3. ZH FOGALMAI. Döntéshozó: Az a személy (vagy csoport), aki a cselekvési változatok közül választ egyet.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "3. ZH FOGALMAI. Döntéshozó: Az a személy (vagy csoport), aki a cselekvési változatok közül választ egyet."

Átírás

1 3. ZH FOGALMAI Döntési helyzet: Az olyan helyzet, amelyekben az egyén vagy csoport, azaz a döntést hozó legalább két cselekvési változat (cselekvési mód) közötti választás problémájával áll szemben. A döntés: Választás legalább két cselekvési változat között. Döntéshozó: Az a személy (vagy csoport), aki a cselekvési változatok közül választ egyet. Cselekvési változat (cselekvési mód): A döntéshozó rendelkezésére álló erőforrások bizonyos formában való felhasználását jelenti. Más fogalmazásban, egy cselekvési változat a döntéshozó hatáskörébe tartozó szabályozható változók bizonyos módon való együttese. Tényállapot: A következményekre hatással vannak a döntéshozó által nem, vagy csak részlegesen szabályozható külső körülmények. Ezeket a külső körülményeket tényállapotoknak nevezzük. Következmény, eredmény: A cselekvési változatok és tényállapotok együttesen határozzák meg a cselekvési változat következményét (eredményét). Egy következmény egy cselekvési változat és egy tényállapot együttes hatásának eredménye. Tényállapotok valószínűségei: A cselekvési változatok és tényállapotok együttesen határozzák meg a következményeket és ezért a tényállapotok valószínűségei egyúttal a következmények valószínűségei is abban az esetben, ha a tényállapotok és cselekvési változatok egymástól függetlenek. A döntési kritérium olyan előírás, amely megmondja, hogyan használjuk fel az előbbi információkat egyetlen cselekvési változat kiválasztására. A bizonytalan döntések osztályába soroljuk azokat a döntési problémákat, amelyekben nem ismerjük a tényállapotok (illetve következmények) valószínűségeit. A bizonytalan döntések osztályában nincs egységes döntési kritérium. A döntést hozó pszichológiai beállítottságától függően definiálhatunk döntési kritériumokat. A legismertebbek a Wald-féle, a Savage-féle, a Hurvicz-féle és a Laplace-féle kritériumok. A Wald-kritériumot másképpen minimax (illetve maximin) kritériumnak is nevezik. A pesszimista és óvatos döntést hozó kritériuma. A pesszimista döntést hozó a legrosszabb következményt tekinti, de mivel óvatos is, igyekszik magát a lehető legrosszabbtól megvédeni. Eljárásának lényege: minden egyes cselekvési változat esetében a legrosszabb következményt tekintve ezek közül a legjobbat, azaz a relatíve legkisebb rosszat választja. A Savage kritérium az un. minimális regret kritériuma. (A regret angol szó, megbánást jelent.) Pszichológiai alapja az elmulasztott lehetőségen érzett megbánás. A regret mértéke az adott körülmények közötti optimális (tehát a legjobb) és a tényleges döntés közötti különbség a következmények értékében mérve. A regret-mátrix felállítása után a Wald kritériumot alkalmazzuk: a legnagyobb regretek közül választjuk a legkisebbet. A Hurvicz-féle kritérium az un. optimizmus együtthatóval súlyozva számítja ki a legmegfelelőbb cselekvési változatot. Az optimizmus együttható az elnevezéssel asszociálódó

