0. BEVEZETÉS. Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat. orvosi,
|
|
- Miklós Barna
- 6 évvel ezelőtt
- Látták:
Átírás
1 0. BEVEZETÉS Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat Döntéselmélet néhány területe: orvosi, ogi, bírói, közgazdasági, műszaki, egyéb. Módszerek és a kapcsolódó fontosabb szoftverek AHP analytic hierarchy process (Saaty, 1980, EC expert choice) PROMETHEE preference ranking organization method for enrichment evaluation (Brans, 1982, Decision Lab) GAIA geometric analysis for interactive assistance (Marechal, Brans, 1988,Decision Lab) WINGDSS, Sztaki WinQSB (Quantitative System for Business) decision analysis (Yih-Long Chang, Georgia Institute of Technology) 1
2 2 1. ALAPFOGALMAK (ld. Temesi J.: A döntéselmélet alapai, 11-13) 1.1 Néhány ellemző döntési probléma Cselekvéseinket döntések irányíták. Nagyon gyakran kerülünk döntési (kényszer)- helyzetbe. Néha azonnal kell dönteni, máskor lehetőségünk van (sőt kényszerítve vagyunk) átgondolt, indokolt döntéseket hozni. 1. Termelési feladat: többféle termék előállításának mennyiségéről döntünk. Cél a maximális profit, vagy maximális profit minimális környezeti károsítással, vagy maximális profit minimális munkaerő felhasználásával. 2. Befektetési feladat: maximális hozamot biztosító portfolio kiválasztása. Korlátok: pénzügyi, szempontok: óvatosság vagy kockázat, befektetés időtartama. 3. Iskola választási probléma: ú lakóhelyre költözünk és keressük a legobb iskolát. Szempontok: lakástól való távolság, iskola színvonala, tandí, zsúfoltság, iskola felszereltsége: sport, számítógépes hálózat. 4. Szemétégető telepítése. Szempontok: technológia, helyi munkaerő, költségek, környezeti feltételek, lakossági hozzáállás. 5. Közbeszerzési pályázat kiértékelése. Pl. banki számítógépes tender értékelése. Szempontok: ár, hardver minősége, szolgáltatási feltételek, garanciális feltételek, betanítás. Minden esetben a cél egyetlen cselekvés (a legobb termelési terv, legobb befektetés, iskola stb.) kiválasztása.
3 1.2 Matematikai programozás, feltételes szélsőértékszámítás 3 Döntési változók: x = (x 1,..., x n ) R n egy n-dimenziós vektorba foglalva, Feltételek leírása: adott g i : R n R i = 1,..., k + l függvények segítségével g i (x) = 0 g (x) 0 (i = 1,..., k); k < n egyenlőség típusú feltételek ( = k + 1,..., k + l); egyenlőtlenség típusú feltételek Döntési halmaz: alternatívák halmaza X = { x R n : g i (x) = 0, i = 1,..., k, g (x) 0 = k + 1,..., k + l. } Egyetlen célfüggvény: f(x) = max ha, x X Mivel f(x) = min f(x) = max, ha, x X, ezért elegendő csak max keresésével foglalkozni. Megoldás: lineáris vagy egész programozás, feltételes szélsőértékszámítás. Példa lineáris programozásra (két változó, grafikus megoldás):(eload1.lpp) x 1, x 2 0, x 1 + 2x 2 6 x 2 x 1 3 x 1 + x x 1 3x 2 = z max vagy min
4 4 Megoldás: Az egyenlőtlenségrendszernek elegettevő pontok halmaza egy sokszög mely az ábrán színezve van. A 2x 1 3x 2 = z egyeneseket valamely z = konstans esetén ábrázolva párhuzamos egyeneseket kapunk (ábránkon a z = 20, 6, 12, 5 egyeneseket razoltuk be. z maximális értékét akkor kapuk, ha az egyenes átmegy a (10, 0) csúcsponton, minimális értékét pedig akkor kapuk, ha az egyenes átmegy a (3, 5, 6, 5) csúcsponton, z max = 20, z min = 12, 5.
5 Több változó (szimplex módszer, megoldás komputerrel, szoftver pl WinQSB) (öt változó, megoldás WinQSB-vel ):(ELOAD1B.LPP) 5 x 1, x 2, x 3, x 4, x 5 0, x 1 + 2x 3 2x 4 + 3x 5 60 x 1 + 3x 2 + x 3 + x 5 12 x 2 + x 3 + x x 1 + 2x x 1 + 4x 2 + 5x 3 + 3x 4 2x 5 = z max vagy min Bevitel a WinQSB-be mátrixos formátumban: A megoldás táblázata:
6 6 Combined Report for eload1b 13:07:30 Sunday February Decision Variable Solution Value Unit Cost or Profit c() Total Contribution Reduced Cost Basis Status Allowable Min. c() Allowable Max. c() 1 X1 10,00 3,00 30,00 0 basic 2,00 M 2 X2 0,67 4,00 2,67 0 basic 3,00 12,00 3 X3 0 5,00 0-1,00 at bound -M 6,00 4 X4 9,33 3,00 28,00 0 basic 2,00 4,00 5 X5 0-2,00 0-2,33 at bound -M 0,33 Obective Function (Max.) = 60,67 Constraint Left Hand Side Direction Right Hand Side Slack or Surplus Shadow Price Allowable Min. RHS Allowable Max. RHS 1 C1-8,67 <= 60,00 68,67 0-8,67 M 2 C2 12,00 <= 12,00 0 0,33 10,00 40,00 3 C3 10,00 <= 10,00 0 3,00 0,67 M 4 C4 20,00 <= 20,00 0 1, ,00
7 A megoldás táblázatában a redukált költség nulla értékű célváltozóknál szerepel, és azt mutata, hogy hogyan változik a célfüggvény értéke, ha az illető célváltozóra pozitív értéket követelünk meg. Például, x 3 = 0-nál a redukált költség 1, ami azt elenti, hogy ha x 3 0 helyett x 3 a 3 (> 0)-t követelük meg, akkor az célfüggvény értéke (közelítőleg) a 3 -mal változik. Egy feltételnél szereplő árnyékár azt mutata meg, hogy a feltétel obboldalán álló konstans változása hogyan hat a célfüggvény értékére. Például, a C 3 feltételnél az árnyékár 3, ami azt elenti, hogy ha C 3 obboldalát b 3 -mal megnövelük, (esetünkben 10 + b 3 -ra) akkor az célfüggvény értéke (közelítőleg) 3b 3 -mal nő. Az utolsó két oszlop felső 1-5 sorai azt mutaták, hogy a célfüggvényben az illető célváltozó együtthatóa milyen határok között változhat ahhoz, hogy még létezzen optimális megoldás. Az utolsó két oszlop utolsó 4 sora azt mutata, hogy a korlátozó feltételek obboldalai milyen határok között változhatnak, ahhoz, hogy még létezzen optimális megoldás. 7
8 8 További megegyzések: Előfordulhat az, hogy a lineáris programozási feladatnak több megoldása van. Példaként tekintsük a (ELOAD2.LPP) x 1, x 2, x 3, x 4 0 x 1 x 2 + x 3 8 x 2 + x 3 x 4 11 x 1 + 2x 2 x 3 + x 4 10 z = 6x 1 + 2x 2 + 5x 3 + 7x 4 max feladatot. Ennek két bázismegoldása van (0, 0, 8, 18) és (0, 7, 15, 11) és nyilván ezek konvex kombinációa, azaz λ(0, 0, 8, 18) + (1 λ)(0, 7, 15, 11) bármely λ [0, 1] mellett is megoldás. Megtörténhet az is, hogy nincs megoldás, erre példa a (ELOAD3.LPP) x 1, x 2 0 x 1 + x x x x feladat. z = 14x 1 + 6x 2 max Így előfordulhat, hogy a döntési probléma megoldáshoz pótlólagos információra van szükségünk, vagy pedig a feltételeinken kell enyhítenünk. Ez vezetett el a célprogramozáshoz, ahol a célokat ket részre osztuk, egy részük szigorúan betartandó, a másik részü csak egy bizonyos szinten tartandó be. Egy másik lehetőség a többcélú programozás. Ha több célfüggvényünk van, melyeket egy vektorba foglalunk akkor a f(x) = (f 1 (x), )f 2 (x),..., f k (x)) max x X f(x) maximumprobléma megoldása egy un. Pareto-optimális megoldás ez olyan x vektort (vagy vektorokat) elent melyekhez nem tudunk megadni (nem létezik)
