illetve z egoszfé htá, hol dt együtthtój, zz g tt étéke 0 Ke metik zonbn semmilyen szingulitást nem mutt szög kis étékeinél! Mápedig tpsztlt zt muttj, hogy fogó fekete lyuk tengelyében közel fénysebességgel ámló és fogó nyg vn!
2 mint z áb muttj, jet jelenségét z kkéciós koong áltl keltett e s mágneses teekkel mgyázzák Én megmuttom, hogy ez mgyázt nem vlóságnk megfelel Létezik egy egysze bb mgyázt is, melyhez fogó fekete lyuk áltl létehozott gvitációs teet egy jobbn megválsztott metik segítségével djuk meg Ennek metikánk neve: Ke Bét metik Ke Bét metik egy háomdimenziós Bét vekto segítségével vn megdv, hol,,,, komponensek helykoodináták függvényei, de nem függenek z id t l, met fogó fekete lyuk gvitációs tee stcionáis Mivel gvitációs té tengelyszimmetikus is, komponensek nem függenek szögt l sem Ezét csk z és koodináták függvényei lesznek Bét metik lkj következ : ds dt g d dt g d dt g d dt g d g d g d hhoz, hogy Bét metik kielégítse z R ik = 0 Einstein egyenletet, vektonk következ egyenleteket kell kielégítenie:
3 (E) divgd =0, hol (E) ot = 0 (E3) div gd gd (E4) D mn 0, hol D mnk Dk Dm n egy negyedend tenzo, D k = koviáns deiválás k =,, 3 =,, koodináták szeint, = lsóindexes Bétkomponens: n g, g, 3 g = fels indexes Bétkomponens: g, g, g kétsze szeepl indexe pedig összegezni kell z =,, 3 =,, étékeke H Bét metikát Ke metikávl összevetjük, kko még következ feltételeket kpjuk: (C) (C) g cos sin( ) (C3) szimptotikus lkj ngy eke g (C4) H g, kko (C5) z ngy étékeie, és nem ngyon kis szögeke pozitív Számolássl meggy z dhetünk ól, hogy (C) ben megdott kielégíti z (E) egyenletet (C) feltétellel megdott ot = 0 megoldásként dódik és z lábbi egyenletet elégíti ki:
4 (C6) g g És végül b l, (C) b l és (C) b l dódó feltétel: (C7) cos ( ) g g g sin ( ) Kis átlkítássl ez így is íhtó: (C7 ) 4 g g g sin ( ) Ez így zét édekes, met jobboldl szétválik egy csk t l és egy csk - tól függ tg Ez vlószín leg ngybn megkönnyíti és meghtáozását Ez nekem eddig nem sikeült De ez nem is bj, met mondndóm lényegét ez nem éinti Seyfet-glxis NGC-45 centum közelében egy szupe-msszív fekete lyuk vn, melyb l kett ellentétes, foó gázsugá lép ki sebességek és tömegek meghtáozásávl fekete lyuk ngyságá lehet következtetni 50 millió fényév távolságbn Vigo Clustebn tlálhtó z M 87 óiásglxis Bel le egy 5000 fényév hosszú gázsugá nyúlik ki, melyben elektonok mjdnem fénysebessége gyosulnk, miközben szinkotonsugázást bocsátnk ki Ilyen jelenségeket csk egy glxis köéppontjábn lév szupemsszív fekete lyuk tud létehozni
5 Most pedig átéek mondndóm lényegée Ez pedig nem egyéb, mint (C) feltétel elemzése ot = 0 egyenlet megoldás komponense: sin( ) Jól nézzük meg, mit fejez ki ez z egyenlet! Ngy eke, és ez kis sin( ) szögeknél igen ngy étékeket vesz fel! Vlójábn elegend étékig figyelemmel kíséni, met ez má fénysebességgel vló köben ámlásnk felel meg! H, kko, és ez polákoodinátákbn egy keskeny, egyenletes sin( ) vstgságú cs egyenlete cs belsejében, és ez má fizikilg ételmetlen cs egy olyn nylábot hoz léte, mely fényévek százezeie is elnyúlik! Seyfet Glxis példáj muttj, hogy ilyen képz dmények vlóságbn is léteznek! H pontos egyenletet nézzük, kko sin, zz cos sin plot([cos(x)/sin(x),x,x=0305],coods=pol,thickness=3); H megnézzük fogó fekete lyukól készült képeket, zt látjuk hogy jet pontosn így elvékonyodik fekete lyuk közelében jet pontos pofiljánk kilkulásábn szeepet játszik és komponens is
6 Ke Bét metik kielégít még egy egyenletet: (E5) div ( div = 0 Ezzel z egyenlettel igzoltm zt, hogy nem null H ugynis null lenne, kko e fizikilg bszud megoldás dódn Ke metik lkj zt sejttette, hogy null, ugynis d együtthtój göbületlen esetnek felel meg z (E5) egyenlet igzolj, hogy mégsem ez helyzet zt, hogy fogó fekete lyuk esetében sin( ), még egy édekes kísélet igzolj, mégpedig z 97 ben elvégzett Hfele Keting kísélet Itt epül vel köbeepülték Földet, mégpedig egysze keleti, egysze nyugti iányb, és méték eltivisztikus id diltációt zt váták, hogy Föld fogás mitt két eedmény elté lesz, és így is lett! Föld fogás mitt z egyenlít n nyugvó megfigyel 463 m/s sebességgel hld keleti
7 iányb Ez sebesség keleti iányb ttó epül sebességéhez hozzádódik, nyugti iányb ttó epül sebességéb l viszont levonódik z így számolt étékek zonbn nem egyeztek mét étékekkel H viszont figyelembe vesszük, hogy fogó Föld egy Ke Bét metikát hoz léte, kko 463 m/s sebességb l levonódik komponens áltl létehozott sebesség, mi zt jelenti, hogy Föld téid t is mgávl fogtj Föld esetén = 37 méte, = Föld sug Behelyettesítve zt kpjuk, hogy z egyenlít nél (hol 90, és így sin ) téid c = 53 m/s sebességgel foog ugyncsk keleti iányb Így Földön nyugvó megfigyel téid höz képest csk 30 m/s sebességgel hld epül k sebességéhez is ezt 30 m/s sebességet kell hozzádni, vgy levonni H így számoljuk ki Hfele Keting kísélet dtit, kko vlóságbn mét eedményhez közelálló étéket kpunk Hfele Keting kísélet tehát melyet nnk idején kudcnk könyveltek el igzolj Föld fogás áltl létehozott Ke Bét metikát Tehát má 97 ben igzolt zt ngyon fontos tényt, hogy fogó testek téid t is mgukkl fogtják jóvl dág Gvity Pobe B m hold fellövése el tt! És zt is igzolt, hogy fogás áltl létehozott áltlános eltivisztikus effektusok jóvl egysze bb eszközökkel is kimutthtók jelesül Gvity Pobe B m hold helyett közönséges földi epül gépekkel is! jet tehát olyn jelenség, mi l nem d számot Ke metik, de Ke Bét metik má igen Ke metiká vontkozó unicitási tétel zt sejtteti, hogy Ke metik és Ke Bét metik mtemtikilg ekvivlens, zz függvénytnszfomációvl egyikb l másik létehozhtó Ennek igzolás vgy cáfolás még jöv feldt Most átéek fogó fekete lyuk másik felt n jelenségének, z kkéciós koongnk z elemzésée Itt legédekesebb z, hogy z kkéciós koong ngyjából egy síkbn vn
