2. Gázok 2.1. Ideális gáz. Első rész: előző előadás folytatása. Gázok. Fázisátalakulások. További példák a Boltzmann eloszlás következményeire
|
|
- Eszter Vincze
- 8 évvel ezelőtt
- Látták:
Átírás
1 Első rész: előző előadás folytatása Gázo Fázisátalauláso További példá a Boltzma eloszlás övetezméyeire. Gázo.1. Ideális gáz Ideális gáz állapot jellemzése ics ölcsöhatás E =0 szerezete redezetle Potszerűe csa ietius eergia : ütözése az edéy falával részecsé azoosa izotróp: tulajdoságai függetlee a mérés iráyától deformálható térfogatát a tartály határozza meg Prof. Fidy Judit 016 otóber 0 Termodiamia: ietius gázelmélet yomás értelmezése állapotegyelet Eteljes = 1 m( v ) 1 mv = 3 pv = átlag ε = i 1 mv i. Gázo.1. Ideális gáz. Gázo.. Reális gázo az általáos gáztörvéy orreciója Boltzma eloszlás övetezméye: 1. a részecsé em potszerűe térfogatu b mozgási terü lecsöe V ről (V b) re az egyedi részecsé sebessége (abszolút értée) eloszlást övet Maxwell Boltzma féle sebességeloszlás hőmérsélet szerepe legvalószíűbb/átlag sebesség eltolódása eloszlás iszélesedése magasabb hőmérsélete Kietius gázelmélet összefoglalás: A hőmérsélet egyértelműe meghatározza a részecsé átlagos ietius eergiáját az egyedi ietius eergiá populációját i O Sebesség abszolút értée. a részecsé özött ölcsöhatás va, erőssége a E belső = E mozg. +E ölcs. a p(v b)= értéél a tapasztalt yomás isebb ütözési sebesség a vozó ölcsöhatás miatt isebb a változás függ a ocetrációtól (/V) Va der Waals egyelet p /(V b) a(/v) = p p + a = V (egy lehetséges leírás ) ( V b) De: továbbra is igaz a hőmérsélet ietiai értelmezése magas hőmérsélete a reális gázo is jól leírható ideális gázét Taöyv 59 60
2 Az ayagcsaládo özött és a családoo belül fázisátalauláso lehetségese Fázis: az ayag térfogatelemei fiziai és émiai tulajdoságoba megegyeze Elsőredű fázisátalaulás: hőcserével jár: átlagos ötési eergia változi itezív paraméter folytoosa az extezív ugrásszerűe változi (Másodredű fázisátalaulás: em jár hőcserével, a paramétere folytoosa változa) A víz fázisdiagramja Általáos viseledés Taöyv: Más jellegű példá a Boltzma eloszlásra Féme termius eletroemissziója erst egyelet Kémiai reació reaciósebességée függése a hőmérsélettől Reació : A B A AB és BA reaciósebessége aráyosa azo reagese számával, amelye eergiája eléri az ativációs gát agyságát. AB BA K = = cost e = cost e BA AB ε barrier ε A ε barrier ε B ε A ε B A hőmérséletet változtatva és mérve a reaciósebességeet, az adatoból az ativációs eergia meghatározható Arrheius féle ábrázolás ε A ε B log K = (loge)( ) 1 T Barometrius magasságformula A levegő sűrűsége az atmoszférába a tegerszittől mért magassággal (h) csöe: ρ( h) ρ(0) mgh m a levegő részecséie átlagos tömege g gravitációs gyorsulás Kristályos szerezetű ayago Másodi rész Kötött eletroo eergiaállapotai redezett redszerebe eletromos és optiai tulajdoságo. Eergia -o izolált atomo diszrét eergiaívói ~10 3 azoos atomból ristály azoos eergiaállapotú eletroo r 0 távolságba Pauli elv ülső eletroo eergiája új ívóra hasad folytoos eergiao.
3 Az atomo ölcsöhatása megváltoztatja az eletroo eergiáit Diszrét eergia ívó folytoos eergiájú o tiltott oal elválasztva A fiziai/émiai tulajdoságo a legfelső és a legalsó üres eergetiai tulajdoságaitól függe három jellegzetes ayagcsalád: A1 A B Eergia -o izolált atomo diszrét eergiaívói Példa: szilárd ristályos a 1s s p 6 3s 1 ( l + 1) letro állapoto száma egy ba Vezetési üres 1 ev üres üres 3p 0 Vegyérté Részlegese Tiltott o 3s p 6 s 1s Maghoz özeli belső eergiao A 3s csa félig betöltött A típusú B típusú A - típusú ayago A1 Miért? vezetési vegyérté Δ ε A A tiltott eergiájától függőe! Tiltott gap E gap Üres vezetési Telített vegyérté- Δε = E gap és viszoya döti el, hogy lehete-e termius ooból eletroo a vezetési ba ~ 0.03 ev T=300 K, =1.38x10-3 JK -1 Boltzma álladó A1 típusú ayago E gap >> 1eV Pl. gyémát E gap = 5.4 ev vezetési vegyérté = 0 E gap túl agy -hez épest szigetelő - ics eletromos vezetés (eletromos letörés: ~V/ötés V/m) - ics féyelyelés a VIS tartomáyba: E VISfoto <E gap VIS-be átlátszóa - lehetséges, hogy E UV-be lehet, hogy em átlátszóa UVfoto E gap - IR elyelés: egyesúlyi ötéstávolság örüli rezgése gerjesztése
4 0 K Vez.. Vegy. A típusú ayago Si Ge Egap E gap 1eV e - E g (ev) vez vegy 0.75( Ge) vegyérté E gap em túl agy -hez épest termiusa legyőzhető (tiszta) félvezető = ! vezetési 4 -tipusú töltéshordozó (vezetési eletro: egatív töltés) p tipusú töltéshordozó (lyu: eletro-hiáy: pozitív töltés) 10 1 M 3g (ρ=5.5 g/cm 3 ) 4*10 8 e /6 cm 3 A vezetési eletroo a vegyérté ból termius gerjesztéssel jöe létre étféle töltéshordozó 8 Eletromos tulajdoságo σ = E gap ost. e Gyegé függ T-től hf VIS > E gap - VIS átlátszatlaság - Féyelyelés eletromos vezetést iduál fotodetetoro (tiszta) félvezető - folytatás Kétféle töltéshordozó eletezése és reombiációja együtt eletezési valószíűség aráyos a B. fatorral. A fajlagos vezetőépesség (σ) a hőmérsélet emeledésével ő termorezisztoro hőmérsélet-mérés Optiai tulajdoságo Féyfoto elyelődhet! gerjesztés a vezetési ba λ(m) B típusú ayago Pl. 1- és -vegyértéű féme: a, Mg, Cu.. (töltés)/m 3 ics tiltott a vegyérté és a vezetési özött jó vezető : féme Az eletroo eergia-felvétele széles tartomáyba lehetséges a részlegese betöltött vezetési o belül -Eletro-vezetés, agy vezetőépesség -Széles eergiatartomáyú foto-abszorpció átlátszatlaság σ 1 T Cu fajlagos elleállás (1/σ) (Ohmxm) x10-8 3x10 3 Ige is elleállás agy vezetőépesség Tulajdoságo Si 9x10 8 1x10 16 T=93 K A fajlagos vezetőépesség csöe a hőmérsélettel E partially filled coductio bad félvezető! Külöleges család A- belül Szeyezéses félvezető Szeyezés (Dopig) speciális techia: ige tiszta félvezető ristályba (host) Ige is meyiségbe egymástól távol, izolálta elhelyezett idege ompoes host dopat 6 10 Izolált szeyező (dopats) Ötlet: megfelelőe iválasztott dopat csöeti az E gap,-t, igy a termiusa létrehozott töltése száma megöveszi Kétféle ombiációt realizálta 4-vegyértéű gazda-rácsba 5-vegyértéű dopat 4-vegyértéű gazda-rácsba 3-vegyértéű dopat Host (gazdarács): Ge, Si -tipusú félvezető p-tipusú félvezető Dopat: 5-vegyértéű : P, As, Bi 3-vegyétéű : B, Al, Ga, I
5 Pl. 4 vegyértéű Ge ristályrács szeyezve 5 vegyértéű As atomoal Összefoglalás: - és p-tipusú szeyezéses félvezető Vegyérté eletroo Az ötödi As eletro em tud részt vei ovales ötésbe gyegé ötött a szeyezés helyé is eergiával iszabadulhat és részt vehet a vezetésbe: door állapot tipusú vezetés E g ~1 ev ev -típusú p-tipusú Door ívó Vezetési Vegyérté A door ívó csa a szeyezőö léteze, em tuda deloalizálódi. Ha gerjesztőde eze az eletroo, aor a hátramaradt lyua szité loalizálta, em vesze részt a vezetésba. A szeyező létező door ívó termiusa gerjesztett eletrojai vezete A szeyező atomál leötetle gazda-atom eletro fogad gerjesztett gazda-rács eletrooat : loalizált aceptorívó populálása. A gazda-rácsba hátramaradó lyua vezete Az áramörö alapelemei: dióda és trazisztor előállítható - és p tipusú szeyezéses félvezetőből + yitó iráyú apcsolás: vezetés - p + Trazisztor: -áramerősítő - digitális memória elemei - számláló Dióda: - multivibrátoro - egyeiráyító - eletromos feszültség féyforrás LED - megvilágítás feszültség pixel CCD amerába Feltétel a megfelelő szeyezés ige is méretbe előállítható áramörö miroeletroia lehetősége base (p) p + - ϕ oll > ϕ bázis Jelelegi legmoderebb féyforrás: LED olletor bázis emitter collector () emitter () lyu féy P tipus tipus eletro Vezetési Gap Tiltott Vegyérté Eletromos vezetés hatására a p határrétegbe többségbe erült eletroo és lyua reombiációja eletroo eergia vesztése féyemisszióval
6 1956 fiziai obel díj a félvezető trazisztor megvalósításáért Joh Bardee, William Shocley és Walter Brattai a Bell Lab ba, fiziai obel díj a éféyű LED megvalósításáért Isamu Aasai, Shuji aamura, Hiroshi Amao, Joh Bardee II.obel 197 A szupravezetés elméletéért Walter Brattai Ige jó ísérleti fizius LED: Light Emittig Diode Köszööm a figyelmet!
Sok részecskéből álló rendszerek leírása II. rész Fény abszorpció
Boltzma eloszlás So részecséből álló redszere leírása II. rész Féy abszorpció ε ε, N megülöböztethető, függetle részecse Termius egyesúlyba (zárt redszerbe), T= hőmérsélete ε egy részecse lehetséges eergiáa
MIKROELEKTRONIKA, VIEEA306
Budaesti Műszaki és Gazdaságtudomáyi Egyetem Elektroikus Eszközök Taszéke MIKROELEKTRONIKA, VIEEA306 Félvezető fizikai alaok htt://www.eet.bme.hu/~oe/miel/hu/03-felvez-fiz.tx htt://www.eet.bme.hu Budaesti
5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-
5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a
Kvantummechanika II. 8. előadás
Kvatummehaika II. KVANTUMMCHANIKA NINCS KIRÁLYI ÚT! 8. előadás Aiómák A. A Shrödiger-egyelet B. r, t dv aak a valószíűségét adja, hogy a potszerű elektro az helyvektor dv köryezetébe megtalálható. C. Az
SZIGETELŐK, FÉLVEZETŐK, VEZETŐK
SZIGETELŐK, FÉLVEZETŐK, VEZETŐK ITRISIC (TISZTA) FÉLVEZETŐK E EXTRÉM AGY TISZTASÁG (kb: 10 10 Si, v. Ge, 1 szennyező atom) HIBÁTLA KRISTÁLYSZERKEZET abszolút nulla hőmérsékleten T = 0K = elektron kevés
Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.
ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
A FUNDAMENTÁLIS EGYENLET KÉT REPREZENTÁCIÓBAN. A függvény teljes differenciálja, a differenciális fundamentális egyenlet: U V S U + dn 1
A FUNDAMENÁLIS EGYENLE KÉ REPREZENÁCIÓBAN A differeciális fudametális egyelet A fudametális egyelet a belső eergiára: UU (S V K ) A függvéy teljes differeciálja a differeciális fudametális egyelet: U S
VILLAMOS ENERGETIKA Vizsgakérdések (BSc. 2011. tavaszi félév)
1 VILLAMOS ENERGETIKA Vizsgaérdése (BSc. 2011. tavaszi félév) 1. Isertesse a villaoseergia-hálózat feladatr szeriti felosztását a jellegzetes feszültségsziteet és az azohoz tartozó átvihető teljesítéye
A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.
Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
A csatornakódolás elve A hibatűrés záloga: a redundancia
Az Iformatia Elméleti Alapjai dr. Kutor László A csatoraódolás elve A hibatűrés záloga: a redudacia http://mobil.i.bmf.hu/tatargya/iea.html Felhaszálóév: iea Jelszó: IEA07 BMF NIK dr. Kutor László IEA
Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése
Miért érdekes? Magsugárzások Dr Smeller László egyetemi doces Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti
8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.
8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),
FOLYADÉKKRISTÁLY-TELEVÍZIÓK Éber Nándor
FLYADÉKKRISTÁLY-TLVÍZIÓK Éber Nádor A 21. SZÁZAD KÉPRNYÔI MTA SZFKI, Budapest A szerezetü és tulajdoságai alapjá a folyadéo és a szilárd ayago özött sajátos átmeetet épezô folyadéristályo felfedezésü (1888)
Kvantum Hall-effektus óra
Kvatum Hall-effetus -3. óra Irodalom: S. Datta: Electroic Trasport i Mesoscopic Systems, Cambridge Uiv. Press, (997) J. Bird: Electro Trasport I Naosturctures http://www.eas.asu.edu/~bird/images/teachig.htm
Mérés és adatgyűjtés
Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény
Makromolekulák. Biológiai makromolekulák. Peptidek és fehérjék. Biológiai polimerek. Nukleinsavak (DNS vagy RNS) Poliszacharidok. Peptidek és fehérjék
Biológiai makromolekulák Makromolekulák A makromolekulák agyszámba ismétlődő, kovales kötéssel összekapcsolt kis egységekből (molekulából) felépülő egységek. Típusok: Szitetikus polimerek Pl. poly(viyl
Kutatói pályára felkészítı modul
Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Statisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
A kristályszerkezet hibái (rácshibák)
PR/B10/05DJVV0503BT00124BF0117 A kristályszerkezet hibái (rácshibák) Darabot Sádor (Kolozsvár, Romáia), Jeei Istvá (Stockholm, Svédország), Vicze Jáos (Budapest), Vicze-Tiszay Gabriella (Budapest) Kristályhibáak
V. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
Sok részecskés rendszerek. Sok részecskés rendszerek. Rendszerek családjai: anyagcsaládok gáz folyadék - szilárd
So észecsés edszee So észecsés edszee 01 Novembe 7 Pof. Fdy Judt észecse: atom moleula maomoleula so: 6x10 3 Redszee családja: ayagcsaládo gáz folyadé szlád Szemoto Redszee családja: ayagcsaládo gáz folyadé
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
X = 9,477 10 3 mol. ph = 4,07 [H + ] = 8,51138 10 5 mol/dm 3 Gyenge sav ph-jának a számolása (általánosan alkalmazható képlet):
. Egy átrium-hidroxidot és átrium-acetátot tartalmazó mita 50,00 cm 3 -es részletée megmérjük a ph-t, ami,65-ek adódott. 8,65 cm 3 0, mol/dm 3 kocetrációjú sósavat adva a mitához, a mért ph 5,065. Meyi
Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése
Miért érdekes? Magsugárzások Dr Smeller László egyetemi taár Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)
Sok részecskéből álló rendszerek leírása
So észecséből álló edszee leíása Fdy Judt egyetem taá 013 ovembe 7 észecse: atom, atomcsopot moleula maomoleula so: 6x10 3 gyszeű példa So észecse ölcsöhatásba V, p, T Levegő egy szobába. Hogya telesít
Az anyagi rendszer fogalma, csoportosítása
Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik
Sok részecskéből álló rendszerek leírása
So észecséből álló edszee leíása Pof. Fdy Judt 2014 otóbe 15 észecse: atom, atomcsopot moleula maomoleula so: 6x10 23 Egyszeű példa Egyszeű példa V, p, T Levegő egy szobába. Hogya telesít a gáz észecsé
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
9. HAMILTON-FÉLE MECHANIKA
9. HAMILTON-FÉLE MECHANIKA 9.. Legedre-éle traszormáció x x h x, p= p x x Milye x-él maximális? pl.= x alulról kovex h x =0: d p= dx x=x p a példába: p=x ; h= p x x Mekkora a maximuma? g p= p x p x p g=
Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?
Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Pelletek térfogatának meghatározása Bayes-i analízissel
Pelletek térfogatának meghatározása Bayes-i analízissel Szepesi Tamás KFKI-RMKI, Budapest, Hungary P. Cierpka, Kálvin S., Kocsis G., P.T. Lang, C. Wittmann 2007. február 27. Tartalom 1. Motiváció ELM-keltés
Vizsgatételek főiskolai szintű villamosmérnök szakos levelező hallgatók számára Fizika II. GEFIT122L
izsgatételek főiskolai szitű villamosmérök szakos levelező hallgatók számára Fizika II. GFIT1L 1. Kiematikai alapfogalmak. pálya, a sebesség és a gyorsulás defiíciója. Mozgás leírása derékszögű koordiáta-redszerbe.
Megoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat
Fzka feladatok: F.1. Cuam A cuam hullám formájáak változása, ahogy a sekélyebb víz felé mozog (OAA) (https://www.wdowsuverse.org/?page=/earth/tsuam1.html) Az ábra, táblázat a cuam egyes jellemzőt tartalmazza.
összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.
A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
A lézer alapjairól (az iskolában)
A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o
2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL
01/2008:20236 javított 8.3 2.2.36. AZ IONKONCENRÁCIÓ POENCIOMERIÁ MEGHAÁROZÁA IONZELEKÍ ELEKRÓDOK ALKALMAZÁÁAL Az onszeletív eletród potencálja (E) és a megfelelő on atvtásána (a ) logartmusa özött deáls
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
1. Komplex szám rendje
1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,
Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3
Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy
Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
Hangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
Molekuláris dinamika. 10. előadás
Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus
A feladatok megoldása
A feladato megoldása A hivatozáso C jelölései a i egyenleteire utalna.. feladat A beérezési léps felszíne fölött M magasságban indul a mozgás, esési ideje t = M/g. Ezalatt a labda vízszintesen ut utat,
Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján
Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra
Reakciómechanizmusok leírása. Paraméterek. Reakciókinetikai bizonytalanságanalízis. Bizonytalanságanalízis
Megbízható kémiai modellek kifejlesztése sok mérési adat egyidejő feldolgozása alajá uráyi amás www.turayi.eu ELE Kémiai Itézet Reakciókietikai Laboratórium Eddig dolgoztak eze a témá: (témavezetık: uráyi
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat
Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke
Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre
Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét
Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
Tuzson Zoltán A Sturm-módszer és alkalmazása
Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta
Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)
Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai
Szabályozó szelepek (PN 16) VF 2-2 utú szelep, karima VF 3-3 járatú szelep, karima
Szabályozó szelepe (PN 16) VF 2-2 utú szelep, arima VF 3-3 járatú szelep, arima eírás Jellemző: ágytömítéses ostrució Gyorscsatlaozó az AMV(E) 335, AMV(E) 435 -hez 2- és 3 Alalmazás everő és osztó azelepét
Proporcionális hmérsékletszabályozás
Proporcionális hmérséletszabályozás 1. A gyaorlat célja Az implzsszélesség modlált jele szoftverrel történ generálása. Hmérsélet szabályozás implementálása P szabályozóval. 2. Elméleti bevezet 2.1 A proporcionális
A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően
ELEKTROKÉMIA GALVÁNCELLÁK ELEKTRÓDOK
LKTOKÉMIA GALVÁNCLLÁK LKTÓDOK GALVÁNCLLÁK - olyan rendszere, amelyeben éma folyamat (vagy oncentrácó egyenlítdés) eletromos áramot termelhet vagy áramforrásból rajtu áramot átbocsátva éma folyamat játszódhat
A KÉMIAI POTENCIÁL A KÉMIAI POTENCIÁL A KÉMIAI POTENCIÁL A KÉMIAI POTENCIÁL I. A TÖKÉLETES GÁZ KÉMIAI POTENCIÁLJA
kémiai oteciál fogalma és számítása egy- és többkomoesű redszerekbe. I. tökéletes gázok kémiai oteciálja II. reális gázok kémiai oteciálja. Fugacitás. III. Folyadékok kémiai oteciálja. IV. kémiai oteciál
Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10
9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;
Fogorvosi anyagtan fizikai alapjai 6.
Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül
ε v ε c Sávszerkezet EMLÉKEZTETŐ Teljesen betöltött sáv: félvezető Hol van a kémiai potenciál? Fermi-Dirac statisztika exponenciális lecsengés
Sászeezet iltott sáo a gejesztési setuba: MLÉKZŐ egatí eetí töeg: lyu t 3-iezió: eetí töeg tezo Cu t s egegeett eegiaállaoto π a eleto π a Si eljese betöltött sá: élezető állaotsűűség g iszeziós eláió
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
A HŐMÉRSÉKLETI SUGÁRZÁS
A HŐMÉRSÉKLETI SUGÁRZÁS 1. Törtéeti összefoglaló A tizekilecedik század végé a fizikát lezárt tudomáyak tartották. A sikeres Newto-i mechaika és gravitációs elmélet alapjá a Napredszer bolygóiak mozgása
Nanoelektronikai eszközök III.
Nanoelektronikai eszközök III. Dr. Berta Miklós bertam@sze.hu 2017. november 23. 1 / 10 Kvantumkaszkád lézer Tekintsünk egy olyan, sok vékony rétegbõl kialakított rendszert, amelyre ha külsõ feszültséget
Fizika II. tantárgy 4. előadásának vázlata MÁGNESES INDUKCIÓ, VÁLTÓÁRAM, VÁLTÓÁRAMÚ HÁLÓZATOK 1. Mágneses indukció: Mozgási indukció
Fizika. tatárgy 4. előadásáak vázlata MÁGNESES NDKÓ, VÁLÓÁAM, VÁLÓÁAMÚ HÁLÓAOK. Mágeses idukció: Mozgási idukció B v - Vezetőt elmozdítuk mágeses térbe B-re merőlegese, akkor a vezetőbe áram keletkezik,
A talajok összenyomódásának vizsgálata
A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
Miért érdekes? Magsugárzások. Az atom felépítése. Az atommag felépítése. Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet
Miért érdekes? Magsugárzások Dr Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika) - teráia (sugárteráia)
Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2
Határelületi jelenségek 1. Felületi eszültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagszerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eszültség adhézió nedvesítés ázis ázisdiagramm
Hőmérsékleti sugárzás
Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális
ELEKTRONIKAI ALKATRÉSZEK
ELEKTRONIKAI ALKATRÉSZEK VEZETÉS VÁKUUMBAN (EMISSZIÓ) 2. ELŐADÁS Fémek kilépési munkája Termikus emisszió vákuumban Hideg (autoelektromos) emisszió vákuumban Fotoelektromos emisszió vákuumban KILÉPÉSI
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Ejtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás
FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK A leggyakrabban használt félvezető anyagok a germánium (Ge), és a szilícium (Si). Félvezető tulajdonsággal rendelkező elemek: szén (C),
18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható
8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.
1. Sajátérték és sajátvektor
1. Sajátérték és sajátvektor Leképezés diagoális mátrixa. Kérdés Mely bázisba lesz egy traszformáció mátrixa diagoális? A Hom(V) és b 1,...,b ilye bázis. Ha [A] b,b főátlójába λ 1,...,λ áll, akkor A(b
1.1. Műveletek eseményekkel. Első fejezet. egy véletlen esemény vagy bekövetkezik, vagy nem következik be. Egyszerű
Első fejezet Elemi valószíűségelmélet A valószíűségelmélet alapvető fogalma a véletle eseméy. A véletle ísérlet végrehajtásaor egy véletle eseméy vagy beövetezi, vagy em övetezi be. Egyszerű példa véletle
Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben
Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció
STATISZTIKA I. x ÁR. x ÁR. x ÁR. x ÁR. Számosállat. Egységhozam. Termelési érték, árbevétel. Az ár. Hogyan lehet ezeket összehasonlítani?
Hogya lehet ezeket összehasolítai? STATSZTKA. 8. Előadás dexek, adatábrázolás 2/22 Számosállat Egységhozam Állatteyésztési, statisztikai, valamit üzemszervezési mértékegység, amely külöböző fajú, fajtájú,
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
Metrikus terek. továbbra is.
Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d
DR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET
MISKOLCI EGYETEM VILLAMOSMÉRNÖKI INTÉZET ELEKTROTECHNIKAI- ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET 2003. 2.0. Diszkrét félvezetők és alkalmazásaik
3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás:
beütésszám. előadás TARTALOMJEGYZÉK Az alfa-bomlás Az exponenciális bomlástörvény Felezési idő és ativitás Poisson-eloszlás Bomlási sémá értelmezése Bomlási soro, radioatív egyensúly Az a bomlás: A Z X
Optika. sin. A beeső fénysugár, a beesési merőleges és a visszavert, illetve a megtört fénysugár egy síkban van.
Optika Mi a féy? Látható elektromágeses sugárzás. Geometriai optika (modell) Féysugár: ige vékoy párhuzamos féyyaláb Ezt a modellt haszálva az optikai jeleségek széles köréek magyarázata egyszerű geometriai
1. A radioaktivitás statisztikus jellege
A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a
Kalkulus II., második házi feladat
Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,
Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév
Árigadozások elıadás Kvatitatív pézügyek szakiráy 01/13. félév Heti óra elıadás + óra gyakorlat Elıadás: fıleg modellek, elemzési módszerek Gyakorlat: R programmal, alkalmazások Számokérés 50%: beadadó
Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Elemanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Kémiai szenzorok 1/ 18 Elemanalitika Elemek minőségi és mennyiségi meghatározására
Ezt kell tudni a 2. ZH-n
Ezt ell tudni a. ZH-n Turányi Tamás ELTE Kémiai Intézet A sebességi együttható nyomásfüggése 1 Sebességi együttható nyomásfüggése 1. unimoleulás bomlás mintareació: H O bomlása H O + M = OH + M uni is
Metabolikus utak felépítése, kinetikai és termodinamikai jellemzésük
218. 2. 9. Dr. olev rasziir Metabolius uta felépítése, inetiai és terodinaiai jellezésü 218. február 16. http://seelweis.hu/bioeia/hu/ 2 1 218. 2. 9. terodinaia ásodi törvénye (spontán folyaato iránya