9 olyan ˆx X, hogy f(ˆx) f(x ) és f(ˆx) f(x ) telesül (vektorok egyenlőtlensége koordinánként értendő). Mivel a Pareto optimális megoldások halmaza gyakran végtelen, így annak megkeresése nem ada meg a döntési probléma megoldását. Ezért egy un. kompromisszumos megoldást keresünk súlyozásos módszerrel, lexikográfikus módszerrel, korlátok módszerével, kompromisszumprogramozás elvével. Súlyozásnál az egyes célfüggvényeket fontossági súlyokkal látuk el, és pl. súlyozott átlagként vagy összegként egyetlen célfüggvényt alkotunk. Lexikográfikus módszernél először a legfontosabb cél szerint értékelünk, ha egy megoldás van akkor készen is vagyunk, ha több akkor ezeket a fontosságban következő szempont szerint értékelük, és így tovább. A korlátok módszerénél egy kivételével az összes többi célt valamely kívánatos korlát segítségével beépítük a feltételi rendszerbe. A kompromisszumprogramozásban olyan döntést választunk, mely az ideális (minden cél szerint a legobb, és általában nem létező) változathoz legközelebb esik. 1.3 Alapfogalmak (ld. Temesi J.: A döntéselmélet alapai, 18-20) Alternatívák: a különböző döntési lehetőségek, ezek halmaza a döntési tér. Leírásuk: explicit (pl. felsorolás), vagy implicit. Jellemzőik: számosság, számszerűsíthetőség, kölcsönkapcsolatok (függetlenség), bizonytalanság (véletlentől való függés). Célok (kritériumok,értékelési tényezők): azok az irányok, amerre a rendszert vinni szeretnénk. Ezek sok esetben nem feltétlenül elérhető, vagy számszerűsíthető kívánságokat elentenek. Hierarchikusan elrendezve őket, a legmagasabb szinten levők általában kevésbé operácionálisak, az alacsonyabban lévő kritériumok már kezelhetők, míg a legalacsonyabb szinten lévők, mint számszerű értékelési tényezők elennek meg. 9
10 10 Az értékelési tényezőknek rendelkezniük kell az alábbi tuladonságokkal: telesség (egyetlen fontos tényező se maradon ki), operácionalizálhatóság (elemzésre alkalmas legyen), felbonthatóság (az alternatívákat az adott tényező szerint külön is vizsgálhassuk), redundancia kiszűrése (felesleges, ismétlődő szempont elhagyása), minimalitás (ne legyen ugyanolyan ó, de kisebb elemszámú tényezőhalmaz), Döntéshozók: azok a személyek, akik felelősek az információk megadásáért, az alternatívák meghatározásáért, kiértékeléséért, a megoldás realizálásáért. Döntéshozó magatartása: racionális (optimalizálásra törekszik), vagy irracionális. A döntéshozó a problémák egy részét obektíven láta (együtthatók, mérések eredményei, számított értékek), másik részét preferenciák adák. Magatartástudomány: a döntéshozókra a korlátozott racionalitás elve érvényesül. Döntési folyamat: döntési szituáció keletkezése (konfliktus feloldása), döntési probléma megfogalmazása, döntési probléma formalizálása (pl. matematikailag), döntési probléma módszerének megválasztása, megoldás: egyetlen cselekvés kiválasztása, adaptálás, értékelés, elemzés: helyes volt-e a döntés, vagy úra kell kezdeni.
11 2. Néhány elemi döntési módszer 11 (ld. Temesi J.: A döntéselmélet alapai, 23-30) Szakértők szempontai: 2.1 Harci repülőgép vásárlása S 1 = max. sebesség km /ó, S 2 = rakfelület m 2, S 3 = max. terhelhetőség kg, S 4 = beszerzési költség millió dollár, S 5 = megbízhatóság, S 6 = manőverezési képesség. S 5, S 6 -ot egy ötfokozatú skálán értékelük: na=nagyon alacsony, a=alacsony, á=átlagos, =ó, n=nagyon ó. Az aánlatok táblázata: A 1 A 2 A 3 A 4 S S S S 4 5, 5 6, 5 4, 5 5, 0 S 5 á a S 6 n á á 2.2 Kvalitatív szempontok számszerűsítése
12 12 na=nagyon alacsony =1 pont a=alacsony =3 pont á=átlagos =5 pont =ó =7 pont n=nagyon ó =9 pont 2.3 Mértékegységtől független adatok előállítása Ideális érték meghatározása: szakértők adák meg, vagy táblázatból vesszük Táblázat eredeti adatai: x i az i-edik sor, -edik oszlop adata (egy 6 4 típusú mátrix elemei) Ideális érték a i-edik sorban: max x i, (ahol a maximumot minden indexre vesszük) ha a legnagyobb érték az ideális, és ha a legkisebb érték az ideális. A transzformált érték ha a legnagyobb érték az ideális, és r i = r i = min x i, x i max x i, min x i, x i ha a legkisebb érték az ideális.. Igy, ha i = 1 akkor max x 1 = 1250, r 1 = x 1 ( = 1, 2, 3, 4) 1250 i = 2 akkor max x 2 = 270, r 2 = x 2 ( = 1, 2, 3, 4) 270 i = 3 akkor max x 3 = 21000, r 3 = x 3 ( = 1, 2, 3, 4) i = 4 akkor min x 4 = 4, 5,!!! r 4 = 4, 5 ( = 1, 2, 3, 4) x 4 i = 5 akkor max i = 6 akkor max x 5 = 7, x 6 = 9, r 5 = x 5 7 r 6 = x 6 9 ( = 1, 2, 3, 4) ( = 1, 2, 3, 4)
13 13 Az ú táblázat: A 1 A 2 A 3 A 4 S 1 0, , 72 0, 88 S 2 0, , 74 0, 67 S 3 0, 95 0, , 95 S 4 0, 82 0, , 90 S 5 0, 71 0, , 71 S 6 1 0, 56 0, 78 0, 56 Az oszloponkénti minimumokat vastagon írtuk ki. A mátrix minden eleme 0 és 1 között van, és minden sorban lesz 1-es (ti. a legobb aánlati érték(ek). Az aánlati oszlopokban a legobb az 1, és a legkisebb érték a legrosszabb. Egy másik lehetőség a transzformációra az, hogy a minimális és maximális értékek közé szorítuk be az adatokat, az alábbi módon: r i = max x i min x i x i min x i, ha a legnagyobb érték az ideális, és r i = max max x i x i, x i min x i ha a legkisebb érték az ideális. Ennél a transzformációnál táblázatunk az alábbi alakú
14 14 A 1 A 2 A 3 A 4 S 1 0, , 572 S , 417 0, 250 S 3 0, , 667 S 4 0, , 500 S 5 0, , 500 S , Minden sorban van 0 és 1, a többi érték 0 és 1 közötti. Ezt a transzformációt használa az ELECTRE módszer. 2.4 Eliminációs elárások: az alternatívák leszűkítése (a) Kielégítésre törekvő módszer: minden szemponthoz tartozik egy kielégítési szint, mely alatt (fölött) az alternatíva már nem elfogadható. Ez gyakran életszerű, pl. egyetemen 2 egy a minimális
15 Ha példánkban ez a szint (1000, 150, 20000, 6,0, á, á), akkor a vastagon szedettek elfogadhatatlanok, és csak két alternatívánk marad: A 1, A 4. A 1 A 2 A 3 A 4 15 S S S S 4 5, 5 6, 5 4, 5 5, 0 S 5 á a S 6 n á á (b) Diszunktív módszer: a kiválóságot utalmazza (pl. sport, tudomány, művészet). Ha egy szempont szerint az alternatíva egy szintnél obb (nem rosszabb) akkor már elfogadható. Ha ez a szint (1200, 250, 21000, 4,5,, n) akkor csak A 4 esik ki, mert az első szempont szerint A 2 kiváló, így marad, a második szempont szerint A 2 kiváló, így marad, a harmadik szempont szerint A 3 kiváló, így marad, a negyedik szempont szerint A 3 kiváló, így marad, az ötödik szempont szerint A 3 kiváló, így marad, a hatodik szempont szerint A 1 kiváló, így marad. (c) Dominancia. Dominált alternatíva az, mely minden szempontból alatta marad (esetleg azonos) egy másikkal. Racionális döntéshozó nem választ dominált alternatívát. 2.5 Lexikográfikus módszer Ez a módszer fontossági sorrendbe állíta az alternatívákat adott szempontok szerint. Például ha az ár a legfontosabb, akkor A 3 -t választuk, ha az megbízhatóság a legfontosabb, akkor ismét A 3 -t válaszuk,
16 16 ha az sebesség a legfontosabb, akkor A 4 -t válaszuk, stb. 2.6 Pesszimista és optimista döntéshozó A pesszimista döntéshozó úgy választ, hogy az A 1 A 2 A 3 A 4 S 1 0, , 72 0, 88 S 2 0, , 74 0, 67 S 3 0, 95 0, , 95 S 4 0, 82 0, , 90 S 5 0, 71 0, , 71 S 6 1 0, 56 0, 78 0, 56 táblázat minden oszlopában a legrosszabb értéket kiválaszta, és ezekből a legobbat választva kapa a döntési alternatívát, (a rossz elkerülése) : maximin módszer, a max ( ) min x i = 0, 72 i értékhez tartozó döntés, ami éppen A 3. Az optimista döntéshozó úgy választ, hogy az
17 17 A 1 A 2 A 3 A 4 S 1 0, , 72 0, 88 S 2 0, , 74 0, 67 S 3 0, 95 0, , 95 S 4 0, 82 0, , 90 S 5 0, 71 0, , 71 S 6 1 0, 56 0, 78 0, 56 táblázat minden oszlopában a legobb értéket kiválaszta, és ezekből a legobbhoz tartozó alternatíva a döntése : ez a maximax módszer, a max ( ) max x i = 1 i érték(ek)hez tartozó döntés: az A 1, A 2, A 3 alternatívák, melyek egyenértékűek.
A DÖNTÉSELMÉLET ELEMEI
A DÖNTÉSELMÉLET ELEMEI Irodalom: Temesi J., A döntéselmélet alapjai, Aula, 2002, Budapest Lawrence, J.A., Pasternack, B.A., Applied management science, John Wiley & Sons Inc. 2002 Stevenson, W. J., Operation
A DÖNTÉSELMÉLET ELEMEI
A DÖNTÉSELMÉLET ELEMEI Irodalom: Temesi J., A döntéselmélet alapjai, Aula, 2002, Budapest Lawrence, J.A., Pasternack, B.A., Applied management science, John Wiley & Sons Inc. 2002 Stevenson, W. J., Operation
1. Bevezetés. Decision theory: web Google keresés= 10 millió találat Döntéselmélet: web Google keresés= 8 ezer találat. orvosi,
A DÖNTÉSELMÉLET ELEMEI (Irodalom: Temesvári J.: A döntéselmélet alapai, Stevenson W. J.: Operations management) (Software: WinQSB (Quantitative System for Business), http://www.econ.unideb.hu/sites/download/winqsb.zip)
Döntéselméleti modellek
Döntéselméleti modellek gyakorlat Berta Árpád Követelmények A félév során 40 pont szerezhető 0-19 pont : elégtelen (1) 20-24 pont : elégséges (2) 25-29 pont : közepes (3) 30-34 pont : jó (4) 35-40 pont
Lineáris programozás. Ax b
Feladatok és kiegészítések az elmélethez Lineáris programozás Standard modell (maximumprobléma) x 0 Ax b (1) c x = z max ahol x = (x 1,..., x n ) R n 1 a keresett n dimenziós oszlopmátrix/vektor 0 = (0,...,
Döntéselőkészítés. XII. előadás. Döntéselőkészítés
XII. előadás Többszempontú döntések elmélete MAUT (Multi Attribute Utility Theory ) A többszempontú döntési feladatok megoldásának lépései: A döntési feladat felépítése: a) a cél megfogalmazása, b) az
Optimumkeresés számítógépen
C Optimumkeresés számítógépen Az optimumok megtalálása mind a gazdasági életben, mind az élet sok más területén nagy jelentőségű. A matematikában számos módszert dolgoztak ki erre a célra, például a függvények
0. BEVEZETÉS. Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat
A-PDF Merger DEMO : Purchase from www.a-pdf.com to remove the watermark 0. BEVEZETÉS Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat Döntéselmélet
a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám
Döntéselmélet házi feladat, 2011-12 tanév II. félév A házi feladat beadása az aláírás feltétele. A házi feladatra adott minősítés az (anyag első felére vonatkozó) jegyben 40% súllyal szerepel, ennek megfelelően
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
Nem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Többszempontú döntési módszerek
XI. előadás Többszempontú döntési módszerek Mindennapi tapasztalat: döntési helyzetbe kerülve több változat (alternatíva) között kell (lehet) választani, az alternatívákat kölönféle szempontok szerint
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
A lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +
Mat. A2 3. gyakorlat 2016/17, második félév
Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba
I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30
Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések
BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Döntéselmélet II. ELŐADÁS DÖNTÉSI FOLYAMAT
Döntéselmélet II. ELŐADÁS DÖNTÉSI FOLYAMAT döntés döntéselőkészítés D ö n t é s i f o l y a m a t döntés és megvalósítás döntéselőkészítés Döntési folyamat A probléma felismerése, azonosítása, megfogalmazása
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása
Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása Bozóki Sándor 1,2, Fülöp János 1,3 1 MTA SZTAKI; 2 Budapesti Corvinus Egyetem 3 Óbudai Egyetem XXXI. Magyar Operációkutatási Konferencia