8 Ez jelenség nem fekete lyuk kizáólgos sjátj: tudjuk, hogy Npendsze bolygói is ngyjából egy síkbn keingenek, és Sztunusz gy i is egy síkbn vnnk Véletlen lenne ez? Megmuttom, hogy nem z, hnem fogó fekete lyuk metikájánk egyenes következménye téid sebességét c = v mennyiség jellemzi téid stcionáius, zz sebesség (és így metik) nem függ explicite z id t l Emitt téid gyosulás így számolndó: = (v, gd) v = v gd v otv Mivel z (E) egyenlet szeint ot = 0, ezét ot v is 0, emitt = v gd mindössze v kifejezését viszont (C) feltételb l egészen pontosn ismejük, így meghtáozás egysze :,,, hol, g g g, 3 c g cos cos cos, c g sin 5 cos, 0 Ngy e c GM, hogy zt Newtontól má tudjuk g Viszont édekes z megjelenése Ngy e c g sin 4 Ez így is íhtó: G M sin 4 3 G M m H összehsonlítjuk ezt z ápálye kifejezésével: F(x) 3 x, zt látjuk, hogy z ápálye 3 tehát egy kisebb e l vn szó szeint változik, pedig 4 szeint,
9 Ám z, hogy ez z e mégsem jelentéktelen, bból deül ki, hogy z kkéciós koong, Sztunusz gy, és Npendsze is ngyjából egy síkbn keing H kiszámoljuk z étékét, kko zt látjuk, hogy ez egy mikogvitációs effektus Ám csillgászti id léptékben nézve ez kicsiny gyosulás is ngyon gyos ellpuláshoz vezet Most figyelmezzünk sin szozótényez e! z észki póluson 0, itt z étéke is null z étéke 45 -ig monoton n, mjd 90 -ig új csökken, de mindvégig pozitív Ez zt jelenti, hogy z iány z egyenlít síkjánk iányáb mutt déli féltekén z étéke negtív, 35 -nál éi el minimumot, mjd 80 -nál, déli póluson új feln nullá z iány tehát ebben z esetben is z egyenlít síkjánk iányáb mutt Tetten étük tehát zt z e t, mely bolygókt, holdkt egy síkb kényszeíti! Ke Bét metik tehát számot d fogó fekete lyuk két ngyon fontos jelenségé l z egyik Jet, másik z kkéciós koong Számot d z 97-es Hfele Keting kísélet eedményé l is Mééssel tesztelhet el ejelzést d nézve, hogy gyosn fogó ngy tömegek tengelyében jelent s id nomáliák méhet k, ká milliszekundumos étékben Így mód nyílik is, hogy fogó testek téid fogtó htását ne csk dág Gvity Pobe B m holddl tudjuk kiméni, hnem földi köülmények közt is, ádásul nem kell még epül gép se hozzá, elegend egy ngytömeg, gyosn fogó tubin is, minek tengelyében elhelyezett tomóávl jelent s id nomáliákt méhetünk ki Lehet hogy tomó helyett egy sokkl olcsóbb és egysze bb kvcó is megteszi! Ez zét is jó, met kvcóát má ngyon pici méetben is lehet kpni, így méés is sokkl pontosbb Kistóf Miklós kistofmiklos@feemilhu
A torokgerendás fedélszerkezet erőjátékáról 1. rész
A torokgerendás fedélszerkezet erőjátékáról. rész Bevezetés Az idő múlik, kívánlmk és lehetőségek változnk. Tegnp még logrléccel számoltunk, m már elektronikus számoló - és számítógéppel. Sok teendőnk
Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző
Elektokémi 04. Cellekció potenciálj, elektódekció potenciálj, temodinmiki pméteek meghtáozás péld Láng Győző Kémii Intézet, Fiziki Kémii Tnszék Eötvös Loánd Tudományegyetem Budpest Az elmélet lklmzás konkét
SCHWARTZ 2009 Emlékverseny A TRIÓDA díj-ért kitűzött feladat megoldása ADY Endre Líceum Nagyvárad, Románia 2009. november 7.
SCHWARTZ 009 Emlékveseny A TRIÓA díj-ét kitűzött feldt megoldás AY Ende Líceum Ngyvád, Románi 009. novembe 7. Az elekton fjlgos töltésének meghtáozás mgneton módszeel A szező áltl jánlott teljes megoldás,
9. ábra. A 25B-7 feladathoz
. gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,
5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?
. Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik
A vasbeton vázszerkezet, mint a villámvédelmi rendszer része
Vsbeton pillér vázs épületek villámvédelme I. Írt: Krupp Attil Az épületek jelentős rze vsbeton pillérvázs épület formájábn létesül, melyeknél vázszerkezetet rzben vgy egzben villámvédelmi célr is fel
Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória
1. ktegóri 1.1.1. Adtok: ) Cseh László átlgsebessége b) Chd le Clos átlgsebessége Ezzel z átlgsebességgel Cseh László ideje ( ) ltt megtett távolság Így -re volt céltól. Jn Switkowski átlgsebessége Ezzel
GAZDASÁGI MATEMATIKA I.
GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z
= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1
Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n
Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)
Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei
1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2
A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:
Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek
Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7
4. Hatványozás, gyökvonás
I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)
17. Szélsőérték-feladatok megoldása elemi úton
7. Szélsőéték-feldtok egoldás elei úton I. Eléleti összefoglló Függvény szélsőétéke Definíció: Az f: A B függvénynek x A helyen (bszolút) xiu vn, h inden x A esetén f(x) f(x ).A függvény (bszolút) xiu
Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.
Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek
0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha
Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α
Vektorok. Vektoron irányított szakaszt értünk.
Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,
Megint a szíjhajtásról
Megint szíjhjtásról Ezzel témávl már egy korábbi dolgoztunkbn is foglkoztunk ennek címe: Richrd - II. Most egy kicsit más lkú bár ugynrr vontkozó képleteket állítunk elő részben szkirodlom segítségével.
OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL
OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL HAJDER LEVENTE 1. Bevezetés A Lgrnge-féle multiplikátoros eljárást Joseph Louis Lgrnge (1736-1813) olsz csillgász-mtemtikus (eredeti nevén Giuseppe
Els gyakorlat. vagy más jelöléssel
Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,
Kovács Judit ELEKTRO TEC HNIKA-ELEKTRONIKA 137
ELEKTROTECHNIKA-ELEKTRONIKA Kovács Judit A LINEÁRIS EGYENLETRENDSZEREK GAUSS-FÉLE ELIMINÁCIÓVAL TÖRTÉNŐ MEGOLDÁSÁNAK SZEREPE A VILLAMOSMÉRNÖK SZAKOS HALLGATÓK MATEMATIKA OKTATÁSÁBAN ON THE ROLE OF GAUSSIAN
Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása
Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0
Készítette: Kecskés Bertalan 2012
Készítette: Kecskés Betln 0 Atom foglm: Az tom z elemeknek zon legkisebb észe, mely még endelkezik z eleme jellemző tuljdonságokkl, és kémiilg tovább nem bonthtó. Az tom felépítése: Az tom áll tommgból
Versenyautó futóművek. Járműdinamikai érdekességek a versenyautók világából
Versenyutó futóművek Járműdinmiki érdekességek versenyutók világából Trtlom Bevezetés Alpfoglmk A gumibroncs Futómű geometri Átterhelődések Futómű kinemtik 2 Trtlom 2 Bevezetés Bevezetés Alpfoglmk A gumibroncs
Fizika A2E, 4. feladatsor
Fizik AE, 4. feltso Vi Gyögy József vigyogy@gmil.com. felt: Közös pontbn zonos hosszúságú szigetel fonlkon felfüggesztett egyfom, g s ség golyók függnek, minkett töltése q. A golyók közötti teet ε eltív
Óravázlatok: Matematika 2. Tartományintegrálok
Órvázltok: Mtemtik 2. rtományintegrálok Brth Ferenc zegedi udományegyetem, Elméleti Fiziki nszék készültség: April 23, 23 http://www.jte.u-szeged.hu/ brthf/oktts.htm) ontents 1. A kettős integrál 1 1.1.