2 komolytalan felhanggal ellentétben, egzakt matematikai gondolatmenet alapján határozható meg. Pszichológiai alapja a két végletes álláspont a teljes pesszimizmus és a teljes optimizmus közötti arany középút keresése. A Laplace-kritérium szerint, ha nincs elégséges indokunk a különböző események bekövetkezési valószínűségének megállapítására, akkor a Laplace-féle álláspont szerint legcélszerűbb, ha minden egyes eseményt azonos valószínűséggel tekintünk. A kockázatos döntések osztályába tartoznak mindazok a döntések, amelyek esetében a tényállapotok (vagy következmények) valószínűségei ismertek, azaz ismeretes a valószínűségeloszlásuk. A kockázatos döntések osztályában alkalmazott döntési kritérium az un. Bayes-féle kritérium, másnéven az optimális várható érték kritériuma. Abban az esetben, ha a döntési problémában a valószínűségeknek szerepe van, akkor a döntést hozók az optimális várható érték alapján döntenek. Vagyis azt a cselekvési változatot választják, amelyiknek a várható kilátása a legjobb. Ha egy kockázatos döntési probléma esetében a döntést hozó közömbös (etikailag neutrális) a cselekvési változatok között, akkor a cselekvési változatok várható értékei számára azonosak. Ebből a magatartásból kiszámíthatók az eseményekhez rendelt látens valószínűségek. A lineáris programozási feladat Az olyan feltételes szélsőérték feladatot, amelyben lineáris egyenlőtlenségek és egyenletek által meghatározott halmazon egy lineáris függvény szélsőértékét keressük, lineáris programozási feladatnak nevezzük. A lineáris programozás lényege A gazdasági vagy szervezési jelenségekben bizonyos számú változó szerepel, amelyeknek akkor van értelmük, ha pozitívak vagy zérussal egyenlők (vagyis nem negatívak). Ezeket a változókat lineáris összefüggések kapcsolják össze, és egyenletek vagy egyenlőtlenségek rendszerét alkotják, ezek a probléma céljai vagy korlátozó feltételei. Ezeknek a változóknak van egy bizonyos z lineáris függvénye: ez a célfüggvény, és ennek a maximumát vagy a minimumát keressük az esetnek megfelelően. Bázismegoldások: a korlátozó feltételek által határolt konvex poliéder csúcsai Degeneráció: a célfv. a konvex poliéder valamely oldalával párhuzamos -> nem egyetlen megoldása van a feladatnak A feladatnak nincs optimális megoldása, ha a célfv. az L (korlátozó feltételek által határolt rész) halmazon nem korlátos. Véges sok optimális megoldása van, ha a célfv. párhuzamos az L halmaz egyik határoló egyenesével. (Mindig van optimális megoldás, ha az L halmaz konvex poliéder.) LP felhasználása: Optimális termékstruktúra meghatározása; Optimális elosztási, szállítási programok meghatározása; Termelési, készlettartási problémák megoldása; Optimális keverékarány (étrend) meghatározása. A számszerű információ hordozója az adat. Az adat egy méréssel vagy megszámlálással nyert szám. Hagyományos értelmezés szerint a mérés összehasonlítást jelent valamilyen skálával vagy etalonnal.

3 Az egyenlőséget, a sorrendiséget és az additivitást a következő axiómák szerint írhatjuk le: l. A=B vagy A B 2. ha A=B, akkor B=A 3. ha A=B és B=C, akkor A=C 4. ha A B, akkor B<A 5. ha A B és B C, akkor A C 6. ha A=P és B 0, akkor A+B P 7. A+B=B+A 8. ha A=P és B=Q, akkor A+B=P+Q 9. (A+B)+C=A+(B+C) Az első három axióma az egyenlőség, a 4-5. a sorrendiség, a 6-9. az additivitás (összeadás) axiómái. Ezeket az axiómákat használjuk a mérési skálák megkülönböztetésére, vagyis a hozzárendelési szabályok a fenti axiómákban fejeződnek ki. A névleges (nominális) skálán az egyenlőség az egyedüli reláció. A névleges mérés szintjén valamilyen objektum megjelölésére számot használunk, megjegyezve, hogy szóval vagy betűvel való jelölés is megfelelő lenne. Ebben az esetben a számok csak azonosításra szolgálnak. A névleges számhozzárendelésnek két típusát ismerjük: az egyedi dolgok azonosító számozása (pl: rendszám); osztályok azonosítása (az egyes osztályokon belül lévő dolgok azonos számot kapnak). Nominális skála esetében a skálaérték előfordulásának gyakorisága (módusz) vizsgálható, azonban sem medián, sem átlag nem. A sorrendi skála megalkotásához a számok azonossági tulajdonságát kifejező axiómákat a számok sorrendiségét tükröző 4. és 5. axiómával egészítjük ki. A sorrendi skála a dolgok viszonylagos helyét is meghatározza, azaz rangsort készít. A sorrendi skálán mért dolgok nincsenek egymástól egyenlő távolságra, vagyis az egymást követő intervallumok nem azonos nagyságúak. (sok társ.tud. jelenség csak ilyenen mérhető) E skálatípus esetében medián (kvantilis, rangkorreláció) vizsgálható, átlagról ellenben itt nincs értelme beszélni.(egy közös tulajdonság alapján kell összehasonlíthatóknak, tranzitívnak lenni a mért dolgoknak. ha a tranzitivitás hiányzik, akkor körsorrendről beszélünk.) Ha skálánk rendelkezik a sorrendi skála tulajdonságaival, továbbá a skálán lévő bármelyik két szám különbsége ismert és meghatározott nagyságú, akkor intervallumskáláról beszélünk. Az intervallumskálát a közös és állandó mértékegység jellemzi, és a számokat ennek alapján rendeljük a sorba rendezett dolgokhoz. Az intervallumskálán számszerűen egyenlő különbségek a valóságban is egyenlők. Például a 35 C és 45 C közötti hőmérséklet különbség ténylegesen egyenlő a 87 C és 97 C közötti különbséggel. Egy intervallumskálán tehát bármely két intervallum aránya független a mértékegységtől és a nullponttól. Az intervallumskála nullpontját és mértékegységét szabadon választjuk meg. Következésképpen a skálát egy konstans hozzáadása nem változtatja meg, így tehát bármelyik intervallumskála x a x+b transzformációja megengedett (ha a 0). (az mért adatok nem, de a különbségek már rendelkeznek additivitási tulajdonsággal) Az arányskálának (abszolút skála) valódi nullpontja van és bármelyik két pontjának aránya független a mértékegységtől. Az arányskálának mindig van abszolút nullpontja még akkor is, ha ezt gyakorlatilag nem lehet elérni (pl. a hőmérséklet abszolút nullpontja). Az arányskála számszerű értékei egy konstans értékkel való szorzással transzformálhatók: x =c x ahol c bármilyen nullától különböző szám.

4 Asszociációs kapcsolat: az egymással kapcsolatban álló ismérvek minőségi vagy területi ismérvek (mindkét változó nominális mérési szintű) Vegyes kapcsolat: az egyik vizsgált ismérv mennyiségi, a másik pedig minőségi vagy területi ismérv (az egyik változó különbségi vagy arányskálán, a másik pedig nominális skálán mérhető) Korrelációs kapcsolat: mindkét vizsgált ismérv mennyiségi ismérv (mindkét változó különbségi vagy arányskálán mérhető) Rangkorrelációs kapcsolat: mindkét változó sorrendi skálán mérhető Komplex rendszernek tekintünk minden olyan rendszert, amelyet egyidejűleg több tulajdonság (értékelési tényező) alapján minősítünk. A komplex rendszerek összemérésének egyik legnagyobb nehézségét az jelenti, hogy az egyes értékelési tényezők különböző szintű mérési skálákon mérhetők. Az értékelési tényezők utilitásának meghatározására szolgálnak a rangmódszerek. A rangmódszerekben az értékelési tényezőket rangsorolják a legpreferáltabb értékelési tényezőtől a legkevésbé preferáltig, majd ezekhez meghatározott konvenció szerint rangszámokat rendelnek. (közvetlen rangsorolás, páros összehasonlítás) A közvetlen rangsorolás a köznapi gyakorlatban ismert sorszámozásnak felel meg. Előnye, hogy egyszerű technikája miatt gyorsan lefolytatható. Hátránya viszont, hogy nem ad felvilágosítást az értékelő személyek véleményének következetességéről, csak a sorrend első és utolsó tagja a biztos, a köztes rangszámokat kapó értékelési tényezők sorrendje pedig bizonytalan, így nem kapunk felvilágosítást az egyéni értékrendek megbízhatóságáról, így nem tudjuk megállapítani a tranzitivitás követelményének megsértését. A tranzitivitás következetességet jelent, és így fontos racionalitási kritérium. A páros összehasonlítás az alternatívák közvetett, páronkénti összehasonlításán alapul. Az eljárás alkalmazása ott indokolt, ahol több értékelési tényezővel kell számolnunk, s azok fontossága, súlya eltér egymástól. Az összehasonlítást a preferencia-mátrix segítségével készítjük el. (Ahol a sorban lévő preferált az oszlopban szereplővel szemben, oda 1-et írunk, ahol hátrányt szenved, oda 0-át.) K következetességi mutató: Ha K=1, akkor ez azt jelenti, hogy nincs jelen körhármas, tehát a szóban forgó döntéshozó teljesen következetes, vagyis egyetlen esetben sem sértette meg a tranzitivitás követelményét. (konzisztencia-vizsgálat) A következetesség mértéke fontos információ, és ez csak a páros összehasonlítás módszerével tárható fel, közvetlen rangsorolással nem. Guilford-féle súlyszámképzés: A preferenciák intenzitásának intervallumszintű méréséről van szó. Lényege, hogy megpróbálja a rangsorba rendezett elemek közötti távolságot megadni, mintha intervallumskálán rendeztük volna sorba az elemeket. Az eljárás alapja a már ismertetett páros összehasonlítás, amellyel sorrendi skálán már rangsorolni tudjuk az értékelési tényezőket. A standardizált normális eloszlást használja a transzformálás során, technikailag pedig a páros összehasonlítás módszerét. Teljes ellentét esetében az eltérések négyzetösszege maximális, az R (rangszámösszeg) mennyiségek ingadozása pedig minimális, vagyis 0. Teljes ellentét csak 2 döntéshozó esetében történhet meg.

5 Teljes egyetértés esetében az eltérések négyzetösszege minimális, az R mennyiségek ingadozása maximális (R=Szumma helyezések). Az ingadozás (3szög) a teljes egyetértésnél a lehetséges maximális. Kendall-féle rangkonkordancia együttható: Megmutatja a döntéshozók közötti egyetértés mértékét a közvetlen rangsorolás rangszámösszegei alapján. Kendall-féle egyetértés együttható: Megmutatja a döntéshozók közötti egyetértés mértékét a páros összehasonlítások preferenciagyakoriságai alapján. Rangszámegyezés esete: Két vagy több dolgot azonosnak tekintünk, ha nincs közöttük észrevehető különbség. Rangsorolás esetében az azonos dolgok azonos rangszámot kapnak. A rangszámegyezést kötésnek is nevezzük. Az azonos dolgok azoknak a rangszámoknak a számtani átlagát kapják rangszámul, amely rangszámokat akkor kapnák, ha nem volnának azonosak. W szignifikancia vizsgálata: Szignifikancia vizsgálattal mindig valamilyen alapfeltevést (nullhipotézist) vizsgálunk. Nullhipotézis: nincs egyetértés a rangsorolók között, vagyis W 0- nál nagyobb értéke a véletlennek és nem pedig az egyetértésnek tulajdonítható. Ellenhipotézis: nem a véletlennek tekintjük W adott és 0-nál nagyobb értékét, hanem az egyetértésnek. A W szignifikancia vizsgálata a számításban szereplő Δmennyiség eloszlására épül. Δ kritikus értékeit 5 és 1%-os szignifikancia szinten táblázat tartalmazza, k=3,4,5,,20, és n=3,4,,7 terjedő értékekre. Ha a ténylegesen kiszámított Δérték nagyobb, mint a kritikus érték (táblázat), akkor a nullhipotézist adott szignifikancia szinten elutasítjuk. Spearman-féle rangkorrelációs együttható: Mindkét változó sorrendi skálán mérhető! Értéke -1 és +1 közé eshet. Ha értéke 1, akkor az a két rangszám-sorozat tökéletes egyezését jelzi, míg ha értéke -1, a kétféle sorozat fordítottja egymásnak. Ha értéke 0, akkor a két rangsor között nincs kapcsolat.

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Többtényezős döntési problémák

Többtényezős döntési problémák KIPA módszer: Lépései:. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék

Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék Mérés és skálaképzés Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék Miröl is lesz ma szó? Mi is az a mérés? A skálaképzés alapjai A skálaképzés technikái Összehasonlító skálák Nem összehasonlító

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Többtényezős döntési problémák

Többtényezős döntési problémák KIPA módszer: Lépései: 1. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/ Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben

Korrelációs kapcsolatok elemzése

Korrelációs kapcsolatok elemzése Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis 1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Bevezető Mi a statisztika? Mérés Csoportosítás

Bevezető Mi a statisztika? Mérés Csoportosítás Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Van-e kapcsolat a változók között? (példák: fizetés-távolság; felvételi pontszám - görgetett átlag)

Van-e kapcsolat a változók között? (példák: fizetés-távolság; felvételi pontszám - görgetett átlag) , rangkorreláció Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

Függetlenségvizsgálat, Illeszkedésvizsgálat

Függetlenségvizsgálat, Illeszkedésvizsgálat Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata

Részletesebben

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév

Részletesebben

Számelmélet Megoldások

Számelmélet Megoldások Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,

Részletesebben

1. előadás: Halmazelmélet, számfogalom, teljes

1. előadás: Halmazelmélet, számfogalom, teljes 1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,

Részletesebben

A SÚLYSZÁMOK PROBLEMATIKÁJA KOMPLEX RENDSZEREK ÉRTÉKELÉSE SORÁN I. AZ ÉRTÉKELÉSI TÉNYEZŐK SÚLYOZÁSA

A SÚLYSZÁMOK PROBLEMATIKÁJA KOMPLEX RENDSZEREK ÉRTÉKELÉSE SORÁN I. AZ ÉRTÉKELÉSI TÉNYEZŐK SÚLYOZÁSA Kavas László A SÚLYSZÁMOK PROBLEMATIKÁJA KOMPLEX RENDSZEREK ÉRTÉKELÉSE SORÁN BEVEZETŐ A többszempontú döntési feladatok megoldásakor az egyik lényeges elem a értékelési szempontok fontossági sorrendjének

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása

STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása A változók mérési szintjei STATISZTIKA I. 3. Előadás Az adatok mérési szintjei, Viszonyszámok A változók az alábbi típusba tartozhatnak: Nominális (kategorikus és diszkrét) Ordinális Intervallum skála

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Totális Unimodularitás és LP dualitás. Tapolcai János

Totális Unimodularitás és LP dualitás. Tapolcai János Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni

Részletesebben

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Mi az adat? Az adat elemi ismeret. Az adatokból információkat Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás

Részletesebben

Térinformatikai algoritmusok Elemi algoritmusok

Térinformatikai algoritmusok Elemi algoritmusok Cserép Máté 2016. szeptember 14. Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Bevezetés az SPSS program használatába

Bevezetés az SPSS program használatába Bevezetés az SPSS program használatába Statisztikai szoftver alkalmazás Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable View Output Viewer Sintax

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

HARCÁSZATI REPÜLŐGÉPEK ÖSSZEHASONLÍTÁSÁRA HASZNÁLHATÓ MATEMATIKAI MÓDSZEREK

HARCÁSZATI REPÜLŐGÉPEK ÖSSZEHASONLÍTÁSÁRA HASZNÁLHATÓ MATEMATIKAI MÓDSZEREK Békési Bertold - Kavas László - Prof Dr. Óvári Gyula HARCÁSZATI REPÜLŐGÉPEK ÖSSZEHASONLÍTÁSÁRA HASZNÁLHATÓ MATEMATIKAI MÓDSZEREK A Magyar Honvédség légierejének lehetséges korszerűsítési módja napjainkban

Részletesebben

Nem-lineáris programozási feladatok

Nem-lineáris programozási feladatok Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens

Részletesebben

A problémamegoldás elmélete Döntéselméleti alapok. Készítette: Dr. Szűts István, Dr. Duma László

A problémamegoldás elmélete Döntéselméleti alapok. Készítette: Dr. Szűts István, Dr. Duma László A problémamegoldás elmélete Döntéselméleti alapok Készítette: Dr. Szűts István, Dr. Duma László Modell: a valóság valamilyen mása. Modell Valóság A formális rendszerben végezhető műveletek Az anyagi dolgokkal

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

Térinformatikai algoritmusok Elemi algoritmusok

Térinformatikai algoritmusok Elemi algoritmusok Cserép Máté Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot oldottuk meg korábban,

Részletesebben

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs

Részletesebben

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja 2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Descartes-féle, derékszögű koordináta-rendszer

Descartes-féle, derékszögű koordináta-rendszer Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért

Részletesebben

A leíró statisztikák

A leíró statisztikák A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az

Részletesebben

Döntéselmélet II. ELŐADÁS DÖNTÉSI FOLYAMAT

Döntéselmélet II. ELŐADÁS DÖNTÉSI FOLYAMAT Döntéselmélet II. ELŐADÁS DÖNTÉSI FOLYAMAT döntés döntéselőkészítés D ö n t é s i f o l y a m a t döntés és megvalósítás döntéselőkészítés Döntési folyamat A probléma felismerése, azonosítása, megfogalmazása

Részletesebben

2. előadás. Viszonyszámok típusai

2. előadás. Viszonyszámok típusai 2. előadás Viszonyszámok típusai Mérési skálák Nominális /névleges skála: kötetlen hozzárendelése a számoknak Sorrendi / Ordinális skála: sokaság egyedeinek egy közös tulajdonság szerinti sorbarendezése

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

Követelmény a 6. évfolyamon félévkor matematikából

Követelmény a 6. évfolyamon félévkor matematikából Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O 1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.

Részletesebben

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 5.A természettudományos képzés

Részletesebben

SZÁMÍTÓGÉPES ADATFELDOLGOZÁS

SZÁMÍTÓGÉPES ADATFELDOLGOZÁS SZÁMÍTÓGÉPES ADATFELDOLGOZÁS A TÁBLÁZATKEZELŐK Irodai munka megkönnyítése Hatékony a nyilvántartások, gazdasági, pénzügyi elemzések, mérési kiértékelések, beszámolók stb. készítésében. Alkalmazható továbbá

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Kvantitatív statisztikai módszerek

Kvantitatív statisztikai módszerek Kvantitatív statisztikai módszerek 1. konzultáció tárgyjegyző Dr. Szilágyi Roland Mérési skálák Számok meghatározott szabályok szerinti hozzárendelése jelenségekhez, bizonyos tulajdonságokhoz. 4 féle szabály

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

A statisztika alapjai - Bevezetés az SPSS-be -

A statisztika alapjai - Bevezetés az SPSS-be - A statisztika alapjai - Bevezetés az SPSS-be - Kvantitatív statisztikai módszerek Petrovics Petra, Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

A döntéselmélet matematikai alapjai

A döntéselmélet matematikai alapjai donteselm_mat_alapok_1.nb 1 A döntéselmélet matematikai alapjai Bevezetés a döntéselméletbe á alapfeladat: Ki kell választani egy (vagy több) alternatívát a lehetséges alternatívák halmazából, figyelembe

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Döntéselméleti modellek

Döntéselméleti modellek Döntéselméleti modellek gyakorlat Berta Árpád Követelmények A félév során 40 pont szerezhető 0-19 pont : elégtelen (1) 20-24 pont : elégséges (2) 25-29 pont : közepes (3) 30-34 pont : jó (4) 35-40 pont

Részletesebben

1. Előadás Lineáris programozás

1. Előadás Lineáris programozás 1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és

Részletesebben

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára

TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 10. E.osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben