1. Bevezetés. Decision theory: web Google keresés= 10 millió találat Döntéselmélet: web Google keresés= 8 ezer találat. orvosi,

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. Bevezetés. Decision theory: web Google keresés= 10 millió találat Döntéselmélet: web Google keresés= 8 ezer találat. orvosi,"

Átírás

1 A DÖNTÉSELMÉLET ELEMEI (Irodalom: Temesvári J.: A döntéselmélet alapai, Stevenson W. J.: Operations management) (Software: WinQSB (Quantitative System for Business), 1. Bevezetés Decision theory: web Google keresés= 10 millió találat Döntéselmélet: web Google keresés= 8 ezer találat Döntéselmélet néhány területe: orvosi, ogi, bírói, közgazdasági, műszaki, egyéb. Néhány ellemző döntési probléma Cselekvéseinket döntések irányíták. Nagyon gyakran kerülünk döntési (kényszer)- helyzetbe. Néha azonnal kell dönteni, máskor lehetőségünk van (sőt kényszerítve vagyunk) átgondolt, indokolt döntéseket hozni. 1. Termelési feladat: többféle termék előállításának mennyiségéről döntünk. Cél a maximális profit, vagy maximális profit minimális környezeti károsítással, vagy maximális profit minimális munkaerő felhasználásával. 2. Befektetési feladat: maximális hozamot biztosító portfolio kiválasztása. Korlátok: pénzügyi, szempontok: óvatosság vagy kockázat, befektetés időtartama. 3. Munkabeosztási probléma: egy munkahely dolgozóinak heti munkabeosztását kell megcsinálnunk, úgy, hogy a feladatokat elvégezzék és a heti bér minimális legyen. 4. Harci repülőgép vásárlása. Szempontok: költség, max. sebesség, rakfelület stb. 5. Közbeszerzési pályázat kiértékelése. Pl. banki számítógépes tender értékelése. 1

2 2 Szempontok: ár, hardver minősége, szolgáltatási feltételek, garanciális feltételek, betanítás. Minden esetben a cél egyetlen cselekvés (a legobb termelési terv, legobb befektetés, optimális munkarend stb.) kiválasztása. Alapfogalmak Alternatívák: a különböző döntési lehetőségek, ezek halmaza a döntési tér. Leírásuk: explicit (pl. felsorolás), vagy implicit. Jellemzőik: számosság, számszerűsíthetőség, kölcsönkapcsolatok (függetlenség), bizonytalanság (véletlentől való függés). Célok (kritériumok,értékelési tényezők): azok az irányok, amerre a rendszert vinni szeretnénk. Ezek sok esetben nem feltétlenül elérhető, vagy számszerűsíthető kívánságokat elentenek. Az értékelési tényezőknek rendelkezniük kell az alábbi tuladonságokkal: telesség (egyetlen fontos tényező se maradon ki), operácionalizálhatóság (elemzésre alkalmas legyen), felbonthatóság (az alternatívákat az adott tényező szerint külön is vizsgálhassuk), redundancia kiszűrése (felesleges, ismétlődő szempont elhagyása), minimalitás (ne legyen ugyanolyan ó, de kisebb elemszámú tényezőhalmaz), Döntéshozók: azok a személyek, akik felelősek az információk megadásáért, az alternatívák meghatározásáért, kiértékeléséért, a megoldás realizálásáért. Döntéshozó magatartása: racionális (optimalizálásra törekszik), vagy irracionális. A döntéshozó a problémák egy részét obektíven láta (együtthatók, mérések eredményei, számított értékek), másik részét preferenciák adák.

3 Magatartástudomány: a döntéshozókra a korlátozott racionalitás elve érvényesül. Döntési folyamat: döntési szituáció keletkezése (konfliktus feloldása), döntési probléma megfogalmazása, döntési probléma formalizálása (pl. matematikailag), döntési probléma módszerének megválasztása, megoldás: egyetlen cselekvés kiválasztása, adaptálás, értékelés, elemzés: helyes volt-e a döntés, vagy úra kell kezdeni. Szakértők szempontai: 2. Harci repülőgép vásárlása S 1 = max. sebesség km /ó, S 2 = rakfelület m 2, S 3 = max. terhelhetőség kg, S 4 = beszerzési költség millió dollár, S 5 = megbízhatóság, S 6 = manőverezési képesség. S 5, S 6 -ot egy ötfokozatú skálán értékelük: na=nagyon alacsony, a=alacsony, á=átlagos, =ó, n=nagyon ó. Az aánlatok táblázata: A 1 A 2 A 3 A 4 3 S S S S 4 5, 5 6, 5 4, 5 5, 0 S 5 á a S 6 n á á

4 4 na=nagyon alacsony =1 pont a=alacsony =3 pont á=átlagos =5 pont =ó =7 pont n=nagyon ó =9 pont Kvalitatív szempontok számszerűsítése Mértékegységtől független adatok előállítása Ideális érték meghatározása: szakértők adák meg, vagy táblázatból vesszük Táblázat eredeti adatai: x i az i-edik sor, -edik oszlop adata (egy 6 4 típusú mátrix elemei) Ideális érték a i-edik sorban: max vesszük) ha a legnagyobb érték az ideális, és min az ideális. A transzformált érték ha a legnagyobb érték az ideális, és ha a legkisebb érték az ideális. Igy, ha i = 1 akkor max i = 2 akkor max i = 3 akkor max v i = v i = x i, (ahol a maximumot minden indexre x i max x i, min x i, x i x 1 = 1250, v 1 = x ( = 1, 2, 3, 4) x 2 = 270, v 2 = x ( = 1, 2, 3, 4) x 3 = 21000, v 3 = x ( = 1, 2, 3, 4) i = 4 akkor min x 4 = 4, 5,!!! v 4 = 4,5 x 4 ( = 1, 2, 3, 4) i = 5 akkor max x 5 = 7, v 5 = x 5 7 ( = 1, 2, 3, 4) i = 6 akkor max Az ú táblázat: x 6 = 9, v 6 = x 6 9 ( = 1, 2, 3, 4) x i, ha a legkisebb érték

5 5 A 1 A 2 A 3 A 4 S 1 0, , 72 0, 88 S 2 0, , 74 0, 67 S 3 0, 95 0, , 95 S 4 0, 82 0, , 90 S 5 0, 71 0, , 71 S 6 1 0, 56 0, 78 0, 56 Az oszloponkénti minimumokat vastagon írtuk ki. A mátrix minden eleme 0 és 1 között van, és minden sorban lesz 1-es (ti. a legobb aánlati érték(ek). Az aánlati oszlopokban a legobb az 1, és a legkisebb érték a legrosszabb. Döntési módszerek: az alternatívák leszűkítése (a) Kielégítésre törekvő módszer: minden szemponthoz tartozik egy kielégítési szint, mely alatt (fölött) az alternatíva már nem elfogadható. Ez gyakran életszerű, pl. egyetemen 2 egy a minimális

6 6 Ha példánkban ez a szint (1000, 150, 20000, 6,0, á, á), akkor a vastagon szedettek elfogadhatatlanok, és csak két alternatívánk marad: A 1, A 4. A 1 A 2 A 3 A 4 S S S S 4 5, 5 6, 5 4, 5 5, 0 S 5 á a S 6 n á á (b) Diszunktív módszer: a kiválóságot utalmazza (pl. sport, tudomány, művészet). Ha egy szempont szerint az alternatíva egy szintnél obb (nem rosszabb) akkor már elfogadható. Ha ez a szint (1200, 250, 21000, 4,5,, n) akkor csak A 4 esik ki, mert az első szempont szerint A 2 kiváló, így marad, a második szempont szerint A 2 kiváló, így marad, a harmadik szempont szerint A 3 kiváló, így marad, a negyedik szempont szerint A 3 kiváló, így marad, az ötödik szempont szerint A 3 kiváló, így marad, a hatodik szempont szerint A 1 kiváló, így marad. (c) Dominancia. Dominált alternatíva az, mely minden szempontból alatta marad (esetleg azonos) egy másikkal. Racionális döntéshozó nem választ dominált alternatívát. Döntési módszerek: lexikográfikus módszer Ez a módszer fontossági sorrendbe állíta az alternatívákat adott szempontok szerint. Például ha az ár a legfontosabb, akkor A 3 -t választuk, ha az megbízhatóság a legfontosabb, akkor ismét A 3 -t válaszuk,

7 7 ha az sebesség a legfontosabb, akkor A 4 -t válaszuk, stb. Döntési módszerek: pesszimista és optimista döntéshozó, Hurwicz index Először a táblázat minden oszlopában (minden alternatívára) kiválasztuk a minimális (legroszabb) és maximális (legobb) értéket a táblázatból, ezeket vastag betűkkel ill. dőlt betűkkel elöltük: A 1 A 2 A 3 A 4 S 1 0, , 72 0, 88 S 2 0, , 74 0, 67 S 3 0, 95 0, , 95 S 4 0, 82 0, , 90 S 5 0, 71 0, , 71 S 6 1 0, 56 0, 78 0, 56 Jelölük ezeket az értékeket m ill. M -vel: m := min i v i, M := max i v i. A pesszimista döntéshozó úgy választ, hogy az táblázat minden oszlopában a legrosszabb értéket kiválaszta, és ezekből a legobbat választva kapa a döntési alternatívát, (a rossz elkerülése) : maximin módszer, a ( ) max m = max min v i = 0, 72 i értékhez tartozó döntés, ami éppen A 3. Az optimista döntéshozó úgy választ, hogy az táblázat minden oszlopában a legobb értéket kiválaszta, és ezekből a legobbhoz tartozó alternatíva a döntése : ez a maximax módszer, a max M = max ( ) max v i = 1 i

8 8 érték(ek)hez tartozó döntés: az A 1, A 2, A 3 alternatívák, melyek egyenértékűek. Van nem szélsőséges forma is: Hurwicz féle optimizmus együttható α [0, 1], ekkor először kiszámoluk a H (α) = αm + (1 α)m ( = 1, 2, 3, 4) együtthatókat, mad megkeressük a maximumot: max H = H 0 azaz a maximum a 0 indexnél vétetik fel, akkor a döntés az A 0 alternativa. Az α = 0 pesszimista döntéshozót elent, α = 1 optimista döntéshozót ad. 3. Döntések bizonytalanság mellett: vállalkozás bővítése Az előző példában bizonytalan események nem befolyásolák a döntést, ez a determinisztikus modell. A sztochasztikus modellben a döntést bizonytalan kimenetelű események befolyásolák, melyek kimenetele a véletlentől függ. Vállakozásunk bővítésére 3 lehetőség van: A 1 = ú fióküzlet, A 2 = ú szolgáltatás, A 3 = ú termék. Befolyásoló tényezők: a következő év keresleti viszonyai, melyekre a vállalkozónak becslést kell megadni. övő évi kereslet becsült szub. valószínűségek S 1 nagyon ó P (S 1 ) = 0, 4 S 2 ó P (S 2 ) = 0, 3 S 3 közepes P (S 3 ) = 0, 2 S 4 gyenge P (S 4 ) = 0, 1 4 P (S i ) = 1 i=1

9 Az egyes tevékenységek övő évi tiszta nyeresége a keresleti viszonyoktól függ. A tiszta nyereségek táblázata millió Ft-ban és a valószinűségek: 9 A 1 A 2 A 3 P S , 4 S , 3 S , 2 S , 1 A mátrix elemeit v i = v(s i, A )-vel el lük. Döntési lehetőségek. 1. A vállalkozó függetleníti magát a valószínűségektől, és kizárólag az előbbi táblázatban szereplő nyereségek alapán dönt (azaz egyenlő esélyt ad S 1, S 2, S 3, S 4 -nek). (a) Pesszimista, optimista döntés, Hurwicz féle döntés Lásd korábban. (b) Elmulasztott nyereség (minimalizálása) alapán történő döntés. (minimax regret) Mi az elmulasztott nyereség? Ha pl.s 1 következik be, de nem A 2 -t választottuk, hanem A 1, vagy A 3 -at, akkor az elmulasztott nyereség A 1 A 2 A Minden sor maximális eleméből kivonuk a sor minden elemét:

10 10 A 1 A 2 A 3 S S S S oszlopmaximum Az oszlopmaximumok minimuma =6, a döntés A A vállalkozó figyelembeveszi a valószínűségeket. (a) Várható nyereség alapán történő döntés.(expected value) A nyereségek várható értékei: Döntésünk: A 2. E(A 1 ) = 20 0, , , , 1 = 13, 6 E(A 2 ) = = 13, 8 E(A 3 ) = = 8, 3 (b) Azonos valószínűségek melletti maximális nyereség. (equal likelihood módszer) E(A 1 ) = 20 0, , , , 25 = 11 E(A 2 ) = = 9 E(A 3 ) = = 7, 5 Döntésünk: A 1.

11 (c) Várható elmulasztott nyereség alapán történő döntés.(expected regret) Az elmulasztott nyereségek várható értékei: 11 Ẽ(A 1 ) = 6 0, , , , 1 = 2, 5 Ẽ(A 2 ) = = 2, 3 Ẽ(A 3 ) = = 7, 8 Döntésünk A 2. Tökéletes információ várható pénzértéke. Valamilyen módon befolyásolni tuduk hogy adott évben melyik S i állapot következik be (pl. elhalasztuk a döntést addig amig a gazdaság felélénkül, és nagyon ó lesz a kereslet, és mindig ezt csináluk). Ekkor is a valószinűségek ugyanazok, de pl.100 éven át minden évben a legobban döntve P (S 1 ) = 0, 4 ezért 40-szer S 1 valósul meg, A 2 -t választuk, a nyereség 26, P (S 2 ) = 0, 3 ezért 30-szer S 2 valósul meg, A 2 -t választuk, a nyereség 12, P (S 3 ) = 0, 2 ezért 20-szer S 3 valósul meg, A 1 -t választuk, a nyereség 8, P (S 4 ) = 0, 1 ezért 10-szer S 4 valósul meg, A 3 -t választuk, a nyereség 5, az egy évre utó bevétel 26 0, , , , 1 = 16, 1 ebből levonva a bevétel várható értékét, kapuk a tökéletes információ várható pénzértékét: 16, 1 13, 8 = 2, 3. A fenti problémát a WinQSB Decision Analysis modulának segítségével is megoldhatuk. Adatok bevitele a Payoff table analysis problématípusba: A megoldás táblázata:

12 12 3. Döntési fák Döntési fák segítségével egy grafikus kiértékelési elárást kaphatunk. Kiindulásképpen tekintsük a következő döntési problémát. Egy vállalat kétféle ú termék kifelesztésén gondolkodik. Az első alternatíva A 1 egy füst és tűzérzékelő, melynek becsült felesztési költsége Ft, siker esetén a várható bevételnövekedés Ft és a siker valószínűsége 0,5. A második alternatíva A 2 egy mozgásérzékelő, melynek becsült felesztési költsége 10000Ft, siker esetén a várható bevételnövekedés Ft és de most a siker valószínűsége 0,8. Természetesen a vállalat dönthet úgy, (harmadik alternatíva A 3 ) hogy egyik terméket sem feleszti ki. A döntési fákban háromféle csomópont van: (1) döntési csomópont (ele négyzet) (2) esély csomópont, melyhez valószínűségek tartoznak (ele kör) (3) végpont (ele fekete pont vagy háromszög) A kiindulási csomópontot szokás gyökérnek is nevezni. Innen indulva, és obbfelé haladva elágazásokat razolunk melyek egy körbe vagy négyzetbe futnak be. A körökből kiinduló elágazásokra ráíruk a megfelelő valószínűségeket, sit. míg el nem utunk a végpontokhoz. Ezután kiszámoluk a várható értékeket, melyeket az esély csomópontok alá írunk, a döntési csomópontok alá a tőlük obbra lévő várható értékek közül a kisebbiket íruk be. Az előbbi probléma döntési fáát az alábbi ábra mutata.

13 A decision analysis programba a következő adatokat írtuk be: 13

14 14 Node/Event Number Node Name or Description Node Type ( D or C) Immediate Following Node (numbers separated by ',') Node Payoff (+ profit, - cost) 1 gyökér d 2,5,8 2 füst és tűzelző c 3,4 3 siker bukás mozgáselző c 6,7 6 siker bukás nincs felesztés 0 Probability (if available)

15 A megoldás menete: először kézzel megrazoluk a döntési fát, megszámozzuk a csomópontokat, beíruk a megfelelő valószínűségeket és kifizetési adatokat. Ezután megnyituk a WinQSB Decision Analysis modulát, mad File/ New Problem /Decision Tree Analysis klikkelés után a megnyíló ablakban beíruk a probléma nevét, és megaduk a csomópontok számát, mad OK. A megnyíló táblázatba a már megrazolt döntési fa segítségével bevisszük a csomópontok neveit, elágazásokat beíruk hogy a csomópont döntési (decision) vagy esély (chance) csomópont, és beíruk a kifizetési adatokat. Ezután a Solve and Analyse, Draw Decision Tree ablakokra való klikkelés után megnyílik egy uabb ablak, ahol megadhatuk a kép nagyságát, a csomópontok nagyságát és a kiírandó adatokat, mad OK-ra klikkelve a program megrazola a döntési fát (melyet még csinosíthatunk a display adatok módosításával). Az előző probléma módosítása. Kiderűlt, hogy a füst és tűzérzékelőt csak egy minőségvizsgálat után lehet forgalomba hozni. A minősítés költsége 5000Ft. A minősítés során a termék kaphat kereskedelmi vagy lakossági minősítést, vagy nem felelt meg minősítést. A kereskedelmi minősítés valószínűsége 0,3 és ilyen minősítés esetén Ft bevételnövekedésre számíthat a vállalat. A lakossági minősítés valószínűsége 0,6 és ilyen minősítés esetén Ft bevételnövekedésre számíthat a vállalat, a sikertelen minősítés valószínűsége 1-0,3-0,6=0,1. Az ú feladat adatai és a döntési fa: 15

16 16 Az ú döntés a mozgásérzékelő kifelesztése.

17 17 A 3.1 ben tárgyalt vállalat bővités adatai és döntési fáa: Node/Event Number Node Name or Description Node Type (enter D or C) Immediate Following Node (numbers separated by ',') Node Payoff (+ profit, - cost) 1 gyökér d 2,3,4 2 ú fióküzlet c 5,6,7,8 3 ú szolgáltatás c 9,10,11,12 4 ú termék c 13,14,15,16 5 nagyon ó ó közepes rossz nagyon ó ó közepes rossz nagyon ó ó közepes rossz 5.1 Probability (if available)

18 18

0. BEVEZETÉS. Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat. orvosi,

0. BEVEZETÉS. Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat. orvosi, 0. BEVEZETÉS Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat Döntéselmélet néhány területe: orvosi, ogi, bírói, közgazdasági, műszaki, egyéb. Módszerek

Részletesebben

a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám

a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám Döntéselmélet házi feladat, 2011-12 tanév II. félév A házi feladat beadása az aláírás feltétele. A házi feladatra adott minősítés az (anyag első felére vonatkozó) jegyben 40% súllyal szerepel, ennek megfelelően

Részletesebben

A DÖNTÉSELMÉLET ELEMEI

A DÖNTÉSELMÉLET ELEMEI A DÖNTÉSELMÉLET ELEMEI Irodalom: Temesi J., A döntéselmélet alapjai, Aula, 2002, Budapest Lawrence, J.A., Pasternack, B.A., Applied management science, John Wiley & Sons Inc. 2002 Stevenson, W. J., Operation

Részletesebben

Döntéselméleti modellek

Döntéselméleti modellek Döntéselméleti modellek gyakorlat Berta Árpád Követelmények A félév során 40 pont szerezhető 0-19 pont : elégtelen (1) 20-24 pont : elégséges (2) 25-29 pont : közepes (3) 30-34 pont : jó (4) 35-40 pont

Részletesebben

0. BEVEZETÉS. Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat

0. BEVEZETÉS. Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat A-PDF Merger DEMO : Purchase from www.a-pdf.com to remove the watermark 0. BEVEZETÉS Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat Döntéselmélet

Részletesebben

A döntéselmélet matematikai alapjai

A döntéselmélet matematikai alapjai donteselm_mat_alapok_1.nb 1 A döntéselmélet matematikai alapjai Bevezetés a döntéselméletbe á alapfeladat: Ki kell választani egy (vagy több) alternatívát a lehetséges alternatívák halmazából, figyelembe

Részletesebben

Értékelési, kiválasztási módszerek

Értékelési, kiválasztási módszerek Értékelési, kiválasztási módszerek Értékelési módszerek csoportosítása: 1. Ordinális (kvalitatív) elárások 1.1 Többségi módszer 1.2 Rangsor összegzési szabály 1.3 Copeland módszer 1.4 Datum módszer 1.5

Részletesebben

Többszempontú döntési módszerek

Többszempontú döntési módszerek XI. előadás Többszempontú döntési módszerek Mindennapi tapasztalat: döntési helyzetbe kerülve több változat (alternatíva) között kell (lehet) választani, az alternatívákat kölönféle szempontok szerint

Részletesebben

Döntési rendszerek I.

Döntési rendszerek I. Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 7. Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek

Részletesebben

A DÖNTÉSELMÉLET ELEMEI

A DÖNTÉSELMÉLET ELEMEI A DÖNTÉSELMÉLET ELEMEI Irodalom: Temesi J., A döntéselmélet alapjai, Aula, 2002, Budapest Lawrence, J.A., Pasternack, B.A., Applied management science, John Wiley & Sons Inc. 2002 Stevenson, W. J., Operation

Részletesebben

DÖNTÉSELMÉLETTEL KAPCSOLATOS FELADATOK

DÖNTÉSELMÉLETTEL KAPCSOLATOS FELADATOK 1.Feladat DÖNTÉSELMÉLETTEL KAPCSOLATOS FELADATOK Egy vállalat egy gázmező kitermelését fontolgatja. A feltárás 10 millió dollárba kerülne,ami tiszta veszteség, ha a feltárás eredménytelen és nem találnak

Részletesebben

Közgazdasági elméletek. Dr. Karajz Sándor Gazdaságelméleti Intézet

Közgazdasági elméletek. Dr. Karajz Sándor Gazdaságelméleti Intézet Közgazdasági elméletek Dr. Karajz Sándor Gazdaságelméleti 3. Előadás A karakterisztikai elmélet Bizonytalan körülmények közötti választás A karakterisztikai elmélet Hagyományos modell a fogyasztó különböző

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Döntéselőkészítés. XII. előadás. Döntéselőkészítés

Döntéselőkészítés. XII. előadás. Döntéselőkészítés XII. előadás Többszempontú döntések elmélete MAUT (Multi Attribute Utility Theory ) A többszempontú döntési feladatok megoldásának lépései: A döntési feladat felépítése: a) a cél megfogalmazása, b) az

Részletesebben

SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE

SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE KÖRUTAZÁSI MODELL AVAGY AZ UTAZÓÜGYNÖK PROBLÉMÁJA Induló

Részletesebben

Döntési rendszerek I.

Döntési rendszerek I. Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 3. Gyakorlat Egy újságárus 20 centért szerez be egy adott napilapot a kiadótól és 25-ért adja

Részletesebben

Döntéselmélet II. ELŐADÁS DÖNTÉSI FOLYAMAT

Döntéselmélet II. ELŐADÁS DÖNTÉSI FOLYAMAT Döntéselmélet II. ELŐADÁS DÖNTÉSI FOLYAMAT döntés döntéselőkészítés D ö n t é s i f o l y a m a t döntés és megvalósítás döntéselőkészítés Döntési folyamat A probléma felismerése, azonosítása, megfogalmazása

Részletesebben

ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő ö ó ü ó ő ő ő ő ű ő ö ő ü ő ő ó ő ö ö ö ő ó ő ő ő ó ü ö

ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő ö ó ü ó ő ő ő ő ű ő ö ő ü ő ő ó ő ö ö ö ő ó ő ő ő ó ü ö Á ó ö ő ó ó ő ő ő ő ő ó ó Á ö ö ő ő ö ő ő ő ó ö ó ó ó ó ó ő ú ő ö ő ő ó ó ó ö ő ó ó ő ö ű ö ő ő ő ö ö ő ő ó ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő

Részletesebben

Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű

Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű Ö Á ű Á Ú Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ö ű Ö ű ű ű ű Ö Ú Á Á ű ű ű ű ű Á Ó Ó Á Á Ó Ú Ó Ó Ó Á Ó Ö Á Ú Ú Ö Ú ű Ú Ú Ú Ú Ó ű ű Ó ű Á Ó ű ű ű ű ű ű ű Ö ű ű Ú ű Ú ű ű Á ű Ó ű ű Ö ű Ú Ó Á Ú Á ű Á

Részletesebben

Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú

Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú ü Ú ú ü ú ű ű ű ü ü ü ü ü Ó Á Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú ú Ü ü ü ü ü Ü ü ü ü Á ü ü Ü ú ü ü ü Ö ú ü ű ü ü ü ü ü ú ü ú

Részletesebben

Operációkutatási feladatok megoldása QSB-vel

Operációkutatási feladatok megoldása QSB-vel Operációkutatási feladatok megoldása QSB-vel Bevezetés A QSB a Quantitative Systems for Business (szabad fordításban: Kvantitatív módszerek a gazdaságban) kifejezés rövidítése. Ennek a programcsomagnak

Részletesebben

Többtényezős döntési problémák

Többtényezős döntési problémák KIPA módszer: Lépései: 1. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia

Részletesebben

Mesterséges intelligencia 3. laborgyakorlat

Mesterséges intelligencia 3. laborgyakorlat Mesterséges intelligencia 3. laborgyakorlat Kétszemélyes játékok - Minimax A következő típusú játékok megoldásával foglalkozunk: (a) kétszemélyes, (b) determinisztikus, (c) zéróösszegű, (d) teljes információjú.

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

Többtényezős döntési problémák

Többtényezős döntési problémák KIPA módszer: Lépései:. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia

Részletesebben

ü ú ú ü ú ú ú ú

ü ú ú ü ú ú ú ú ú ú ú ü Ü ú ú ű ú ú ü ú ü ü ú ú ü ú ú ú ú ü ú Ö ü ü ü ú ü ú Ó ü ü ű ü Á Ü ü ű ü ű ü ű ű ü Ó ű ú ú ű ú ü ü ú ű ű ú ű ü ú ű ű ü ü ü ű ü ű ü ü ű ü ü ü ü ü ü ü ü ü ú ű ü ű Ó ü ü ü ú Á Ü ú ü ű ü Á Ü Ö Ú Á Á

Részletesebben

Döntési rendszerek I.

Döntési rendszerek I. Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 8 Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek

Részletesebben

ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á

ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á ú ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á Á ú á ú á Á ö á ö ö ö ú á á ö ö ö ö á ű Ü ú ö Ü ű ö ú ű á á á ú á ú ú á ö ö ú ö ú ú ö ö ú ö ö ö á ö ö ö á á ö ú ö á á Ú á ö ö ö Ü ú Á á ű ö Ü ö ú Á á ö á ö

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Válogatott fejezetek a közlekedésgazdaságtanból

Válogatott fejezetek a közlekedésgazdaságtanból Válogatott fejezetek a közlekedésgazdaságtanból 2. Választási modellek Levelező tagozat 2015 ősz Készítette: Prileszky István http://www.sze.hu/~prile Fogalmak Választási modellek célja: annak megjósolása,

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö

Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö É Ó ö É Á ű Ü Ü ö Ú ö ö ö ö ö ö ö ú ö ö ö ö ö ú ú ú ú ú ú ü ú ú ö ö ű ö ü ú ö Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö Á Ó ú ö Á ö Á ö ú ú ö ö ö ö ü ü Ü ú

Részletesebben

Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö

Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö Ó ú ú ú ú ű ű ű ú Á Ö ű Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö Ú ű ú É Á Ó Ó É Ó Ó ú ű ű ű ú Ö Ó Ö ú ú Ö ú Ü ú Ü É Ö Á Á Á Á ú Ó Ö ú ú ú Ü Ö ú ú ú ú ú ú Ö ú Ö Ó ű

Részletesebben

ó ő ő ó ő ö ő ő ó ó ó ö ő ó ó ó ö ő ó ő ő ö Ö ő ö ó ő ö ő ő ú ö ö ü ö ó ö ö ö ő ö ö Ö ú ü ó ü ő ő ő ő ó ő ü ó ü ö ő ö ó ő ö ő ö ü ö ü ő ö ö ó ö ő ő ö

ó ő ő ó ő ö ő ő ó ó ó ö ő ó ó ó ö ő ó ő ő ö Ö ő ö ó ő ö ő ő ú ö ö ü ö ó ö ö ö ő ö ö Ö ú ü ó ü ő ő ő ő ó ő ü ó ü ö ő ö ó ő ö ő ö ü ö ü ő ö ö ó ö ő ő ö ü ö ő ö ő ó ö ő ü ü ö ő ó ó ü ő ö ő ö ő ö ü ö ő ö ő ó ö ü ü ö ő ő ő ö ő ö ü ö ő ó ő ö ü ö ő ő ű ő ö ö ő ű ő ü ö Ő ó ö ö ő ü ó ü ú ű ú ő ó ó ó ő ö ő ő ö ó ö ö ő ő ö ö ó ú ő ő ö ó ö ó ö ü ó ő ő ö ó ő ő ó

Részletesebben

ű Ú ű ű É Ú ű ű

ű Ú ű ű É Ú ű ű ű ű ű ű Ú Á É Ú ű Ú ű ű É Ú ű ű ű Á ű ű ű ű ű Ü ű Á ű ű ű Á Á ű ű ű É ű ű ű Ú É ű ű ű ű ű ű ű ű Á É Á Ö Ü ű É ű ű Ö É Ü Ú ű Ó ű É Ó Ó Ó ű É Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű É ű ű Á Á ű Ú ű Ú ű ű Ó ű ű Ü Ü

Részletesebben

Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö

Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö ű É É Á Á Á É Ó É É Á ö ő ő ö ő ő ő Ó ő ö ő ö ő ú ő ü ö ő ü ö Á É ű Á É É É Ö ö Á É É ő ő ö Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö É É Á Ö ő ú ő ű Ö ü Ő É Ó É É Á Ó É Á É Ü É Á Ó É ő ő ö ö ő ö ö ö

Részletesebben

ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É

ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É Ü ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É É ű Ö Ö Á É ű Ö Ö Á Ü Á ű ű Ó Ó Á Á É Ü É ű Ó Á Ó Á ű Ö ű ű É Ü Ö ű É Ö ű ű Ó ű ű Ú ű ű ű ű ű É ű É Ú Ö Á É ű ű Ó ű ű ű ű ű ű Ó ű Ü ű ű ű É ű ű Ü Ü ű ű Ő Á Á Á ű ű ű Ó Ó Ó ű

Részletesebben

Á Ó ű ű Á É ű ű ű ű Ú Ú

Á Ó ű ű Á É ű ű ű ű Ú Ú Ö ű ű Ö Ü ű ű ű ű ű Ó ű Ü ű Á Ó ű ű Á É ű ű ű ű Ú Ú ű ű Á Á Á É ű ű ű ű ű ű ű ű ű ű É ű Ö Ó Ú ű ű ű ű Ü Ó Ú ű É É Ó É É Ó É É É É Ó ű ű ű ű ű Ü ű Á ű ű ű ű ű Ü ű ű ű ű ű ű Á ű Ú Á Á Ö É Á Á Ö É Ü ű ű Ü

Részletesebben

ű Ö ű Ú ű ű ű Á ű

ű Ö ű Ú ű ű ű Á ű ű ű Ó É É ű Ó ű Ü ű ű Ö ű Ú ű ű ű Á ű É ű Á ű ű ű ű ű ű ű ű ű ű ű Á ű ű Ö Ü Ö É ű ű Ü Ü ű É Á Ú É É ű ű ű Ö É ű É Ó É Á Á É ű ű Á ű ű ű Á É ű Ö Á ű ű ű Á ű Á É Ö Ó Ö ű ű ű ű ű ű ű Á É Á Á ű ű ű Á ű ű ű

Részletesebben

Ó é é Ó Ó ő ű Ó Ö ü Ó é Ó ő Ó Á Ö é Ö Ó Ó é Ó Ó Ó Ó ú Ó Ó Ó Ó ű Ö Ó Ó Ó é Ó Ó ö Ö Ó Ö Ö Ó Ó Ó é ö Ö é é Ü Ó Ö Ó é Ó é ö Ó Ú Ó ő Ö Ó é é Ö ú Ó Ö ö ű ő

Ó é é Ó Ó ő ű Ó Ö ü Ó é Ó ő Ó Á Ö é Ö Ó Ó é Ó Ó Ó Ó ú Ó Ó Ó Ó ű Ö Ó Ó Ó é Ó Ó ö Ö Ó Ö Ö Ó Ó Ó é ö Ö é é Ü Ó Ö Ó é Ó é ö Ó Ú Ó ő Ö Ó é é Ö ú Ó Ö ö ű ő É Ó Ű Á Ó É Ó Á É Ó Á ő ű Ó ú Ö ú é Ö Ó Ö ú Ó Ö ú Ó Ó Ó Ó ű é ű ű Ó Ó ú ű ű é é Ö ö Ö Ö Ó ű Ó Ö ü ű Ö Ó ő Ó ő Ó ú Ó ő Ó é Ó ű Ó Ó Ó Ó ú Ó Ó Ó Ó Ö Ó Ó ö ő ü é ü Ö é é é Á é Ó Ó ú ú ű é Ö é é é Ó é é Ó Ó

Részletesebben

ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú

ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú ő ű ű ő ö ö Á ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú ő ö Á Ó ő ő ü ú ő ő ő ő Á ő ú ű ő ő ő ü ú ő ő ő ő ő ő ő ő ö ü ú ő ő ő ő ű ű ő ő ö ű ü ő ő ő ö ö

Részletesebben

ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü

ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü ü ü É ű ű É É ű ü ű ü ü ü Á ü ü ü ü ü ű É ü ű É ű ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü ü Á ü ü ü ü ü Ú ü ü ű É ü ü ű ü ü ű ü ü ü ü É ü ü ü ü ü ü ü ü É ű ü Á ü ü ü ü ü Á Ö É ü ü ű Ú ü ü ü ű

Részletesebben

ő ü ő ü ü Ö ő ő ü Ö ü Ö ü Ö ő ő

ő ü ő ü ü Ö ő ő ü Ö ü Ö ü Ö ő ő Ö ü Ö Ö ő ü ű Ö Ó ő ü Ö ü Ö ü Ó ü ú ú ő ü ő ü ü Ö ő ő ü Ö ü Ö ü Ö ő ő ú Ö Ó Á ű Á ü Ö ú Ö ű ő ű Á ú Ó Í ű ű ő Ó ű ő ű ű ű ű ú ú ú ü Ö Ö ő ú ú ú ú ő ü ü Ó ő ú ú ú ü ú Ö Ö Ú ű ű ú Ö ű Ö ű ü ű ú ő ő ű ú

Részletesebben

Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű

Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű Ú ű ű ű ű ű ű ű ű Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű É ű Ú Ú Ú Ú Ú ű Á Ú Ú Ú Ú ű Ú Ú ű É ű Ú Ú Ú Ú Ú Á ű Ó ű Ú É É Ú Ú ű É ű ű ű ű É ű Ő ű Ő ű ű ű ű ű É ű É Á ű ű Ü Á Ó ű ű ű Ú ű ű É ű ű Ú

Részletesebben

Ó Ó ó ö ó

Ó Ó ó ö ó É ó ö É Á ó ó ü ó Ü ó ö ú ű ö ö ö ü ó Ó Ó ó ö ó Ó Ó ö ö ö ü Ó Ó ö ö ü ö ó ó ü ü Ó Ó Ó Ó ó ö ó ö ó ö ó ö ü ö ö ü ö ó ü ö ü ö ö ö ü ü ö ü É ü ö ü ü ö ó ü ü ü ü Ó Ó ü ö ö ü ö ó ö ö ü ó ü ó ö ü ö ü ö ü ö ó

Részletesebben

É Á Á Ö Á

É Á Á Ö Á É Á Á Ö Á Á É Á Ü ű Á É Ü ű Ú ű ű É É ű ű Á ű ű ű ű ű É ű ű ű Á É É É ű Á É É Á É Á É Ü Ü ű Á Á Á ű Á Á Á Á Á Á Á Á Ü ű Á ű Ü É É Á Á Á É ű ű ű ű ű ű ű ű ű ű ű ű ű Á Á É É ű É ű Ő ű É Ő Á É É ű ű Ú Á

Részletesebben

ő ő Ó

ő ő Ó ú ő ű ű ő ű ú ő ő ű ű ű ű ú ő ő Ó ú ú ú Ó ő ő ő ú ő ú ú ú ú ú ő ő ő ú ő ú ű ő ő ő ő ú ő ő ő ő ú ú ő ő ő ú Ö ő ú ű ő ű ő ű ő ú ő ő ű Á ő ő ő ő Á Ö Á Ö Ö Ü Ö Ö Ü Ö Ö Í Ö Ö ő Ö Ö Á Ö ő Ó Ó Á Á Ö Ö Á Ő Á Á

Részletesebben

é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü é é é ü é é ó é ü ó ö é

é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü é é é ü é é ó é ü ó ö é Ó Ö é ü ó ö é é ü é é ó ö é ü ü é é ó é é é é é é ö é é é é é é é ó ö ü é é é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü

Részletesebben

Á ó ű ú ó ö ü ű ű ó ó ö ü ó ö ó Ö ü ó ü ű ó ö ó ó ú ó ú ó ó ó ó ó ó ó Ö ö ó ó ó ó ö ó Ű ö ó ó ü Ó ű Í ó ó ó ó ó ó Ó ü ó ó ó ó ó ó ú ó ö

Á ó ű ú ó ö ü ű ű ó ó ö ü ó ö ó Ö ü ó ü ű ó ö ó ó ú ó ú ó ó ó ó ó ó ó Ö ö ó ó ó ó ö ó Ű ö ó ó ü Ó ű Í ó ó ó ó ó ó Ó ü ó ó ó ó ó ó ú ó ö ö ü ó Ö ü ó ü Ü ó ó ó ó ö ó ü ö ö ü ü ó Ó ü ó ü ó ó ó ó ö ó ü ó ó ó ó ó ó ö Á ó ű ú ó ö ü ű ű ó ó ö ü ó ö ó Ö ü ó ü ű ó ö ó ó ú ó ú ó ó ó ó ó ó ó Ö ö ó ó ó ó ö ó Ű ö ó ó ü Ó ű Í ó ó ó ó ó ó Ó ü ó ó ó ó

Részletesebben

KIEGÉSZÍTŽ FELADATOK. Készlet Bud. Kap. Pápa Sopr. Veszp. Kecsk. 310 4 6 8 10 5 Pécs 260 6 4 5 6 3 Szomb. 280 9 5 4 3 5 Igény 220 200 80 180 160

KIEGÉSZÍTŽ FELADATOK. Készlet Bud. Kap. Pápa Sopr. Veszp. Kecsk. 310 4 6 8 10 5 Pécs 260 6 4 5 6 3 Szomb. 280 9 5 4 3 5 Igény 220 200 80 180 160 KIEGÉSZÍTŽ FELADATOK (Szállítási probléma) Árut kell elszállítani három telephelyr l (Kecskemét, Pécs, Szombathely) öt területi raktárba, melyek Budapesten, Kaposváron, Pápán, Sopronban és Veszprémben

Részletesebben

á é é á ó á é ö Ű í É Á ó í á ü á ó

á é é á ó á é ö Ű í É Á ó í á ü á ó ö Ű Á ü ö ö ú Á ü ö ű ű ö ö ö ö ú ő Ó Á ö ü ö ö ő ő ú ü ő ö Ú Ó ő Ö Á Ö Ö Ö Ö ü Ö Ö Ó Ö Ö Í Ö Ö Í Ó Á Á Ö Ö Á Ö ü ő ö Ú Ó Á Ó Ó Ő Ö Ö Ö Ó Ó Ö Á Ö Ú Á Ú Ö Ö Á Ú Ö Á Á Á Í Á Ö ő ü ő ö ü ú ö ü ö ú ü ü ú ú

Részletesebben

ú É ú Ú ű Ú ű Ú ú Ú ú Ó ú ű ú Ü ú ú ű ű Á ű Ú Á ű ű ű ú Ú ú ú ű Ú Ő Ú

ú É ú Ú ű Ú ű Ú ú Ú ú Ó ú ű ú Ü ú ú ű ű Á ű Ú Á ű ű ű ú Ú ú ú ű Ú Ő Ú ú ű ú ú ű Ú ú ú ú ú É ű ű ú ű Á ű É ú ú ú ú É ú ú É ú ú ú É ú ú ú ú É ú Ú ű Ú ű Ú ú Ú ú Ó ú ű ú Ü ú ú ű ű Á ű Ú Á ű ű ű ú Ú ú ú ű Ú Ő Ú Üú ű Á ű É É ű ú É Á ú Ú ú É ú ú ú ú É ú ú É É ú ú ű ű ű Ú ű É ű

Részletesebben

Ü ü ü ú Ö ü ü Ö Ö Ö Ö Ő Ó ü Á Á Ö Ö Ö Ő ü Í ú ű Í ú ú

Ü ü ü ú Ö ü ü Ö Ö Ö Ö Ő Ó ü Á Á Ö Ö Ö Ő ü Í ú ű Í ú ú Ö ü Ő Ö Ü Ö ü Ó ü ü ü ü ü ü Á ü ü ü ü Á ü ü ü Ü ü ü ú Ö ü ü Ö Ö Ö Ö Ő Ó ü Á Á Ö Ö Ö Ő ü Í ú ű Í ú ú ü ú Ö Ö Ö Ő Ó ü ü Í ü ü ü ü Ö Ö ü ű Ö Ó Ö Ő ü ü Ö ü ú Ö ü ú ü ú ü Í Ü ű ű ü ű Í ú Ö Ö ü Ö ü ú ü ü Ü Á

Részletesebben

ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó

ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó É ó ú ó ú ó Á ó ó ú ó ó ó ú ó ó ó ó ú ó ó ó ó ó ó ú ó ó ú ó ó ó ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó Ö ó ó ó ó ó ó ó ó ó ó ó ó Ü ó ű ú ú ó ó ó ó ó ó ó É ó É ó É ó ó ó ó ó ó É ó ú ó ó É ó ó ó ó É ó

Részletesebben

Fogalmak Navigare necesse est

Fogalmak Navigare necesse est Döntéselmélet Fogalmak Navigare necesse est - dönteni mindenkinek kell A döntés nem vezetői privilégium: de! vezetői kompetencia, a vezetői döntések hatása Fogalmak II. A döntés célirányos választás adott

Részletesebben

ú ú ő ő ő ú ü ő ő ü ú ő ő

ú ú ő ő ő ú ü ő ő ü ú ő ő Ö Í ú ú ú ő ő ő ú ü ő ő ü ú ő ő ő ű Í Á ü ő ü ő ő ő ü ő ő ü ű ü ü ő ő ú ő Ü ú ő ő ő ű ő ő ű ő ő ő ő ő ő ő ő ú ű ő ő ü ű ü ő ő ü ú ú ő ő ü ő Í Ö ő ő ő Í ő ő ü ő ő ű Ü Á Á Á Á Á Á ű ő ő ő ü Í Ó ú Ó Á Á Á

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,

Részletesebben

í ü Ó ö í í í ó ó í í ü í ó ü ö ó ó ö ó ó ö í ö ö ó ó í ó í í ö ö ö í ú ö ó í ó ö ó ö ó í í ú ű ú

í ü Ó ö í í í ó ó í í ü í ó ü ö ó ó ö ó ó ö í ö ö ó ó í ó í í ö ö ö í ú ö ó í ó ö ó ö ó í í ú ű ú Á ö Ó ú ö ű í Ö Ő ö ű í Ó í ö Ó ü Ó ú í ö Ó ú ö ó ö í ö Ó í ö ó ó í Ó ö Ó ü Ó ö ó í í í í ü Ó ö í í í ó ó í í ü í ó ü ö ó ó ö ó ó ö í ö ö ó ó í ó í í ö ö ö í ú ö ó í ó ö ó ö ó í í ú ű ú ú ó ö Ó ú ö ó ú

Részletesebben

Í ö Ű ö Á Í Ü ü Í ö

Í ö Ű ö Á Í Ü ü Í ö Ú Í Í Í ö Í ö Ű ö Á Í Ü ü Í ö Í ü ü ö Ü ö ö ö ö Ü Ü ö Ü Ü ö Ü Ü ö ú ü ö ü ö ű ö ű Ü Ü ö ö ö ü ü ö Ü ö ö ö ö ö ö ö ö ö Ü Ü Ü Ü ü ö ö ö ö ö ö ö ú Ü ö ű ü ö ú ű ü ö ö ö ü ü ü Ü ú ö ö ü ű ö ű ö ű ü Ü ü ü ö

Részletesebben

Ü ű Í Ü ű Ő Ó Í Í Í Ö Í Ü Ó Í Í ű ű Í ű ű Í Í Í Í Í ű ű ű Á ű

Ü ű Í Ü ű Ő Ó Í Í Í Ö Í Ü Ó Í Í ű ű Í ű ű Í Í Í Í Í ű ű ű Á ű ű ű Ú Í ű ű Í Í Í Í Í Á Í ű Í Í Ó Ü ű Í Ü ű Ő Ó Í Í Í Ö Í Ü Ó Í Í ű ű Í ű ű Í Í Í Í Í ű ű ű Á ű Í Í ÍÍ Í Á ű Á Ó ű Ó Ü Ó Ó Ú Á Á Á Á Á Ó ű ű Ó Á ű ű Ö Ö Í Á Í Ú Ü Í Í Í Ú Á Á Ö Í Í Í Í ű Í Í ű Í Ö ű Í

Részletesebben

ö ó Á ü ű ö ó ö ö ű ö ű ö ő ő ó ö ű ö ő í ő ó ő ó ö ó í í ó ő í í ő ö ő ő ó ő ö ű í ű í ö í ö í ű ö ö ú ö ú ö ő ó ő ö ő ő í ű ö ó ö í ó í í ő ó ü ő ő

ö ó Á ü ű ö ó ö ö ű ö ű ö ő ő ó ö ű ö ő í ő ó ő ó ö ó í í ó ő í í ő ö ő ő ó ő ö ű í ű í ö í ö í ű ö ö ú ö ú ö ő ó ő ö ő ő í ű ö ó ö í ó í í ő ó ü ő ő ö ö í ú ö ö Á Á ö ö ű ö ö ö ö ö ó í ö ö ö ő ö ó ó ö ö ö í ú ö ó ó ö ó í Ű ö ő ó ö ő ö í ő ö ö ö ö ö ö ö ű í í ö ó Á ü ű ö ó ö ö ű ö ű ö ő ő ó ö ű ö ő í ő ó ő ó ö ó í í ó ő í í ő ö ő ő ó ő ö ű í ű í ö í

Részletesebben

Ö ó ó ó í ó Ö ü ó ü ü Ö ó í í ú ü ó ó ó ó ó í í ú í Ö ú í ó ó ó í ó

Ö ó ó ó í ó Ö ü ó ü ü Ö ó í í ú ü ó ó ó ó ó í í ú í Ö ú í ó ó ó í ó Ö ü ü Ö ü ó ü ü í ó í ó í ü í ú ü ó ű ü ó ü ü ó ü ü Á í ó í ü í ú í Ö ó ó ó í ó Ö ü ó ü ü Ö ó í í ú ü ó ó ó ó ó í í ú í Ö ú í ó ó ó í ó ó ü ú ó í ü í ó ú ó ó í ü ü ű í ó ó ó ű ó í ó Ö ú Ö ü ó ü ó í Ö ú

Részletesebben

í ú Í í ö ö Á ü ö í í ö ö ö ü í ü í ű í ö ü í ü

í ú Í í ö ö Á ü ö í í ö ö ö ü í ü í ű í ö ü í ü ö ú í ü í Á í Ó Ü í ú Í í ö ö Á ü ö í í ö ö ö ü í ü í ű í ö ü í ü ö ö ö ö ö í í í í í ü í í í ö ú í ö í ü ú í í í í í ö ö í í í í í ű ü ű ö Á ű í ü ű ű ű í ű ö ú ö ú ú ü ö ö ű ü ö ú ö ű í í ű í ü ü ö ü

Részletesebben

Ó Ó Ó Ü Í Ü Ü Ü Ü Ü Ü Á Ő Ü Ü Ü Ü Ó Ó Á Ü Ö

Ó Ó Ó Ü Í Ü Ü Ü Ü Ü Ü Á Ő Ü Ü Ü Ü Ó Ó Á Ü Ö Ő Ó Ö Ó Ő Ü Í Ó Ö Ü Ő Á Ü Ó Ó Á Ü Ö Ó Ó Ó Ü Í Ü Ü Ü Ü Ü Ü Á Ő Ü Ü Ü Ü Ó Ó Á Ü Ö Ó Ó Á Ö Á Ó Ó Ü Í Ó Í Ü Ü Ó Ó Í Á Ö Á Ü Ö Í Ü Í Ó Ó Ó Ó Á Ó Ó Ü Ó Ö Ó Ó Ó Ó Ö Ö Ü Ó Ü Ü Ö Ó Ó Ü Ü Ó Ó Ó Í Ó Ü Ú Ö Ó Ó Ó Ü

Részletesebben

bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott

bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott . Minimális súlyú feszítő fa keresése Képzeljük el, hogy egy útépítő vállalat azt a megbízást kapja, hogy építsen ki egy úthálózatot néhány település között (a települések között jelenleg nincs út). feltétel

Részletesebben

ö ö ö ö Í ö ö ö ö ö ú ö ü ö ö ö ü ű ú ö ú ü ö ű ö ü

ö ö ö ö Í ö ö ö ö ö ú ö ü ö ö ö ü ű ú ö ú ü ö ű ö ü Ő Ö ü ö Ö ü ü ü ü ü ü Í ö Í ö ű ö ú ö ö ü ö ü ö ű Í ü ö ö ö ü ö ü ú ü ö ö ö ö Í ö ö ö ö ö ú ö ü ö ö ö ü ű ú ö ú ü ö ű ö ü ö ű ö ú ö ö ú ö ü ö ü ö ü ü ö ü ö Ö ü ü ö ü ú ö ö ú Ó ö ü Ó ü ü ü ö Ö ü ö ö ú ű

Részletesebben

ö ö ö ü ö ö ö ö ö ö Ö ü ö ü ü ü ö ü í ü ö ü Ö ö í ű ö ö í í ö ö ü í ö ö ü í ö í ü ö ü í ö ű ö ü

ö ö ö ü ö ö ö ö ö ö Ö ü ö ü ü ü ö ü í ü ö ü Ö ö í ű ö ö í í ö ö ü í ö ö ü í ö í ü ö ü í ö ű ö ü ü í ö ű ö ö í í í í ö ü Ö í ö ö í í ö í ö ö ú ö ö ü Ö ö ö ú ü ü ö ö ú ű ö ü ü ü ö ö ö ü Ö ö ö ö ü ö ö ö ö ö ö Ö ü ö ü ü ü ö ü í ü ö ü Ö ö í ű ö ö í í ö ö ü í ö ö ü í ö í ü ö ü í ö ű ö ü ö ö í ö ö ö ö ö

Részletesebben

ü ó ó ó ó ó ó ü ó í ü ü ó ó ü ó ó ü ó ü ü í í ü ü í í ó ü ü Ö ü Ö ü ü ó

ü ó ó ó ó ó ó ü ó í ü ü ó ó ü ó ó ü ó ü ü í í ü ü í í ó ü ü Ö ü Ö ü ü ó ü Ö ü ü ó ó ó í ü ü ó ó ó ü ó ó ü ü Ö ü ü ó ó ó ü ó ó ó ó ó ó ü ó í ü ü ó ó ü ó ó ü ó ü ü í í ü ü í í ó ü ü Ö ü Ö ü ü ó ú ú ü ü Í ú ó í í ú ü Á Í ü Ö ü ü ó Ö ó ó Í ű í ü í ó í í í Ö ó í í í Ö ü ü í í Ö

Részletesebben

Előadó: Dr. Kertész Krisztián

Előadó: Dr. Kertész Krisztián Előadó: Dr. Kertész Krisztián E-mail: k.krisztian@efp.hu A termelés költségei függenek a technológiától, az inputtényezők árától és a termelés mennyiségétől, de a továbbiakban a technológiának és az inputtényezők

Részletesebben

Szintvizsga Mikroökonómia május 5.

Szintvizsga Mikroökonómia május 5. Szintvizsga Mikroökonómia 2010. május 5. Név:. Fontos tudnivalók: A feladatsor megoldásához számológépet, vonalzót és kék színű tollat használhat! A számításoknál nem elegendő a végeredmény feltüntetése,

Részletesebben

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm

Részletesebben

ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű

ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű Ú ű ű ú ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű Ö Ó ú Ü Ü Ó Ő ű ú ú Ö Ö ú ű ú ú ú ű ű ű Ú ú ű ú ű Ö Ő ú ú ú Ü ú ű ű ű ű ű ű Ü ú ű Ú ú ű ú ű ú ú ű ú ú ű ű ú Ö ú ű Ó ú ú ú Ü ű ú ú ú ű Ü ű

Részletesebben

ű ű ű Ú ű ű Ó ű Ó Ö

ű ű ű Ú ű ű Ó ű Ó Ö Ö Ú ű ű Ü ű ű Ú ű ű ű Ú ű ű Ó ű Ó Ö ű Ú Ü ű Ú ű ű ű Ú ű ű Ú Ú Ó Ü ű ű Ú Ú Ú Ú ű Ű ű Ó ű Ó Ó ű Ú Ó Ú Ü Ú Ó Ú Ú Ű ű Ö ű ű Ú Ö Ú ű Ö Ú Ö Ú ű ű Ó ű Ú ű ű ű Ö ű ű ű Ó ű ű Ú ű ű Ö ű Ú ű Ó ű Ü Ú Ó ű ű ű Ú Ú Ó

Részletesebben

Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű

Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű Ü Ü ű ű ű Ü ű Ú ű Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű ű ű ű ű ű ű Ö ű ű Ö ű ű Ú ű ű ű ű Ö Ú Ü ű ű ű ű Ö ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű Ú ű Ü Ú Ú ű Ü ű ű Ö ű ű ű ű ű ű ű ű ű ű Ü ű ű Ű

Részletesebben

ű ű Ó

ű ű Ó ű ű ű Ó Ü Ü Ú Ö Ö ű Ó ű ű ű ű Ú Ú Ó ű Ó ű ű ű ű Ó ű Ú Ü Ü ű Ú ű ű Ó Ú Ö ű Ó Ü Ú Ó ű ű ű ű Ú Ó ű ű Ö Ú ű ű Ó ű Ó Ü Ö Ú Ö Ö ű ű Ü Ó Ó Ú Ó Ü Ó Ü Ő ű ű Ú ű ű ű ű ű Ó Ó ű ű ű ű Ú ű ű ű Ó Ú ű Ö ű Ó Ö Ú ű Ó Ú

Részletesebben