Sűrűségmérés. 1. Szilárd test sűrűségének mérése
Sűrűségérés. Szilárd test sűrűségének érése A sűrűség,, definíciój hoogén test esetén: test töege osztv test V térfogtávl: V A sűrűség SI értékegysége kg/, hsználtos ég kg/d, kg/l és g/c Ne hoogén testnél
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei
7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,
FELVÉTELI VIZSGA, július 15.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy
Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4)
Jegyzőkönyv ermoelektromos hűtőelemek vizsgáltáról (4) Készítette: üzes Dániel Mérés ideje: 8-11-6, szerd 14-18 ór Jegyzőkönyv elkészülte: 8-1-1 A mérés célj A termoelektromos hűtőelemek vizsgáltávl kicsit
Ptolemaios-tétele, Casey-tétel, feladatok
Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor
TENGELY szilárdsági ellenőrzése
MISKOLCI EGYETEM GÉP- ÉS TERMÉKTERVEZÉSI TASZÉK OKTATÁSI SEGÉDLET GÉPELEMEK c. tntárgyhoz TEGELY szilárdsági ellenőrzése Összeállított: Dr. Szente József egyetemi docens Miskolc, 010. A feldt megfoglmzás
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek
Összeállította: dr. Leitold Adrien egyetemi docens
Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben
VB-EC2012 program rövid szakmai ismertetése
VB-EC01 progrm rövid szkmi ismertetése A VB-EC01 progrmcsomg hrdver- és szoftverigénye: o Windows XP vgy újbb Windows operációs rendszer o Min. Gb memóri és 100 Mb üres lemezterület o Leglább 104*768-s
Minta feladatsor I. rész
Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!
Összetettebb feladatok
A szinusztétel és koszinusztétel lklmzás Összetettebb feldtok 055..,7 m háom kö közötti síkidom teülete. Kössük össze köök középpontjit, így kpunk egy háomszöget. Legyen m, b m, 5 m. Számítsuk ki koszinusztétellel
a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a
44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy
2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:
. Guss elimináció.1 Oldjuk meg Guss-Jordn eliminációvl következő egyenletrendszert: x - x + x + x5 = -5 x1-7x + 8x - 5x = 9 x1-9x + 1x - 9x = 15. A t prméter mely értékeire nincs z egyenletrendszernek
Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke
Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)
ÖSZVÉRSZERKEZETEK. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés a BME Szilárdságtani és Tartószerkezeti Tanszéken. Dr.
Dr. Kovás Nuik ÖSZVÉRSZERKEZETEK BE Silárdságtni és Trtóserkeeti Tnséken Dr. Kovás Nuik egyetemi doens BE, Hidk és Serkeetek Tnsék BE Silárdságtni és Trtóserkeeti Tnsék 01. Trtlom Dr. Kovás Nuik 1. Beveetés...
FESZÍTŐMŰVES VASÚTI JÁRMŰALVÁZAK. Prof.Dr. Zobory István
FESZÍTŐMŰVES VASÚTI JÁRMŰALVÁZAK Prof.Dr. Zobory István Budpest 04 Trtlomegyzék. Bevezetés... 3. A vsúti árművek teherviselő részeiről... 3. Alvázs (nem önhordó) kocsik... 3.. Kéttengelyes kocsik... 4..
Egy látószög - feladat
Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük
Bevezetés. Mi a koleszterin?
Bevezet betegklub feldt tgji számár betegségükkel kpcsoltos szkszerű információkt megdni. Ebben füzetben koleszterin htásiról cukorbetegségről gyűjtöttünk össze hsznos információkt. Mi koleszterin? koleszterin
Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai
Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,
3. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter; Tarnai Gábor, mérnök tanár) Három erő egyensúlya
SZÉHENYI ISTVÁN EGYETEM LKLMZOTT MEHNIK TNSZÉK Péld: MEHNIK STTIK GYKORLT (kidolgozt: Tisz Pét; Tni Gábo ménök tná) Háom ő gynsúly dott gy mlőszkzt méti és thlés: m b 5 m c 5 m kn ldt: y c Htáozz mg z
TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA
9 MÉRÉEK A KLAZKU FZKA LABORATÓRUMBAN TERMOELEKTROMO HŰTŐELEMEK VZGÁLATA 1. Bevezetés A termoelektromos jelenségek vizsgált etekintést enged termikus és z elektromos jelenségkör kpcsoltár. A termoelektromos
% &'( Kedves Gyerekek! Nagyon szép ünneplést kívánok nektek ilyenkor decemberben! Addig is várom a leveleiteket!! " # $ %! & '
!"#$ % &'( Kedves Gyerekek! Ngyon szép ünneplést kívánok nektek ilyenkor decemberben! Addig is várom leveleiteket!! " # $ %! & ' ())* + Az jándékosztó Mikulás eredetileg ktolikus vllású vidékeken Szent
Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)
Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér
Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál
Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett
DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK
we-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STTIK 47. RÁCSOS TRTÓK rácsos tartók két végükön csuklókkal összekötött merev testekől állnak. z így
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0
PÁLYÁZATI ÚTMUTATÓ. a Társadalmi Megújulás Operatív Program keretében
PÁLYÁZATI ÚTMUTATÓ Társdlmi Megújulás Opertív Progrm keretében Munkhelyi képzések támogtás mikro- és kisválllkozások számár címmel meghirdetett pályázti felhívásához Kódszám: TÁMOP-2.1.3/07/1 v 1.2 A projektek
BIOKOMPATIBILIS ANYAGOK.
1 BIOKOMPATIBILIS ANYAGOK. 1Bevezetés. Biokomptbilis nygok különböző funkcionális testrészek pótlásár ill. plsztiki célokt szolgáló lkos, meghtározott méretű, nygok ill. eszközök, melyek trtósn vgy meghtározott
7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL
7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL Számos technológiai folyamat, kémiai reakció színtere gáz, vagy folyékony közeg (fluid közeg). Gondoljunk csak a fémek előállításakor
19. Függvények rekurzív megadása, a mester módszer
19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.
Mátrixok és determinánsok
Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.
4. előadás: A vetületek általános elmélete
4. elődás: A vetületek áltlános elmélete A vetítés mtemtiki elve Két mtemtikilg meghtározott felület prméteres egyenletei legyenek következők: x = f 1 (u, v), y = f 2 (u, v), I. z = f 3 (u, v). ξ = g 1
Numerikus módszerek 2.
Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák
Gyökvonás. Hatvány, gyök, logaritmus áttekintés
Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R
A szoba bejáratához közelebbi számítógépasztalon egy nagyméretű nyomtató és az ehhez. A villanyszerelési munka veszélyei
villnyszereli munk veszélyei Írt: Ngy László Zoltán oltó őrngy, vizsgáló 2010. december 15. szerd, 09:33 Egy budpesti társsház I. emeleti lkásábn keletkezett 2009 utolsó tvszi hónpjábn. lkás 20 m2-es szobáj
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
Javaslom és kérem, hogy a következő alkalomra Várpalota
S o m o g y i J. Lászlóné: A Városi Televízióbn kétszer dtm nyiltkoztot, mikor módosult rendelet. 300 fő z, kinek nem is kellett kérelmet bedni, csk nyiltkoztot kitöltenie. Polgármester Űr láírásávl tájékozttó
Térbeli polárkoordináták alkalmazása egy pont helyének, sebességének és gyorsulásának leírására
Tébeli polákoodináták alkalmazása egy pont helyének sebességének és gyosulásának leíásáa A címbeli feladat a kinematikával foglalkozó tankönyvek egyik alapfeladata: elmagyaázni levezetni az idevágó összefüggéseket
A Maxwell-féle villamos feszültségtenzor
A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban
A CIKLONOK SZEMLÉLETES TANÍTÁSA KÖZÉPISKOLÁBAN THE SUGGESTIVE TEACHING OF THE CYCLONES IN A SECONDARY SCHOOL
A CIKLONOK SZEMLÉLETES TANÍTÁSA KÖZÉPISKOLÁBAN THE SUGGESTIVE TEACHING OF THE CYCLONES IN A SECONDARY SCHOOL Szeidemann Ákos 1, Beck Róbert 1 Eötvös József Gimnázium és Kollégium, Tata az ELTE Fizika Tanítása
A BUX-index alakulása a 4. héten ( )
A BUX-index lkulás A BUX-index lkulás 2010 jnuár 30. Flg 0 Értékelés kiválsztás Még Givenincs A BUX-index értékelve lkulás Give A BUX-index lkulás Give A BUX-index lkulás Mérték Give A BUX-index lkulás
A torokgerendás fedélszerkezet erőjátékáról 2. rész
A torokgerendás fedélszerkezet erőjátékáról rész Az részben ddig jutottunk, hogy z A ) terhelési esetre vezettünk le képleteket Most további, gykorltilg is fontos esetek következnek B ) terhelési eset:
Ellenállás mérés hídmódszerrel
1. Lbortóriumi gykorlt Ellenállás mérés hídmódszerrel 1. A gykorlt célkitűzései A Whestone-híd felépítésének tnulmányozás, ellenállások mérése 10-10 5 trtománybn, híd érzékenységének meghtározás, vlmint
l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA
l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.
M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb:
Mgyr Ifjúság (Rábi Imre) Az előző években közöltük Mgyr Ifjúságbn közös érettségi-felvételi feldtok megoldását mtemtikából és fizikából. Tpsztltuk, hogy igen ngy volt z érdeklődés lpunk e szám iránt. Évente
5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR
5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb
A Szolgáltatás minőségével kapcsolatos viták
I. A Szolgálttó neve, címe DITEL 2000 Kereskedelmi és Szolgálttó Korlátolt Felelősségű Társság 1051. Budpest, Nádor u 26. Adószám:11905648-2- 41cégjegyzékszám: 01-09-682492 Ügyfélszolgált: Cím: 1163 Budpest,
Egyházashollós Önkormányzata Képviselőtestületének 9/ 2004. (IX.17) ÖR számú rendelete a helyi hulladékgazdálkodási tervről
Egyházshollós Önkormányzt Képviselőtestületének 9/ 24. (IX.7) ÖR számú rendelete helyi hulldékgzdálkodási tervről Egyházshollós Önkormányztánk Képviselőtestülete z önkormányzti törvény (99. évi LXV. tv.)
A VI. FEKETE MIHÁLY EMLÉKVERSENY
A VI. FEKETE MIHÁLY EMLÉKVERSENY Elődó: Bgi Márk Elődás címe: Csillgászti elődás és kvíz A versenyzők feldtmegoldásokon törik fejüket. 88 VI. FEKETE MIHÁLY EMLÉKVERSENY Zent, 008. december. 9. évfolym.
3. MECHANIKA STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Három erő egyensúlya
SZÉHENYI ISTVÁN EGYETEM GÉPSZERKEZETTN ÉS MEHNIK TNSZÉK 3 MEHNIK STTIK GYKORLT Kdolgozt: Tsz Pét gy ts Háom ő gynsúly 3 Péld: dott gy mlőszkzt mét és thlés: m b 5 m c 5 m 0 kn ldt: y c Htáozz mg z és támsztóőkt
Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (
9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R
9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek
. Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <
E5CN Alkalmazási segédlet
PNSPO! E5N Alklmzási segédlet 2 TARTALOMJEGYZÉK Bekötések...4 Beállítások...6 Egyszerű ON-OFF szbályozás beállítás...6 Egyszerű ON-OFF szbályozás beállítás (risztási funkcióvl)...6 PID szbályozás beállítás...7
MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB
KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ
KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ BSC MATEMATIKATANÁR SZAKIRÁNY 28/29. TAVASZI FÉLÉV Az lábbikbn z el dáson vonlinterálról ill. primitív füvényr l elhnzottk közül zok olvshtók, mik Lczkovich-T. Sós: Anlízis
MARADÉKANOMÁLIA-SZÁMÍTÁS
MARADÉKANOMÁLIASZÁMÍTÁS **'* Kivont STEINER FERENC" okl középiskoli tnárnk Nehézipri Műszki Egyetem Bánymérnöki Krához benyújtott és elfogdott doktori értekezéséből Az értekezés bírálói: Dr csókás János
Gyakorló feladatsor 9. osztály
Gykorló feldtsor 9. osztály Hlmzok. Sorold fel z lábbi hlmzok elemeit! ) A={ legfeljebb kétjegyű 9-cel oszthtó páros pozitív számok} b) B={:prímszám, hol < 7} c) C={b=n+, hol nϵz és- n
Térbeli pont helyzetének és elmozdulásának meghatározásáról - I.
Térbeli pont helyzetének és elmozdulásánk meghtározásáról - I Egy korábbi dolgoztunkbn melynek címe: Hely és elmozdulás - meghtározás távolságméréssel már volt szó címbeli témáról Ott térbeli mozgást végző
Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.
01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj
KISÉRLETI FIZIKA Elektrodinamika 4. (III. 4-8.) I + dq /dt = 0
ELTE I.Fizikus 004/005 II.félév Árm (I), mozgó töltések: KISÉRLETI FIZIKA Elektrodinmik 4. (III. 4-8.) I dq /dt = 0 (Időegység ltt kiármló töltés) Mértékegysége: I = A = C / s Típusi: = konduktív (vezetési)
MAGICAR 441 E TÍPUSÚ AUTÓRIASZTÓ-RENDSZER
MAGICAR 441 E TÍPUSÚ AUTÓRIASZTÓ-RENDSZER 1. TULAJDONSÁGOK, FŐ FUNKCIÓK 1. A risztóberendezéshez 2 db ugrókódos (progrmozhtó) távirányító trtozik. 2. Fontos funkciój z utomtikus inditásgátlás, mely egy
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z
Megjegyzések a mesterséges holdak háromfrekvenciás Doppler-mérésének hibaelemzéséhez
H E L L E R MÁRTA DR. FERENCZ CSABA Megjegyzések esteséges holdk háofekvencás Dopple-éésének hbelezéséhez ETO 62.396.962.33.8.46: 629.783: 88.3.6 Mnt z á előző ckkünkből [] s set, kuttás bn és esteséges
MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június
MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
Házi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása
Automták nlízise, szintézise és minimlizálás Formális nyelvek, 11. gykorlt Célj: Az utomták nlízisének és szintézisének gykorlás, utomt minimlizáió Foglmk: Anlízis és szintézis, nyelvi egyenlet és egyenletrendszer
9. HATÁROZATLAN INTEGRÁL
9. HATÁROZATLAN INTEGRÁL 9. Definíció és lpintegrálok. Definíció. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differenciálhtó
Aszimmetrikus hibák számítási módszere, a hálózati elemek sorrendi helyettesítő vázlatai. Aszimmetrikus zárlatok számítása.
VEL.4 Aszimmetrikus hiák számítási módszere, hálózti elemek sorrendi helyettesítő vázlti. Aszimmetrikus zárltok számítás. Szimmetrikus összetevők módszere Alpelve, hogy ármilyen tetszőleges szimmetrikus
Együtt Egymásért. 6. Szám. Kirándulás Erdélybe. www.hkse-kup.atw.hu Kiadja a Háromhatár Kulturális és Sport Egyesület Kup
Együtt Egymásért 2011. 6. Szám www.hkse-kup.tw.hu Kidj Háromhtár Kulturális és Sport Egyesület Kup Kirándulás Erdélybe kupi Háromhtár Kulturális és Sport Egyesület Ifjúsági tgozt második lklomml vett részt
Mozgásleírás különböző vonatkoztatási rendszerekből. Mozgásleírás egymáshoz képest mozgó inerciarendszerekből
TÓTH A:Mechnik/3 (kibőített óázlt) 1 Mozgásleíás különböző ontkozttási endszeekből Egy test mozgásánk leíás áltlábn úgy töténik, hogy nnk mindenkoi helyzetét egy többé-keésbé önkényesen álsztott testhez,
Konfár László Kozmáné Jakab Ágnes Pintér Klára. sokszínû. munkafüzet. Harmadik, változatlan kiadás. Mozaik Kiadó Szeged, 2012
Konfár László Kozmáné Jk Ágnes Pintér Klár sokszínû munkfüzet 8 Hrmdik, változtln kidás Mozik Kidó Szeged, 0 Szerzõk: KONFÁR LÁSZLÓ áltlános iskoli szkvezetõ tnár KOZMÁNÉ JK ÁGNES áltlános iskoli szkvezetõ
f (ξ i ) (x i x i 1 )
Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,