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény
Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma
Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben
1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex
Értékelési, kiválasztási módszerek
Értékelési, kiválasztási módszerek Értékelési módszerek csoportosítása: 1. Ordinális (kvalitatív) elárások 1.1 Többségi módszer 1.2 Rangsor összegzési szabály 1.3 Copeland módszer 1.4 Datum módszer 1.5
S Z Á L L Í T Á S I F E L A D A T
Döntéselmélet S Z Á L L Í T Á S I F E L A D A T Szállítási feladat meghatározása Speciális lineáris programozási feladat. Legyen adott m telephely, amelyeken bizonyos fajta, tetszés szerint osztható termékből
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak
Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2017/18 2. félév 3. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
Többszempontú döntési módszerek, modellek Dr. Stettner Eleonóra
Kaposvári Egyetem Gazdaságtudományi Kar Kari Tudományos Diákköri Tanács TDK módszertani kurzus 3. alkalom Többszempontú döntési módszerek, modellek Dr. Stettner Eleonóra 2016. április 4. A kurzus a Nemzeti
Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje
Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
A Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,
Fogalmak Navigare necesse est
Döntéselmélet Fogalmak Navigare necesse est - dönteni mindenkinek kell A döntés nem vezetői privilégium: de! vezetői kompetencia, a vezetői döntések hatása Fogalmak II. A döntés célirányos választás adott
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
1. Előadás Lineáris programozás
1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és
Bozóki Sándor február 16. Érzékenységvizsgálat a Promethee módszertanban p. 1/18
Érzékenységvizsgálat a Promethee módszertanban Bozóki Sándor 2011. február 16. Érzékenységvizsgálat a Promethee módszertanban p. 1/18 Vázlat PROMETHEE Parciális érzékenységvizsgálat egy szempontsúly változhat
A szimplex tábla. p. 1
A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex
A szimplex algoritmus
. gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
Érzékenységvizsgálat
Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális
Lineáris programozás. A mese
Lineáris programozás A mese Célok Geometriai szemlélet (nem lesz matek ) Gakorlati kérdések Már megint a szendvics Kétfajta szendvicset szeretnénk készíteni, sonkásat és szalámisat. Lehetőleg minél többet.
Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,
Döntéselmélet OPERÁCIÓKUTATÁS
Döntéselmélet OPERÁCIÓKUTATÁS Operációkutatás Az operációkutatás az a tudomány, amely az optimális döntések előkészítésében matematikai módszereket használ fel. Az operációkutatás csak a döntés-előkészítés
Matematikai modellek megoldása számítógéppel Solver Lingo
Matematikai modellek megoldása számítógéppel Solver Lingo Készítette: Dr. Ábrahám István A matematikai modellek számítógépes megoldásait példákkal mutatjuk be. Példa: Négy erőforrás felhasználásával négyféle
5. Analytic Hierarchy Process (AHP)
5 Analytic Hierarchy Process (AHP) (ld Temesi J: A döntéselmélet alapjai, 120-128) (Rapcsák T: Többszempontú döntési problémák I ld http://wwwoplabsztakihu/tanszek/download/ ITobbsz-dont-modszpdf) 51 Bevezetés
Mátrixjátékok tiszta nyeregponttal
1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják
Döntési rendszerek I.
Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 7. Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek
Matematikai modellezés
Matematikai modellezés Bevezető A diasorozat a Döntési modellek című könyvhöz készült. Készítette: Dr. Ábrahám István Döntési folyamatok matematikai modellezése Az emberi tevékenységben meghatározó szerepe
A Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer
Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű
Ö Á ű Á Ú Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ö ű Ö ű ű ű ű Ö Ú Á Á ű ű ű ű ű Á Ó Ó Á Á Ó Ú Ó Ó Ó Á Ó Ö Á Ú Ú Ö Ú ű Ú Ú Ú Ú Ó ű ű Ó ű Á Ó ű ű ű ű ű ű ű Ö ű ű Ú ű Ú ű ű Á ű Ó ű ű Ö ű Ú Ó Á Ú Á ű Á
ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő ö ó ü ó ő ő ő ő ű ő ö ő ü ő ő ó ő ö ö ö ő ó ő ő ő ó ü ö
Á ó ö ő ó ó ő ő ő ő ő ó ó Á ö ö ő ő ö ő ő ő ó ö ó ó ó ó ó ő ú ő ö ő ő ó ó ó ö ő ó ó ő ö ű ö ő ő ő ö ö ő ő ó ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő
Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú
ü Ú ú ü ú ű ű ű ü ü ü ü ü Ó Á Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú ú Ü ü ü ü ü Ü ü ü ü Á ü ü Ü ú ü ü ü Ö ú ü ű ü ü ü ü ü ú ü ú
A döntéselmélet matematikai alapjai
donteselm_mat_alapok_1.nb 1 A döntéselmélet matematikai alapjai Bevezetés a döntéselméletbe á alapfeladat: Ki kell választani egy (vagy több) alternatívát a lehetséges alternatívák halmazából, figyelembe
Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu Budapest 200. október 10. Mit tanulunk ma? Szállítási feladat Megoldása Adott: Egy árucikk, T 1, T 2, T,..., T m termelőhely, melyekben rendre
Rasmusen, Eric: Games and Information (Third Edition, Blackwell, 2001)
Játékelmélet szociológusoknak J-1 Bevezetés a játékelméletbe szociológusok számára Ajánlott irodalom: Mészáros József: Játékelmélet (Gondolat, 2003) Filep László: Játékelmélet (Filum, 2001) Csontos László
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Diszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Többtényezős döntési problémák
KIPA módszer: Lépései: 1. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
DÖNTÉSI MODELL KIALAKÍTÁSA KÖZBESZERZÉSI ELJÁRÁS SORÁN ELŐSZÓ
Dr. Gyarmati József mk. őrnagy ZMNE BJKMK Katonai Logisztikai Minőségügyi és Közlekedésmérnöki Tanszék DÖNTÉSI MODELL KIALAKÍTÁSA KÖZBESZERZÉSI ELJÁRÁS SORÁN Absztrakt A cikk egy olyan algoritmust mutat
Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor
Páros összehasonlítás mátrixok empirikus vizsgálata Bozóki Sándor MTA SZTAKI Operációkutatás és Döntési Rendszerek Kutatócsoport Budapesti Corvinus Egyetem Operációkutatás és Aktuáriustudományok Tanszék
Számelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
Bevezetés Standard 1 vállalatos feladatok Standard több vállalatos feladatok 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 10. Előadás Vállalatelhelyezés Vállalatelhelyezés Amikor egy új telephelyet kell nyitni,
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Principal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 8. Előadás Bevezetés Egy olyan LP-t, amelyben mindegyik változó egészértékű, tiszta egészértékű
1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI
1/12 Operációkutatás 5. gyakorlat Hiperbolikus programozási feladat megoldása Pécsi Tudományegyetem PTI 2/12 Ha az Hiperbolikus programozási feladat feltételek teljesülése mellett a A x b x 0 z(x) = c
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
3. ZH FOGALMAI. Döntéshozó: Az a személy (vagy csoport), aki a cselekvési változatok közül választ egyet.
3. ZH FOGALMAI Döntési helyzet: Az olyan helyzet, amelyekben az egyén vagy csoport, azaz a döntést hozó legalább két cselekvési változat (cselekvési mód) közötti választás problémájával áll szemben. A
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel p. 1/29. Ábele-Nagy Kristóf BCE, ELTE
Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel Ábele-Nagy Kristóf BCE, ELTE Bozóki Sándor BCE, MTA SZTAKI 2010. november 4. Nem teljesen kitöltött páros
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
Növényvédő szerek A B C D
A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból 2. Választási modellek Levelező tagozat 2015 ősz Készítette: Prileszky István http://www.sze.hu/~prile Fogalmak Választási modellek célja: annak megjósolása,
5. Analytic Hierarchy Process (AHP)
5 Analytic Hierarchy Process (AHP) (ld Temesi J: A döntéselmélet alapjai, 120-128) (Rapcsák T: Többszempontú döntési problémák I ld http://wwwoplabsztakihu/tanszek/download/ ITobbsz-dont-modszpdf) 51 Bevezetés
Többtényezős döntési problémák
KIPA módszer: Lépései:. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia