Sok részecskés rendszerek. Sok részecskés rendszerek. Rendszerek családjai: anyagcsaládok gáz folyadék - szilárd

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sok részecskés rendszerek. Sok részecskés rendszerek. Rendszerek családjai: anyagcsaládok gáz folyadék - szilárd"

Átírás

1 So észecsés edszee So észecsés edszee 01 Novembe 7 Pof. Fdy Judt észecse: atom moleula maomoleula so: 6x10 3 Redszee családja: ayagcsaládo gáz folyadé szlád Szemoto Redszee családja: ayagcsaládo gáz folyadé szlád Mét édees? Kölcsöhatáso a észecsé özött szeezet Eletoállaoto zolált atomo, moleulá fzaéma bológa tulajdoságo öyezet

2 Kölcsöhatáso ötése szeezet E ot = B m E ot = A m> taszítás vozás = ölcsöható észecsé távolsága o gyesúly ötéstávolság E = ötés eega A ötés eegá heachája E ~ elsődleges ötése : ovales oos fémes eletovolt 1 ev= 3 cal/mól ~ ~ 100 J/mól 6 ev/ötés ~ 500 J/mól A ötéstávolság ( o ) és ötés eega E a ölcsöhatás eegafüggvéye oét függvéyalajától függ (A,B) ovales ötés oos ötés fémes ötés Pl. H gáz Pl. NaCl stály Pl. Na fém A ötés eegá heachája E ~ elsődleges ötése : ovales oos fémes E ~ másodlagos ötése eletovolt 1 ev= 3 cal/mole ~ ~ 100 J/mól 6 ev/ötés ~ J/mól Hhíd ev (víz: 0. ev) Hdofób ölcsöhatás ~ 0.1 ev Bológa edszee szeezetét a ötése heachája jellemz Atomo Moleulá Maomoleulá: l. fehéjé H O C N S. Hhda. Va de Waals. ölcsöhatáso va de Waals dól ottöltés ~ ev dól dól ~ 0.0 dól duált dól ~ 0.01 dőleges dól ~ 0.0 (dszezós) elsődleges ötése m De: sóhda Shda s

3 DNS ettős hélx szeezete: ötése heachája Atom áduszo és étéü ülöböző ölcsöhatásoba Elem Redsz ám Va de Waals sugá (m) Kovales sugá (m) Iosugá (m) Io H 1 0,10 0,037 H + C 6 0,170 0,077 0,09 C + N 7 0,155 0,075 0,05 N + O 8 0,15 0,073 0,140 O F 9 0,147 0,071 0,117 F P 15 0,180 0,106 0,058 P 3+ Atom áduszo ételmezése: 0 = A + B elsődleges ötése va de Waals ölcsöhatáso S 16 0,180 0,10 0,184 S Gyegébb ölcsöhatás agyobb ötéstávolság Példa a vozó ölcsöhatáso függvéyfomáa Az eletosztatus ölcsöhatáso otecáls eegájáa távolságfüggése, és ötés eegája Kölcsöhatás Eegafüggvéy távolságfüggése Átlagos ölcsöhatás eega (J/mól) oo o álló dólus 10 0 álló dólus álló dólus dólus dólus hőmozgás mellett dszezós ölcsöhatás Redszee családja: ayagcsaládo gáz folyadé szlád Osztályozás alaja: átlagos ölcsöhatás eega a észecsé özött Szeezet maoszóus tulajdoságo 1. Gázállaot (deáls gáz) Ncs ölcsöhatás E =0 szeezete edezetle észecsé azoosa, otszeűe zotó: tulajdosága függetlee a méés áyától defomálható téfogatát a tatály hatáozza meg E teljes = 1 mv 1 f mv = f = 3 V = N otszeűoészecsée Temus egyesúly az egyed észecsé sebessége eloszlást övet Maxwell Boltzma féle sebességeloszlás O

4 . Szlád teste amof stályos Részecsé özött eős ölcsöhatás E ~ elsődleges ötése Kstály Ideáls: egystály mostályos edezett szeezet: stály Részecsé: atomo (v. moleulá) azotóa: tulajdosága a méés áyától függe mechaa szládság hatáozott téfogat hatáozott ala 3. Folyadéo Részecsé: moleulá Köcsöhatás :gyegébb mt a stályoba E ~ másodlagos ötése edezett és edezetle tatomáyo átlagos E cs Víz moleulá folyadéba és stályos állaotba Hosszú távú ed NaCl S Elem cellá eodus edbe: stály ács Hosszú távú edezettség: Ismétlődés távolság >> 100xötéstávolság ( 0 ~0.15 m) Időlegese alauló és megszűő edezett tatomáyo ~ 510 moleula övd távú ed zotóa defomálhatóság felvesz a tatály alaját hatáozott téfogat temészetbe 14féle elem cella: Bavas ácso Amof szlád teste~megfagyott folyadéo b.3b. Folyadéstályo mezomof ayago Kölcsöhatás eega átlag ~ folyadéoé (cs) Hosszú távú ed ~ stálya jellemző Defomálhatóság Secáls alaú észecsé ~ oog, foal Megvalósuló edezettség fomá szmetus b.3b. Folyadéstályo(F) gyaolat éldá 1. Temotóa oleszteus edezettség eseté F étege sze jelz a hőméséletet otat temogáfa. Eletoota jelesége: eletomos té hatásáa a féyáteesztés megváltoz F étege eletódáal jelző 3. Lotóa:amffl szálalú moleulá (l. foszfolde) oldószebe edezett ettős v. többszöös étegeet alota ld membáo ematus Ks ölcsöhatás eega a edezettség fomá ézéeye ülső etubácóa Sejtmembá: ettős ld éteg Loszómá oleszteus hőmésélet oldósze moleulá eletomos té

5 Maoállaot moállaot Boltzma eloszlás eegeta állaoto leíása N (~10 3 ) függetle, megülöböztethető* észecse temus egyesúlyba T hőmésélete, zolált edszebe egyedleg soféle eegaállaotba lehet,, j 0, 0 = E = N betöltés szám: háy észecsée va eegája Moállaot: mely észecse meoa eegával edelez { } Maoállaot: N, T, E (,, ) Olya betöltés számo valósula meg, amelyeet a legtöbb féle moállaot valósít meg Boltzma eloszlás e = = e = Ne Aa valószíűsége, hogy adott eegájú állaotot a észecsé felvesze állaotösszeg Δ Boltzma fato Két eegaállaot elatív betöltöttsége *megülöböztethető l. tébel helyü szet Boltzma eloszlás összhagba a taasztalattal,, N,T temus egyesúly Ne = T 3 >T >T 1 Boltzma eloszlás éldá 1. Kötése felszaadása B.eloszlás matt? felsz, Meoa ötés eega mellett va jeletős felszaadás szobahőmésélete? (= 0.05eV) é, o Meoa ötés eega mellett lee 1%? felsz Δ 0.05eV = 0.01 Δ=0.1 ev Δ=E é másodlagos ötése: Hhda? felsz felsz eáls été, ha Δ em agyságedeel agyobb mt é N l. DNS bázsá 400 Hhd felszaadt állaotba! Időbel átlag, helye em meghatáozott! A DNSfehéje ölcsöhatásohoz felszaadásoa va szüség! Másodlagos ötése fotos szeee: bológa jeletőség! 1, 1 0,, 0 j o j o Δ T 3 >T >T 1. Baometus magasságfomula (taöyv) ( h) (0) Δ ( mgh+< > ) ( mg 0+< > ) mgh Temus egyesúly? T=álladó? Közelítés! V V h Gáz moleulá sűűsége ülöböző magasságoba Föld

6 Boltzma eloszlás éldá 3. Kéma eacó atválása hőmésélettel K = K = A B AB BA A B K egyesúly álladó AB BA eacósebessége (eze s aáyosa a megfelelő Boltzma fatoal) Méés adato a hőmésélet függvéyébe Aheusféle ábázolás atvácós eega A észecsé ölcsöhatása szélesít az atom eegaszteet Kstályba N ölcsöható azoos atom egy atom ívó N ívóa hasad 11Na atom eega Atválás eega göbe meedesége ( ( A B )) log K = log e 1 T 1s s 6 3s 1 AB, BA adato ugyaígy étéelhető ( gát A ), ( gát B ) atválás eegá A felhasadás legjobba a ülső ívóat ét Eegasávo eletomos tulajdoságo ota tulajdoságo ües Félvezető eletomos tulajdosága 1. Tszta félvezető eleto temus gejesztése a vezetés sávba lehetséges féle töltéshodozó: Δ 1eV tusú (eleto) tusú (eletoháy lyu ) Vezetés sáv Vegyété sáv betöltött a vezetőéesség ő a hőmésélettel: Δ σ = ost e ez a vseledés a félvezető jelleg bzoyítéa az eletomos töltéshodozóat temus atválás hozza léte (jó vezető vezetőéessége a hőmésélet emelésével csöe) Δ Gyémát 5.4 ev S Ge Δ (300Κ) 1.11 ev 0.66 ev

7 Félvezető eletomos tulajdosága 1. Tszta félvezető. Szeyezéses félvezető Vezetés sáv 4vegyétéű atomo (S v. Ge) félvezető stályácsába zolálta 3 v. 5 vegyétéű adalé Δ 1eV Vegyété sáv új, a szeyező atomo loalzált eletoállaot a tltott sávba effetív Δ lecsöe ( eV) vagy tusú töltéshodozó száma megő Köszööm a fgyelmet! dóda: egyeáyító + + vezet em vezet bemeet + tazszto : eősítő Eletoa alaáamöö egyeáyító, eősítő ge s méetbe Moeletoa

Sok részecskéből álló rendszerek leírása

Sok részecskéből álló rendszerek leírása So észecséből álló edszee leíása Pof. Fdy Judt 2014 otóbe 15 észecse: atom, atomcsopot moleula maomoleula so: 6x10 23 Egyszeű példa Egyszeű példa V, p, T Levegő egy szobába. Hogya telesít a gáz észecsé

Részletesebben

Sok részecskéből álló rendszerek leírása

Sok részecskéből álló rendszerek leírása So észecséből álló edszee leíása Fdy Judt egyetem taá 013 ovembe 7 észecse: atom, atomcsopot moleula maomoleula so: 6x10 3 gyszeű példa So észecse ölcsöhatásba V, p, T Levegő egy szobába. Hogya telesít

Részletesebben

Sok részecskéből álló rendszerek leírása

Sok részecskéből álló rendszerek leírása So észecséből álló edszee leíása Po. Fdy Judt 15 otóbe 15 észecse: atom, atomcso moleula maomoleula so: 6x1 3 gyszeű példa Komplex példa V, p, T Levegő egy szobába. Hogya telesít a gáz észecsé a maoszópus

Részletesebben

Sok részecskéből álló rendszerek leírása

Sok részecskéből álló rendszerek leírása So észecséből álló edszee leíása Po. Fdy Judt 216 otóbe 13 észecse: atom, atomcso moleula maomoleula so: 6x1 23 gyszeű példa V, p, T togé: 2 78% Oxgé: O 2 21% gyéb: 1% Levegő egy szobába. Hogya telesít

Részletesebben

2. Gázok 2.1. Ideális gáz. Első rész: előző előadás folytatása. Gázok. Fázisátalakulások. További példák a Boltzmann eloszlás következményeire

2. Gázok 2.1. Ideális gáz. Első rész: előző előadás folytatása. Gázok. Fázisátalakulások. További példák a Boltzmann eloszlás következményeire Első rész: előző előadás folytatása Gázo Fázisátalauláso További példá a Boltzma eloszlás övetezméyeire. Gázo.1. Ideális gáz Ideális gáz állapot jellemzése ics ölcsöhatás E =0 szerezete redezetle Potszerűe

Részletesebben

ε v ε c Sávszerkezet EMLÉKEZTETŐ Teljesen betöltött sáv: félvezető Hol van a kémiai potenciál? Fermi-Dirac statisztika exponenciális lecsengés

ε v ε c Sávszerkezet EMLÉKEZTETŐ Teljesen betöltött sáv: félvezető Hol van a kémiai potenciál? Fermi-Dirac statisztika exponenciális lecsengés Sászeezet iltott sáo a gejesztési setuba: MLÉKZŐ egatí eetí töeg: lyu t 3-iezió: eetí töeg tezo Cu t s egegeett eegiaállaoto π a eleto π a Si eljese betöltött sá: élezető állaotsűűség g iszeziós eláió

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Sok részecskéből álló rendszerek leírása II. rész Fény abszorpció

Sok részecskéből álló rendszerek leírása II. rész Fény abszorpció Boltzma eloszlás So részecséből álló redszere leírása II. rész Féy abszorpció ε ε, N megülöböztethető, függetle részecse Termius egyesúlyba (zárt redszerbe), T= hőmérsélete ε egy részecse lehetséges eergiáa

Részletesebben

du=tds pdv Izolált rendszerre, du=0, dv=0. Ez azt jelenti, hogy ds=0? Csak egyensúlyi izolált rendszer létezik? Nem!

du=tds pdv Izolált rendszerre, du=0, dv=0. Ez azt jelenti, hogy ds=0? Csak egyensúlyi izolált rendszer létezik? Nem! ÚJ ÁLOZÓK A POENCIÁLFÜÉNYEKEN: AZ ANYAMENNYIÉ A KÉMIAI POENCIÁL Az elméletüket eg egysze D- eszeeke éítettük fel! Péla: a bels eega fuametáls egyelete. Izolált eszee 0 0. Ez azt jelet hogy 0? Csak egyesúly

Részletesebben

ö í Ü ö Ö ö ű ö ű ö í ű ó ö ó ö Ö ó ü í ó ó ó ö ö ö ó ó ó ö í ó ó ó ö ö ö ö ö í ö ó ö í ö ö ű ö ű ö í í í í ü ü í ó ö ö ü ú ü ö ö ö ó ü ö ű ö ö ü ó ö ú ö ű ö í ú í ó ö í ó ö í ö ű ö ű ö í í í ó ö ö Ö Ö

Részletesebben

Á Á Á Á Ü ű Ü ö ű Ö ó ó ó ó Í ö Í ö ű ö ó ó ó Ö Í ó ó ó ó ó ó ó ö ó ö ö ó ö ó ö Ú Ö ó Í ö Í Íó Í ó Á Á ö ű ű ö É ü ű ó É ó ű ó ű ü É ó ó ó Ü É ó ó ö ó Í ü ö ö ö ü ó Ü ö ó ó É ü ö ö ó ü ű ó ü ö ó ó ö É

Részletesebben

Szerkezeti proteomika módszerei II.

Szerkezeti proteomika módszerei II. Bevezetés Potei fehéje: Szekezeti poteomika módszeei II. ~ 50 amiosavál hosszabb polime lác < > peptid 0 féle amiosav Dihedális szög: két sík szöge Köcsöhatások sokfélesége Glici Poli Ramachada plot geeated

Részletesebben

MIKROELEKTRONIKA, VIEEA306

MIKROELEKTRONIKA, VIEEA306 Budaesti Műszaki és Gazdaságtudomáyi Egyetem Elektroikus Eszközök Taszéke MIKROELEKTRONIKA, VIEEA306 Félvezető fizikai alaok htt://www.eet.bme.hu/~oe/miel/hu/03-felvez-fiz.tx htt://www.eet.bme.hu Budaesti

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

ő ü ő ő ő í ő ü í ü Á ő ő ő ű ő ő ő ő ő ő Ó Ó Ö ő ü ő ű ú ü ő ú ü ő ű ű ú ű ő í ő ű ő í ü Ő ő Ö Ö í ő ü ő ő ű ú ú í ú Ö ő Ö ő ü ő Ö í ú ő ú ü ő ű ű ú ő ú ő í ű ő í ü ő ő Ö Ö ő ő Ö Ö ő ű ú ú í ú Ö ő Ö ő

Részletesebben

FIZIKA I. KATEGÓRIA 2015-ben, a Fény Évében

FIZIKA I. KATEGÓRIA 2015-ben, a Fény Évében Oktatási Hivatal A 014/015. taévi Oszágos Középiskolai Taulmáyi Vesey dötő oduló FIZIKA I. KATEGÓRIA 015-be, a Féy Évébe MEGOLDÁSI ÚTMUTATÓ Zóalemez leképezési tulajdoságai Bevezető: A méési eladat egy

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Populáció nagyságának felmérése, becslése

Populáció nagyságának felmérése, becslése http:/zeus.yf.hu/~szept/kuzusok.htm Populáció agyságáak felméése, becslése Becsült paaméteek: N- az adott populáció teljes agysága (egyed, pá, stb) D- dezitás (sűűség), egységyi felülete/téfogata számított

Részletesebben

Fogorvosi anyagtan fizikai alapjai

Fogorvosi anyagtan fizikai alapjai Mit? előállítás Például: szekezet tulajdonságok fogovosi felhasználás ogovosi anyagtan fizikai alajai mind: Al O 3! Bevezető Miét? 1 Hogyan? The most exciting hase to hea in science, the one that healds

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése Miért érdekes? Magsugárzások Dr Smeller László egyetemi doces Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)

Részletesebben

Bevezetés az anyagtudományba II. előadás

Bevezetés az anyagtudományba II. előadás Bevezetés az anyagtudományba II. előadás 010. febuá 11. Boh-féle atommodell 1914 Niels Henik David BOHR 1885-196 Posztulátumai: 1) Az elekton a mag köül köpályán keing. ) Az elektonok számáa csak bizonyos

Részletesebben

ó ő ö ő ű ö Ö ó ő ő ü ő ű É ő ő ő ű É ó ó ó ö ö ö ú ö ő ö ő ó ó ö ö ő ó ú ő ö ú ő ö ő Í Í ó ó ű Í ó ő ő ó ő ó ó ó ó ó ő ö Í Í Í ő ü ö ö ő ó ő ó ó ó Í ó ű ő ó ö ó ű ü ö ó ő ó ő ó ó ő ö őö ő ő Í ú ö ő ö

Részletesebben

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése Miért érdekes? Magsugárzások Dr Smeller László egyetemi taár Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)

Részletesebben

Zárthelyi dolgozat 2014 C... GEVEE037B tárgy hallgatói számára

Zárthelyi dolgozat 2014 C... GEVEE037B tárgy hallgatói számára Záthely dlgzat 4 C.... GEVEE37B tágy hallgató számáa Név, Nept ód., Néháy ss övd léyege töő válaszat adj az alább édésee! (5xpt a Ss és páhzams mmácós ptll felslása és legftsabb jellemző. Páhzams ptll

Részletesebben

í ú ü ú í ú ü ú í ú ü ú ő ő Í Ö Ú Ü őí ű í í őő ő ü ő ő ű ő í É É Í Ö Ú Ü ő ő ő í ő í ú ű ő ő Í Ö Ú Ü ő ú ú í ü É ú í É ü í Ó ü É Ő É ü í ő Ú ő É ő ú É É ü ú í ő ő ü í ü ü ü í ű ú É É ü ü ü ü ü ü ő í ő

Részletesebben

ö ő ü ú ö ö ő ö ő ö ö ö ö í Íó ó ó ö ö Í ö ő ö ö ö ö í ö ő ö ö í ö í ö őö í ö ö í ő ű ö ú í í ú ö ű í ó ö ö í í ő í ü ó ű ö ó ű ö ú ö ú í ő ö ö í ő í ö ü ő ó ö Í ő ó ö Íö ö ö ö ö ő ö ö í ö ö ő í ű ö ú

Részletesebben

ő ő ö ö ö ö ü ó ó ú ó ő ő ő ő ő ó ó ő ő íő ó ó ö ö ő ő ő ö ő ó ó ö ű ö ö í ó ö í ő ó í ő ö Í í ö í ú ó ő íó ő ö ó ő ó ó ó ú ó í Í Í ő ő ö ö ő ö ú ö ö ő ö ö Í ő ó ő ő ő ó ú ú ó Í ő í ó ó í ö ő ó ó ő ő ó

Részletesebben

ő Á Á ö É Á ő ű ő Á Ó ü ö ö ö ő Ö Ö ő ü ü ü ű ü ö ö ö ő Ó Ó ő ő ő ő ű Ö ő ü ö ő Ö íő ő ő ö ű ő ő Ü ő ö ö ű ü ő ő ő ü ő ü ü ű ő ő ű Ü ő ű ű Ó ő ő ő í Ö ö ü ö ű í í ű í Ü ű ö ő ű ű ü í ű ű ö ü ö ű ü ű ö

Részletesebben

É Ó ő ü ó ő Í ü ő ü Í ó Ú ő ó ü ő ő ű ő ó Ö ü É É É É ó ó ü ü ő ü ű ü ó ó ű ű ó ő ó ő ü ő ő ü ó ü ó ő ő ő ű ü ő ü ü ő Ú ó ő ü ó ő ő ü ő ó Ü ő ó ő ő ó ő Ú ő ó ő ó ő ó ó ő ü ó Í Íő ő ü ő É ő ü ó ü ű Á ü

Részletesebben

ü ő ó ő ó ó ó ő ó ó ó í ó ö ó ö ö ű í ü ú í ő ő ö ő ő ő ó ö ü ó ö ó ü ó ő ú ű ő ö ü ő ú ű í ú ó őí ó ő í ö ó ö í ó ö ö ó í ó ö ó ó ó ö ő ó ő ő ő ő í ó ő ő ő ő ő ó ü ö ü ő ó ö ü ő ó ő ö ő ö ö ö ö í ö ö

Részletesebben

Ő Ö ü ö ü ü ó ó Á ü ó ó ó ű ö ü ü ö ü ö ö ű ü ö ü ü ö ö ö ö ü ü ó ü ú ü ö ö ó ó ö ö ö ú ü ö ö ó ó ö ö ö ö ö ü ü ö ö ü Á ó ö ó ű ö ó ö ö ö Ö ö ö Í ó ü ú ó ö ü ú ö ö ö ó ó Í ü ó ú ö ö ö Ö ó ü ó ú ü Í ö ü

Részletesebben

3. A kémiai kötés. Kémiai kölcsönhatás

3. A kémiai kötés. Kémiai kölcsönhatás 3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes

Részletesebben

é é ó ó ó é ö é é é ó é é é é é é é é é é é é é ú ó é ó ö é é ó é ö é ó é éú é ú ó é é é é é é é é ö é é é ö é Ö é é ö ó é ö é é é é ű é ö ö ü é ö é Í

é é ó ó ó é ö é é é ó é é é é é é é é é é é é é ú ó é ó ö é é ó é ö é ó é éú é ú ó é é é é é é é é ö é é é ö é Ö é é ö ó é ö é é é é ű é ö ö ü é ö é Í é ü é ö é é é ú Í ö é Íó ö ü é ü é ö é ó é ü ö ö ü é ö é é é ö ú ö é é ó ú é ü é ö é é é é é é é é é é ö ü é ö é é é ö ú ö é é é ö é Ö é ü ö é é ö ö é é é é é é é é é é ü é ú ó é é ú ú é ó ó é é é ó ö

Részletesebben

ő í ő Í í Ó í Ó í Ü í í í í í í ú í í Ü Ü Í Í í Ü Ú í í í í Í Ü Ő í í í í Ü ö Ó í í Ö í Ü í Ü Ö í Ö Ö í í Ó Ó Í í í Ő Ó í Ő Ú Ú Ö Ú Ö í Ő Í Ü í Ő í Í Ó Ó ő Ó Ó Í í Ü Ó Ó Ó Ó í ő í Ó Ó í Ö Ö í Ó Ó Ö í Ó

Részletesebben

rnök k informatikusoknak 1. FBNxE-1

rnök k informatikusoknak 1. FBNxE-1 za é ö foatusoa. BNxE- Mechaa 4. előadás D. Geetoszy Zsolt 00. szeptebe 9. Isétl tlés Elozduláso függetleségée ele Bolygóozgás (Keple töéye) Daa Newto axóá (I., II., III.) Ste tétele A ozgásegyelet és

Részletesebben

É Á É Á Á ű ö ö Á ű Á ö ű É É Á ű ű Ó Á ö ö ö ö ö ű ö ö ö ö ö ö ö ö ö ö ö ö ű ö ö ű ö ö ö ö ö ö ö ö Ü ű ö ö ö ö ö ű ö ö ű ö ö ö É ö ö ö ö ö ö ö É ö ö ö ö ö ö ö ö ö ö É ö ű Á É Á ű ö ö Á É Á Á Á ö ö ö É

Részletesebben

ó ó ö ö í ü í í ő ó Á ó Ó í ö ő ő í í ö Á ű ó ű í ő Í í ű ű ő ő ö ö í í í Ú Ü ö í ó ó ó ű í ő ű ö ő ö Ó ő ó í ú í Ó ú ö í Ó ű ü ű Ü í ü Ü Ó ű ő ó ű í Ü ő ő Ó Ö ö ö ő ő ű ő ü ű ű ó ő ö ő ö Ó í ó ű ő ű Ó

Részletesebben

ö ő őö ő ö ö ő í ő í í í ú ő ő ű ö ű ö ö í ú ő Í ú ő

ö ő őö ő ö ö ő í ő í í í ú ő ő ű ö ű ö ö í ú ő Í ú ő ö ő í ő í ö ő íő ú ő ő ő ű ö ű ö ö í í ú ő í í ö ö ő őö ő ö ö ő í ő í í í ú ő ő ű ö ű ö ö í ú ő Í ú ő í ö ő ö ő ü í ü ü ő ű ö ö ö í ö ö ö ő í ö ö ö ű ö ö ő ú ö ú É ö É í ő ö ő í í í ő ú ö ö í ü ő ő ú ő

Részletesebben

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- 5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a

Részletesebben

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE EG FÁZISÚ ÖBBOMPONENS RENDSZERE: AZ ELEGE ÉPZDÉSE AZ ELEGÉPZDÉS ERMODINAMIÁJA: GÁZO Általáos megfotolások ülöböz kéma mség komoesek keveredésekor változás törték a molekulárs kölcsöhatásokba és a molekulák

Részletesebben

É í ű ö ő ü ú ö ü ö ó ö ü í ő ó ú ő ű ú í ő ö ú ő ű ü í ő ó ü ö í ő í ö í ó ó í ó í ó ű ö ö ú í ő ú í í ó í ő í ő ó í ó ó í ó ó í í í í ó ö ö ü ó í ó

É í ű ö ő ü ú ö ü ö ó ö ü í ő ó ú ő ű ú í ő ö ú ő ű ü í ő ó ü ö í ő í ö í ó ó í ó í ó ű ö ö ú í ő ú í í ó í ő í ő ó í ó ó í ó ó í í í í ó ö ö ü ó í ó Ö É É É ö É Á ö Á ú ó É ó ö ó í ö ö ő í ő ő ő ö í ú ő ó ó ó ó ő ő ü ú ő ő ő ö ö ü ú ö ó ö ö í ö ö í ű ö ö ü ö ü ó ú í ú É ü í ő ő í ő ó í ú í ó ű ú í í ó ö ö ő ú ú í ő ó í É í ű ö ő ü ú ö ü ö ó ö ü í ő

Részletesebben

A fény diszperziója. Spektroszkóp, spektrum

A fény diszperziója. Spektroszkóp, spektrum A éy diszpeziója. Speoszóp, speum Iodalom [3]: 5, 69 Newo, 666 Tiszább, élesebb szíépe ad a öveező eledezés A speum szíe ovább má em boaó. A speum szíee úja egyesíve eé éy apu. Sziváváy Newo Woolsope-i

Részletesebben

ü ö ű ö ű ö Ö ö ú ü Á ü ü ö

ü ö ű ö ű ö Ö ö ú ü Á ü ü ö ü ö ű ö ű ö Ö ö ú ü Á ü ü ö ö Í ú ö ú Ó ü ö ö ű ü ű ö ü ö Í Í ö ö ű ö ö ű ű Á Á Ő Á Á ú ú É Íö Í Í ö ö Í ö ü ö Í ö ö Í ö ö ö ű Í Í ö Í ű Á É Á ú É ü Á Á É ü Á Á É ü ö ö ö ö ö ö ű ú ö Í ö ö ű ö ö ü ö ö

Részletesebben

2.6. Az ideális gáz fundamentális egyenlete

2.6. Az ideális gáz fundamentális egyenlete Fejezetek a fzka kéából.6. Az deáls gáz fudaetáls egyelete A legegyszerűbb terodaka redszer az u. deáls gáz. Erre jellező, hogy a részecskék között az egyetle kölcsöhatás a rugalas ütközés, és a részecskék

Részletesebben

Makromolekulák. Biológiai makromolekulák. Peptidek és fehérjék. Biológiai polimerek. Nukleinsavak (DNS vagy RNS) Poliszacharidok. Peptidek és fehérjék

Makromolekulák. Biológiai makromolekulák. Peptidek és fehérjék. Biológiai polimerek. Nukleinsavak (DNS vagy RNS) Poliszacharidok. Peptidek és fehérjék Biológiai makromolekulák Makromolekulák A makromolekulák agyszámba ismétlődő, kovales kötéssel összekapcsolt kis egységekből (molekulából) felépülő egységek. Típusok: Szitetikus polimerek Pl. poly(viyl

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

ó ó ó ö ü ő ö ó ú ő ó ö ó ó ő ü ő ó ő ü ö ő ő ó ó ő ó ö ö ú ó ő ö ó ő ő ó É ó ő ü ö ú ű ü ő ő ú ó ö ú ó ó ó ó ő ó ö ú Á ő ő ő Á ó ó ü É ö ú

ó ó ó ö ü ő ö ó ú ő ó ö ó ó ő ü ő ó ő ü ö ő ő ó ó ő ó ö ö ú ó ő ö ó ő ő ó É ó ő ü ö ú ű ü ő ő ú ó ö ú ó ó ó ó ő ó ö ú Á ő ő ő Á ó ó ü É ö ú ó ó ó ó É ő ó ő ö ú ó ö ú ó ő ó ő ó ó ó ö ü ő ö ó ú ő ó ö ó ó ő ü ő ó ő ü ö ő ő ó ó ő ó ö ö ú ó ő ö ó ő ő ó É ó ő ü ö ú ű ü ő ő ú ó ö ú ó ó ó ó ő ó ö ú Á ő ő ő Á ó ó ü É ö ú ő ü ó ü ő ó Á ő ő ó ő ó Íő

Részletesebben

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N

Részletesebben

É Á ű ő ó ű ő ő ű ő ó ő ü ő ő ó ó ő ő ő ő ó ó ő Ö ő ő í ó ó ó ó ű ő í ó ő ó ó ű ő ó ó ó í ű í ű ő ü ő ő ó ő ő ű ű ó í ó ű ő ő ó ó ó ó ő ő ó ő ó

É Á ű ő ó ű ő ő ű ő ó ő ü ő ő ó ó ő ő ő ő ó ó ő Ö ő ő í ó ó ó ó ű ő í ó ő ó ó ű ő ó ó ó í ű í ű ő ü ő ő ó ő ő ű ű ó í ó ű ő ő ó ó ó ó ő ő ó ő ó ű ő Ű Ö Á É Á ű ő ó ű ő ő ű ő ó ő ü ő ő ó ó ő ő ő ő ó ó ő Ö ő ő í ó ó ó ó ű ő í ó ő ó ó ű ő ó ó ó í ű í ű ő ü ő ő ó ő ő ű ű ó í ó ű ő ő ó ó ó ó ő ő ó ő ó É Ö ű ő í ű ő í í ó ű ü ő ü ó ü Ö ő ü ó ű ő ó ó

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

8. Reológia3: összetett viselkedés

8. Reológia3: összetett viselkedés 8. Reológia3: összetett viselkedés Bigam, ált. Bigam Nem-ewtoi viszkozitás összefoglalása ált. Bigam áamlása csőbe (levezetés Kolloid edszeek, biológiai edszeek Reometia (plasztikus, ugalmas, viszkózus

Részletesebben

í ű ő ü ó í ó í Ö ü í ő ó ő í ű ű ú ű ű ű ú úí ő í ü íő í ü ő í í ű ű ő í ü ű ó ő í ű ú ű ő ó ő í

í ű ő ü ó í ó í Ö ü í ő ó ő í ű ű ú ű ű ű ú úí ő í ü íő í ü ő í í ű ű ő í ü ű ó ő í ű ú ű ő ó ő í ő ü ő ő ő ó Ö ő ü ő ü Á ő ő ő Á ű ő ő ő ő ő ő ő ő ó ő ü Ö í ő ü í ő í í Ö í Ó ú ó í ő ü í ó ó í ő í ő í í ű Ö í í ű í ő ű í í ű ű í í ű ű í í ű í ű ő ü ó í ó í Ö ü í ő ó ő í ű ű ú ű ű ű ú úí ő í ü íő í

Részletesebben

2.10. Az elegyek termodinamikája

2.10. Az elegyek termodinamikája Kéma termodamka.1. z elegyek termodamkája fzka kéma több féle elegyekkel foglakozk, kezdve az deáls elegyektől a reáls elegyekg. Ha az deáls elegyek esetébe az alkotók közt kölcsöhatásokat elhayagoljuk,

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

ő ő ö ő ó ö í ő ő ó Ó Ó ö ó ó ű ö ö ó ő ő ö ö Ó ó Ó Ó ó Ó ö Ó ü Ó ó Á ő

ő ő ö ő ó ö í ő ő ó Ó Ó ö ó ó ű ö ö ó ő ő ö ö Ó ó Ó Ó ó Ó ö Ó ü Ó ó Á ő É ő Á ö ó ó ó ö ö Ö Ó Ó ö ő ó ő ő ö ö í ö ő ó ó ő ő ö ő ó ö í ő ő ó Ó Ó ö ó ó ű ö ö ó ő ő ö ö Ó ó Ó Ó ó Ó ö Ó ü Ó ó Á ő ö ö ő ó í ú ü ő ő ő Ó Ó ö ő ű ö í ő ű ó ó ű ó ö ő ó ú ö ő ó ő ő ó ó ó ő ő ó Ó ő ő

Részletesebben

X = 9,477 10 3 mol. ph = 4,07 [H + ] = 8,51138 10 5 mol/dm 3 Gyenge sav ph-jának a számolása (általánosan alkalmazható képlet):

X = 9,477 10 3 mol. ph = 4,07 [H + ] = 8,51138 10 5 mol/dm 3 Gyenge sav ph-jának a számolása (általánosan alkalmazható képlet): . Egy átrium-hidroxidot és átrium-acetátot tartalmazó mita 50,00 cm 3 -es részletée megmérjük a ph-t, ami,65-ek adódott. 8,65 cm 3 0, mol/dm 3 kocetrációjú sósavat adva a mitához, a mért ph 5,065. Meyi

Részletesebben

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van?

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van? SZÁMOLÁSI FELADATOK 1. Egy fehérje kcsapásához tartozó standard reakcóentalpa 512 kj/mol és standard reakcóentrópa 1,60 kj/k/mol. Határozza meg, hogy mlyen hőmérséklettartományban játszódk le önként a

Részletesebben

ő ő ö ó ö ú ő ő ó ó ö ö ó ö ó ó ó ó ö ö í í ö í ő ő ó ó ó ö Á É ó Á ű ú ó ö ő ú ó ó ó ó ű ö ó ó ó ó í ő ú ö ő ő ö í ó ö ő ú ó ó ó ó ű ö í ó ö ú ú ó ó

ő ő ö ó ö ú ő ő ó ó ö ö ó ö ó ó ó ó ö ö í í ö í ő ő ó ó ó ö Á É ó Á ű ú ó ö ő ú ó ó ó ó ű ö ó ó ó ó í ő ú ö ő ő ö í ó ö ő ú ó ó ó ó ű ö í ó ö ú ú ó ó ű ö ú í í ő ó ő ő ő ő ö ó ö ú ő ő ó ó ö ö ó ö ó ó ó ó ö ö í í ö í ő ő ó ó ó ö Á É ó Á ű ú ó ö ő ú ó ó ó ó ű ö ó ó ó ó í ő ú ö ő ő ö í ó ö ő ú ó ó ó ó ű ö í ó ö ú ú ó ó ő ó ő ó ö í ő ő í ó ö ű ó ö í ő ő

Részletesebben

ó ü ú ü ú ó ó ú ü ú ü ú ö ö ű ü ö ö ö ú ó ü ö ö ö ü ö ö ö óó ü ö ö ó ó ö ó ö ú ó ó ó ó ű ö ö ó ö ó ó ú ű ü ö ö óó ú ó ö ö ü ó ó ó ó ó ó ó ü ó ú ű ü ó ö ú ű ó ü ö ö ó ó ü Á ó ű ó ü ó ó ú ó ú ó ó ö ö ü ú

Részletesebben

ö ö ö ó ö ö ú ö ö ö ö ö ú ő ő ö ő ö ó ó ő ű ó ö őö ő ü ő ő ú ó Á Á Á Á ó ü ó ó ú Á Á Á ő ő ö ő ö ü É Á Á ú ö Á Á É É ö ü ö ö ő Í Á Ő É Ő ú Á É É ö ű ü ő ő ö ü ó ö Á É É ő ó ó ö ő ó Ö ő ó Ő ő ü ö ö ó ö

Részletesebben

Á Á Ó É ö ó ó É í ó ü ó ö ö í ó ö ó í ó í ú Í í ó í ö í ó ű ű ü ó ó ú í ö í ö ü ú í í ü ü ó ó ó ó ó ú í ü í ű ó í í ö ü ü í ű ó í ó ü ö ü í í ü ó ű ó í ü ü ó í ó ó í ó í ú í ó ó í ö ó ö Á óö ö í í ó ó

Részletesebben

Ö Í Ő Ó ó ö ó ó ő ö ú ö ú ö ö ú Í ó ö őö ő ü É É ő ő ö ö ó ó ö ő ő ő Ü É ü ú Ö Ö É É ő Ü Ö Í É Ó Ö Ó Ü É Ö ú Ó É Ő É É ö ö ü ö Ü ö ö ő ö ő ő Ö Ú Ő É Ő Ú É É ö ű ő ő ö ó ö Ú É É Ő Ó Ó ö Ó ö ó ő ó ő ó ű

Részletesebben

Ó Ó ö ő ő Ü ö Ü ő ö ö Ü Ó ö Ó Ó Ü ö Ó Ó Ü Ó Ü ö ö ő Ü ő ö Ü ő Ó Ü ő ö Ó Ó Ü ö ő Ü Ü Ü Ó ö ö ő Ü Ó Ö ö Ó Ü Ó Ü Ó ő ö ö Ü Ü ő ö Ó Ü Ó ö Ó Ó ö Ü ö ő ö Ó ö ö ö ö ö ö ö ö ö Ü ő ű ű ö Ó ű ő Ó Ó Ü Ó Ü ő Ü Ó

Részletesebben

Í ú Ó Á Á ö ö ő ö ő ö Á ö ő Í Í Í ö ö ő Í ö ö ű ö ü ö ú ü ő ü ő ö ő ö ő ú ő ö ő ö ő ö É ő ü ő ő ö ő ő Í ő ö ő ő ő ö ö ö ö ü ő Í ő ö ő Ó ü ő ő ü ü ő ő ő ő ü ő ö ű ő ő ő ő ő ő ű ő ő ő Í ű ő ö ö ő ő ő ű ő

Részletesebben

É É ő ü ó ü ú ü ó Ö ű ő ú ű ő ü ó ó Ö Ü ó ó ő ü ú ü ű ó ő ő ő ő ő ó ő ő ü ó ő ó ő ő Ö ó ő ő Ö ő ü ó ü Ö ő ü ó ő ő Á Á ő ó ó ó ő ő Á ű ő ó ó ő ü ő ü ő ő Á ú ü ü ó ő ű ő ő ő ó ü ó ő ő ü ó ó ó Á ő Á ő ó ő

Részletesebben

ü ö ú ü ü ö ú ő ö ő ő ű ö ú ő ű ö ü ü ő ú ö ü ü ö ö ő ö ú ű ü ö ő ű ö őö ő ü ő ö ő ö ö ü ü ő ű ö ö ü ü ő ü ü ő ü ú ö ö ü ö ü ö ö ő ú ő ő ú ü ő ő ü ö ú ő ö ü ő ú ő ő ö ö ö ő ő Á ő ö ő ü ő ö ő ú ü ü ő ő

Részletesebben

Ó ú ö ő Á ö ő ő ő Á ú ú ő ő ö ú ő ő ü ö ö ü ő ö ő ö ő Ó ö ö Ó ö ö ú ö ö ő ö ö ö ü ú ő ú ö ú ő ő ő ő ö ő ő ú ő ő ö ú ú ő ő ú ő ö ö ü ő ö ö ö ö ő ü ő ö ö ő ö ö ü ő ő ö ő ö ő ö ő ö ö ö ö ő ö ö ő ő ű ű ű ö

Részletesebben

ö Ö ő Í Ó ö ö Ö ő ő ű ö ő ö ö ö ö ő ő ö ő ő ő ő Ö ő ö ö Ö ö Ö ö ő ö Ö ő ö ő ö Ú ő ő ö ö Ö ő ö Ó ő ő ő Ö ö ő ö ö ú ö ő ö ö ö ö ű ö Ö ö Ó ö ú ú ö ő ö ú ö ö ö ö ö Ó ő ő öő ő Á ű ő ö Ö ő Á Ó ö Ó Ó ö ű ú ú

Részletesebben

ö ú Ú ö ö Ú Á É Á ő ú Ú Ú É É ő É É ö ú Ú ö É Á Á Á ö ö ö É ö ö ö Ú É ö Ú É ö ő ú Ú É ö Ü ö ö Ü ö Á Á ö ő ű ú ö ú Ú É É ö ű ú É ú ö ő ű ö ü É ú ú ö É ö ű É ú ö ú Ü ü É Á ö ő ű ö ö ú É ú ü ú É ö ű ú Á ü

Részletesebben

Oktatási Hivatal KÉMIA I. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató I.

Oktatási Hivatal KÉMIA I. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató I. ktatási Hivatal I. FELADATSR A 015/016. taévi rszágos Középiskolai Taulmáyi Versey második forduló KÉMIA I. Javítási-értékelési útmutató 1., Mg pot. Fr 1 pot 1 eltérés: 1 pot; mi. 0 pot 3. a) pl. 1 1 H

Részletesebben

ü ú ü É É Ő Ö ü ü ö ú ó ő ö ü ő ü ü ö ú ü í ő ö ő ó ö ö ö ö ü ö ö ö ö ü ü ő ö ú ü ő í í ö ü ü ö ő ó ő í ü ő í ő í Í ó í ó Í Ó Ü Ö ö ő ó ó ö ü Í Í ó Íí ö ő ó ó ö í Í í ő ó ö ő ó í ő ü ü ó ó ö ö Ú ó ó ü

Részletesebben

ő ű É Ó Ü É É É É Ü Ö É É É ű É Ö É Ü É Ú Ó ő Ó

ő ű É Ó Ü É É É É Ü Ö É É É ű É Ö É Ü É Ú Ó ő Ó Ú Ü Ü Ü Ü Ü Ü Ú Ú Ú Ü É Ü Ü ő ű É Ó Ü É É É É Ü Ö É É É ű É Ö É Ü É Ú Ó ő Ó Ö ű Ú É É Ö Ö ű Ó Ö ű Ü Ü Ü Ú É É ő ő ő Ó Ó Ó Ű Ű Ü Ü ő Ü Ö Ó Ö Ó ő Ó ő ő ő ő ű ő ő ű ű É ő ő ő ő ő ő ő ő ű ő Ö Ö Ö ő Ü Ö ő ő

Részletesebben

ö Á ö É É ü ü É É Ő ö É ö Á ó ü É Ó Ö Á ú é ü ö é Ö é ü é é ü ü é é Ü é ö ö Ö ö é Á é é é é é ó é é é é ü é ö ö ö í é ü ú é é é ü ü é é é ü é é ö é ö é é ó ö ü é é é é ó ó ö í ó é ó é é é ó é é é ű ö é

Részletesebben

Á Á É Á Ü ö ű ű ő í ő ö ő í ő ö í É ő í ű ö ő ő í ö ü ő ő ü ő ü í ö ö ü ö ü ő ő ü ü ő ü ö ő ő ő ő íő ö ö ö ü ő ő ő ő í ú ő ő í ü ö ő í ű ü ö ő ő ő ő í ú ö ö ő ö ö ö ö ü ő ő ö ő ő í í ő ö ü ö í ö ö ö ö

Részletesebben

ó Í ó ó Ü ó ő Ú ő É ó É Í ő Ö ő ő ó Íó ó Ú ó É Ö ó ő ő Ú Íő ő ő ő ő ő Ú ő ó ó ő ő ő ő ó ő ő ő ő ő ő Í ő ő ó ő ő ó ő Í ő ó ő ő ő ő ő ó ó ó ő ő ó ő ő ő ő ő ő ó ő ő ő ó ő ő Á ű ő ő ő ő ő ő Í ó ő ő ő ő ó ó

Részletesebben

Á Á Í ó ó ó ö ó Ü ö ú Í ó ö ö ó ú ö ó ö ö Ü ö ú ó ó ó ó ö ü ó ö ö ü Ü ö ö ú ó ó ö ú ö ó ó ó ó ö ó ö ó ö ó ö ű ö ö ö ű ö ö ű ö ö ö ű ö ö ó ö ö ó ó ü ö ö ű ö ö ö ó ö ű ö Ü ö ö ú ó ö ó ü ü ö ü ü ö Í ö ü ö

Részletesebben

ó ő ó ó ö ö ú Á Í ö ó ő ö ú Í ó ü ó ő ö ú ö ó ő ó ő ü ő ű ö ö ü ő ü ó Ó ö ó ó ő ő ő ö Í ó ö ö ö ó ő ö ő Í ü ö ö ö ö ö ö ő ö ö ö ö ú ú ű ö ű ó ó ö ö ő ű ö ú ö ö ö ö ö ó Á ö ö ö ő ő ó ő ő Ö ő ú ó ö ú ú ű

Részletesebben

ű í ö ö Á ü ü ö ö ö í í É ú ú ö ö ű í ö ü ö ú ü ű ú ö í í ú ö ú í ö ü í í ö í Á Ó É í ű ö ü ö ü ú ü ö ü ú ű ö ü ű ü í ü ű ü ü ö ű í ü í ö ü í í í í ö í ö ö ö Á ű ú ű ö ö ű í ö ö í ú í í ű í ö ú ö ö í Á

Részletesebben

Ő Ö Ü Ö Ö ő ü ó í ü ü ő ü ó Ö ó ő ó ó ő ó ő í ő í ü ő ö ö ö ü í ü ö ö ö ö Ö ő ő Ö ő í ó ő ó ő Ö í ő ő ő ő ü ő ő ö ó ű ö ó ö ú ő ő ó ü ö í ü ö ö ó í ú ő ó ő í ö ö ö í ő ö ő ő ó ü ö ú ü ő ó ó ő ó ő ó í í

Részletesebben

É É É Ó Ö É í Ö ő ü ó ő ó ű Á ű ó ő ó ü ó ő ű ő Ö ü É É É ó É ó ü ű í Ö ü ó ű í ó ő ó ő ü ó ü ő ó É Í ő ő ő Ú ó ő ő ő ó ű ó ő ó ü ő ő ő í ü ő ü ő ó Ü ő ó ő ő ó ő Ú ő ő ó ő í ó ő ü ó Í ő ő ü ő É í ő ü ó

Részletesebben

ú Ö ü ő ő ú ú ű ő í ó ó í ó ú ő ü ú ű ő í ó ó í ó ű í ó ő Í ő ü ú ő ő í ó ú Ö ő Ü ó ő ő É ó ó ó ó ő ő ú ű ő í ó ú ű ő ú ú ő ű ő í ő ó í ű ő ü ú ó ő ő ó ű ő ő í í í í ó ű ú ő Á ó ő Á ú ó ó ő ó í ó ű í í

Részletesebben

ú ő ó ú ö ő ü ú ö ő ó ó ó ü ő í ö í ó ú ő ó ó ó ú ó ú ó ő ő ö ö ő ó ú ó ő ó ő í Á Á ö ö ó ő ú ö ő ú ó í ő ü ü ü í ú ü ü ü ó ú í ü í ó ő ó ő í ú ü ú ó ü ü ö ó ü ó í ü ó ő ö ö í ü ú ó ő ó í ó ő ó í ó ó í

Részletesebben

Á ó ü ő Ö Á ü ó ü ő Í ü Í Ó ü ő ő ó ó ó Í ó ü ó ő ő ó ó ü ú Í ő ő ó Ó ő ó ü ó Á ü ó ő ó Í Á Í ő ó ó ó ő ő Á ó ó ú ő Í ő ű ó Ó ü ó ó ú ó ő ú ü ő ó ó ó ő ó ó Ö ó ó ő ó ő ó ő ü ű ő ó ó ő ú ő ú ü Í ü ő ó ó

Részletesebben

ü ö Ö ü ó ü ó ó ó Á Ő É ö Ö ü ó ü ú ó ó ó ö ó í í ö ú Ó É ö Ö ü ó ü ü ó ó ó ö ó í ü ö Ö ó ü ü ü ó ó ó ö ó ü í í í ó í ú ű ű ü ű ú í ü ö ö í ö ú ü ó ú ú ű í ü ö ö ó ú ó í ü ú ó ü ó ó ű ó í ü ű ü í ű í

Részletesebben

Á Ó Á Ü ő ű Ú ö í ő Ó ú ö Á ú Ű Ó ű Ó í ű ö í ö ő ö ö í ö ö ő É ö Á ű Ó ö Á Ó ö í Á í í ö ű ö ú ö ö ú ö Ú ö ű Ó Ú ö Á í Ó í í Í í í Í ö Ú ö Á ú í Ó ő í ú ö Á ú Á í ú ö Á ú í ö Á ú í Ó ö ű Ó Ú Ú ű ő ö ü

Részletesebben

É ő ő íí í ú í ő Ő ő ü ü ü ü ü Ü Ü ő ő ő ő í ő ő ő í íí í ő ű í Ó Ó Ó í Ö Ö í Á Ö Ü Ö É í Ö í ő Ö Ö Ö Á í Á ő ő ő ő É Í Í ő ú Ú ú Ö í ő Á Ö ő Í Í ő ű í ő ú ü íí í Ö ő ő ő ő Í ő ő ő ő í ő ő ő ő í É É í

Részletesebben

í ö ő í ú ö ö í íí ü Ú Í Á ú ü í ö í ő í ö ő ű Í í ö ü ü ő ő ú í ő í ő ü ü ő Í ő Í í ü ö ö ö ö í ű ő ö ö ö í ü í Ó ö í ő ő í í ő Ó Ú Ő Íő Ő Ó ő ö ő ü ű í í ü ú Ő Í ő ő ő í ü ő É í Ő í ü ü ö ő í ü ö ö ü

Részletesebben

Í ö Í ű ú ö ö ú ö É í í ö Ó ű í ö ö í ö ö ö í í ö í í ö ö í ö ö ö ű í ö ö ö ö ö ö ö ú ö í ö ö í ö ö ö ö ö ú ű ű ú ö ö í ö É í ö ö í ö ö ö ú ű ö ö í ö ú ű ö ö í í ú ö ö í ö í í ö ö ö ú ö ö ö ö Í ö ú ö ú

Részletesebben

ö Ö ö Ö ö ö ö ö ö ö ö Ö ö Ö ö ö ö ö ö ű ö ö ö ö Ö ö Ő Ü ö ö Ö Ö ö ö ö ö ö ö ö ö Ü ö ö ö ű ö ö ö ö ű ö ű ö Ö Ü Ü ö ö ú Ű ÍŐ Ö Ő ÍŐ ö ö ö ö ű ö Ö Ö Ó ö ö Ö ö ö Ö ö ö Ö ö ű ö ö É ö ö Í Á Á Ő ű ö ű ú Ö Ü Á

Részletesebben

í ö Ö Á í ö í í ö í ö ö í í ö ö ö ö í í ö í ö í ö í ü í í ö í í í í í ö ö í í í ú ö í í ö Á Á Á ü ú í ö Á í í í ö í í ü ö ö ö ö í ö í í í ú í í ű ú í í í í ö í ű í ö ö ü ö ű ö ö í í í í í ö ü í ö í ö ű

Részletesebben

Ő Ö ö Ö É Á Ü É ó É ó ü É É Ö Ö Á É Ő ú É Á ú Ő Ö Ü Ö Ö ü ó ó ü Ü ű ö ú ó Á í ó ö ö ö ö ó ü í í Á í Ó í ó ü Ö ö ú ó ó ö ü ó ó ö í í ű ö ó í ü í ö í í ű ö ü Ő ü ú Ö ö ó ö ó ö ö ö ü ó ö í ó Ö ö Ő ü Ö Ö ü

Részletesebben

ö é Ö é ü ö é ü ö é Ö é ü í ü ü ü é é ü é é Ö ö é é é é ö ü ö ü ö é é ö é é ö é é ö ö é í é ü é é é í é ö é é ö é ö é ü é ü ú é é é é é í é é é é ö ö é é ö ö é é í í é í é ü ö ü Á é ö Á í ö í é ö ü ö é

Részletesebben

ö ú í í í ő ű Ü Ű Í í Ő Á Á Ö Ő Ű Í ö ú í í í ú ő ö ű í í í ö Ó ő í í í ö ú í ö ö ö ö Ü ő ö ö ö ú ű ő ú ű ö ö ú ö ö ő Ü ö ö í í ő ö í í í í í í ö ö í ö ö í í ő í ő ö ő í ú í ö í ö í í ö ű ö ö Ó Ü ö ő ő

Részletesebben

ú ű ö ö ü ü Í ö ö ö ö É Í É ú ú É ú ú ö É ö Í Ü ú Í ö ö Í ú ö ö ö ö ü ö ö ú ü Ü ö ü Í ö ö ű ö ö Í ű ú ö ö ö ö Í ö ö ű ö ö Í ü Í ü ú Í É ö ö ü ö ö Ü ö ö Í ü Í ö ü Í Í ö Í ö Í ü ö ú Í ú Í ö É ú Í ö ö Í É

Részletesebben

É ö ö Í Í Í Ó Í Í Á Ó Á Ü Ú Í Á Á ű Á Ó Í Í É Á Ó Á Á ö ö Á Í Á Á ö ö ű ö ö Í Í ű Ö ű ö ö ű Í Í Ü ö ö Ó ű Í ö ö Í ö ö Ó ö Ö Í ö ö Ö ö ű ö ö Ó Í ű Ó ö ö ű ö ű Ö Ü Ö ű ű ö ö ö ö ö ö Íö ö Í Ö Ó ű ö ű ö ö

Részletesebben

ő ö é ü ö é Ö é ő ü é í ü é é ő ö é ő ö Á ó ü ö é í é ö é Ö é ő ü ü é í é é ó é é í í é é ő ü í ő Ö í é ő é é ő é ő éü ú ü ö ő í Ú Ú ö É í í ü ó ó ó ü ő ö é í ó ö é í ö é é í ö é ó ű ő ö é ő ű ő í é í

Részletesebben

ü ó Ö ü í ü ü ü ö É ó ó í ó ó ö ó ö ö ö í í ű ü ü ü Í í ü ü ü ö í ó í ó ó í ó í É ü ö í Í É í ö ú í ó í ö ö ó í ö ó ó ó ö ó ö í í ó ó í ó ó Ö í ö ö ó ö ó ú ó ö ó í ó ó í í ü ó í ö ó ó ü ü ó ö ó ú í ó í

Részletesebben