6. Előadás. Matlab grafikus lehetőségei, Salamon Júlia. Előadás I. éves mérnök hallgatók számára

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "6. Előadás. Matlab grafikus lehetőségei, Salamon Júlia. Előadás I. éves mérnök hallgatók számára"

Átírás

1 6. Előadás Matlab grafikus lehetőségei, 2D, 3D-s grafikák. Salamon Júlia Előadás I. éves mérnök hallgatók számára

2 Grafikák A Matlab programcsomag egyik nagy erőssége az igen hatékony és rugalmas grafikai rendszere. Kétdimenziósgrafikákió A Matlab használatával bárki kirajzolhat egy olyan grafikont, amelyet úgy adtak meg, hogy felsorolták az összetartozó koordinátákat. Ezt egyszerűen plot utasítással érhetjük el. Háromdimenziós grafikák Rajzolhatunk háromdimenziós görbéket, ezt a plot3 utasítással érhetjük el, hálós felületeket a mesh parancs használatával, vagy felületeket a surf utasítást alkalmazva VI. előadás 2

3 Plot utasítás Az első paraméter mindig az argumentumokat, míg a második az ábrázolandó függvény értékeit tartalmazza. plot(x,y) plot(z) plot(...,str) plot(x1,y1,str1, x2,y2,str2,...) Kirajzolja az y vektort az x vektornak megfelelően, vagyis az (x i,y i ) valós pontpárokat ábrázolja az x,y koordinátarendszerben. d A z vektorban levő komplex számokat ábrázolja, vagyis kirajzolja a (real(z), imag(z)) pontokat a komplex koordinátarendszerben. Az aktuális plot utasításban szereplő str sztring paraméterrel a rajz színét és a rajz vonaltípusát definiálhatjuk. Több grafikont készít ugyanabban a koordinátarendszerben, a megfelelő str1, str2,... szín- és vonaltípusok szerint. Ebben a parancsban valós és komplex adatokat nem lehet egyszerre használni. Ha nem adjuk meg a szín és a vonalfajtát, akkor a Matlab fogja megválasztani azt VI. előadás 3

4 Vonalfajták jelek és színek Pont Vonal Szín. pont * csillag x x betűű o kör + plusz jel s négyzet d rombusz <,>,v,^ háromszögek p ötszög h hexagon - folytonos -- szaggatott : pontozott -. folyonos és pontozott y sárga r piros g zöld w fehér m magenta c cián b kék k fekete Vonalfajtákat és színeket lehet együtt is megadni VI. előadás 4

5 Értelmezési tartományok Függvény típusa Polinom függvény Törtfüggvény Értelmezési tartomány Valós számok halmaza Nevező nem lehet nulla Gyökfüggvény Páros hatványú gyökök, gyök alatti kifejezése nem lehet negatív Exponenciális függvény Logaritmus függvény Trigonometrikus függvények Arcsin, arccos Arctg, arcctg Valós számok halmaza A logaritmus alapja és argumentuma szigorúan pozitív kell legyen Valós számok halamza, kivéve a tg. A kifejezés [-1,1] beli érték kell legyen Valós számok halmaza VI. előadás 5

6 Hibás függvényábrázolás VI. előadás 6

7 Példák 1. Rajzoljunk egy háromszöget. x=[ ]; y=[0010]; plot(x,y) 2. Rajzold ki a f(x)=cos(8x)+cos(9x) cos(9x) függvény grafikonját. x=-3.2:0.01:9.5; y=cos(8*x)+ (8*x)+cos(9*x); plot(x,y) VI. előadás 7

8 Példák 3. Rajzold ki a f(t)=1/(1+(1+2i)t) függvény grafikonját. t=-100:0.01:100; 0 01 y=1./(1+(1+2i)*t); plot(y, 'dm') 4. Rajzold ki a f(x)=sin(x)/x függvény grafikonját. x=-20:0.1:20 y=sin(x)./x; plot(x,y,'--*r') VI. előadás 8

9 Címkék és rácsok elhelyezése A vízszintes és függőleges tengelyekre az xlabel és az ylabel parancsokkal, míg a rajz tetejére a title paranccsal tudunk szöveget kiíratni. A text parancs segítségével pedig a rajz bármelyik, koordinátájával megadott pontjára feliratot, szöveget helyezhetünk. A grid paranccsal egy olyan rácsot illeszthetünk a koordinátarendszerre, amely illeszkedik a tengelyek beosztására. Ha nem vagyunk teljesen elégedetek az ábránk megjelenésével az axis utasítással megváltoztathatjuk akár a vízszintes akár a függőleges tengely mentén. x=0:0.01:2*pi; p; y=sin(x); plot(x,y) xlabel('x tengely') ylabel('y tengely') title('szinusz fuggveny') grid on axis equal VI. előadás 9

10 VI. előadás 10

11 VI. előadás 11

12 Több rajz egy ábrán Plot utasításban, egymásután felsorolva az ábrázolandó grafikonokat x=0:0.1:2; plot(x,sin(x),'or',x,cos(x),'k',x,exp(x)-2,'*b') Hold parancsot használva. Hold on esetén minden későbbi rajzunk ugyan abba a koordinátarendszerbe rajzolódik, a hold off hatására a következő rajz törli az ablakot és új koordinátarendszert vesz fel. x=0:0.1:2; hold on plot(x,sin(x),'or') plot(x,cos(x),'k') plot(x,exp(x)-2,'*b') Subplot utasítást használva subplot(m,n,p) p) m*n rajzot illesztünk be egy ábrába, p azt jelöli, hogy sorfolytonosan számolva hányadik rajz aktív VI. előadás 12

13 Példa subplot utasításra Akkor használjuk, amikor több rajz grafikonját összeszeretnénk hasonlítani, de nem azonos koordinátarendszerben szeretnénk őket ábrázolni. sin(x) sin(x) Hasonlítjuk össze a f függvények 1(x)=sin(x),f 2(x)=,f 3(x)= 2 grafikonjait. x x + 1 x=-10:0.1:10; 0 1 y=sin(x); subplot(1,3,1); plot(x,y) y=sin(x)./x; subplot(1,3,2); plot(x,y) y=sin(x)./(x.^2+1); subplot(1,3,3); plot(x,y) VI. előadás 13

14 Koordinátarendszerek loglog(x,y) semilogx(x,y) semilogy(x,y) Logaritmikus beosztást használ mindkét tengelyen. Csak az x (illetve y) tengelyen használ logaritmikus skálát, az y (illetve x) tengelyen marad a lineáris skála. polar(t,r,s), Polár-koordinátarendszerben rajzolja j ki az adatokat, ahol t vektorban vannak a szögek radiánban, r-ben a megfelelő szögekhez tartozó sugárérték, s az ábrázolás stílusát tárolja. bar(x,y) Az y vektorban lévő értékek oszlopdiagramját rajzolja ki. errorbar(x,y,e) Hibavonalas rajzolás, ahol az y értékek kerülnek kirajzolásra a megadott x helyeken egy, az e vektorban megadott nagyságú hibavonallal együtt. [t,r]=cart2pol(x,y) Az x,y derékszögű koordinátarendszerből elkészíti a polárkoordinátás megfelelőjét. [x,y]=pol2cart(t,r) A polárkoordinátákat derékszögű koordinátarendszerbe transzformálja VI. előadás 14

15 Példák 1.Exponenciális függvény ábrázolása különböző sálázás mellett a [-10,10] intervallumon. x=-10:0.1:10; y=exp(x); subplot(1,4,1); 1); plot(x,y) subplot(1,4,2); loglog(x,y) subplot(1,4,3); semilogx(x,y) subplot(1,4,4); 4); semilogy(x,y) 2. Rajzoljuk meg az arkhimédeszi csigát. sz=0:0.1:8*pi; r=2./sz; polar(sz,r); r); 3. Rajzoljuk meg az f(x)=cos(x) függvény oszlopdiagramját. x=-1:0.1:1; y=cos(x); bar(x,y) 4. Hibavonalas rajzot adunk meg. x=0:0.1:3; y=exp(-x); e=rand(size(x))/10; errorbar(x,y,e); VI. előadás 15

16 Koordinátarendszer váltás 1. Polár koordinátarendszerről áttérünk derékszögű koordinátarendszerre. t=0:0.01:2*pi; r=sin(4*t).*cos(2*t); subplot(1,2,1); polar(t,r); [x,y]=pol2cart(t,r); subplot(1,2,2); plot(x,y); 2. Derékszögű koordinátarendszerről áttérünk polár koordinátarendszerre. x=-10:0.01:10; y=sin(x); subplot(1,2,1); plot(x,y); [t,r]=cart2pol(x,y); subplot(1,2,2); t(122) polar(t,r); VI. előadás 16

17 Adatok leolvasása rajzról [x,y]=ginput Ha utána az egérrel az ábrára váltunk, majd tetszés szerint az ábra bizonyos pontjaira kattintunk az egér bal gombjával, akkor azon koordináták eltárolódnak az x és y vektorokban. A beolvasás végét az Enter billentyű lenyomása jelenti. [x,y]=ginput(n) Itt előre rögzítjük, hogy a beolvasandó pontok száma legyen n. [x,y,t]=ginput waitforbuttonpress Ebben az esetben azt is eltároljuk, hogy az ábrára az egér melyik gombjával katintottunk, ttt k illetve milyen billentyűt nyomtuk le időközben. Ez a t vektorban lesz tárolva. Háromgombos egér esetén a t vektorba 1 tárolódik a bal gomb lenyomása esetén, 2 a középső és 3 a jobb gomb lenyomásakor. Billentyű lenyomásakor, pedig az illető karakter ascii kódja tárolódik. Megállítja a Matlabot amíg egy billentyűt vagy egérgombot meg nem nyomunk VI. előadás 17

18 Példaprogram Egy ábrára a bal gomb lenyomásával rajzoljunk, addig amíg az egér jobb gombjával nem kattintunk a rajzra. figure; hold on axis([ ]); [x,y,t]=ginput(1); plot(x,y,'o'); xx=x; yy=y; while t~=3 [x,y,t]=ginput(1); plot(x,y,'o'); xx=[xx x]; yy=[yy y]; plot(xx,yy) end VI. előadás 18

19 Görbék rajzolása A háromdimenziós görbéket ugyanúgy rajzoljuk, mint a kétdimenziósakat. Az utasítás hasonló azaz a szintaktikája ugyanaz. plot3(x,y,z) plot3(x,y,z,str) Kirajzolja és egy vonallal összeköti az x, y, z vektorok által megadott összes (x i,y i,z i ) pontot a három- dimenziós koordinátarendszerben. A vektorok csak egyenlő hosszúak lehetnek. Az aktuális plot3 utasításban szereplő str sztring paraméterrel a rajz színét és a rajz vonaltípusát definiálhatjuk. plot3(x1,y1,z1,str1, Több grafikont készít ugyanabban a x2,y2,z2,str2,...) koordinátarendszerben, a megfelelő str1, str2,... színés vonaltípusok szerint. Ha nem adjuk meg a szín és a vonalfajtát, akkor a Matlab fogjamegválasztani g azt VI. előadás 19

20 Példaprogramok 1. Ábrázold a f(t)=(sin(t),t,cos 2 (t)) függvényt. t=0:0.1:8*pi; x=sin(t); y=t; z=cos(t).^2; plot3(x,y,z); grid on 2. Ábrázold a f(t)=(cos(4t)sin(t),sin(2t),t) függvényt. t=0:0.01:10*pi; x=cos(4*t).*sin(t); y=sin(2*t); z=t; plot3(x,y,z); grid on VI. előadás 20

21 Hálószerű felületek A Matlab a megadott háromdimenziós adatok alapján egy hálószerű felületet definiál a z koordináták alapján az x, y vektorok által meghatározott téglalaprács fölött. Egyenes vonallal l összeköti aszomszédos pontokat, t így olyan eredményt kapunk, mintha egy olyan hálót borítottunk volna a felületre, amelynek a csomópontjai megadott pontok, és csak a hálót látnánk. [u,v] v]=meshgrid(x,y) Két mátrixot állít elő, amelyek az x, y rácsrendszert definiálják. Haszna: összes lehetséges (u ij,v ij ) pontokkal definiált rácson z=f(u,v) utasítással pontonként értékeket definiálhassunk. mesh(z,c) mesh(x,y,z,c) Kirajzolja a z mátrix hálós rajzát. Ekkor a rácsozatot az (i,j) mátrixindexek definiálják, a függvényértékek a mátrix z ij elemei. A c paraméterben a színmátrixot adhatjuk meg. Kirajzolja a z mátrix hálós rajzát a c mátrixnak megfelelő színekkel, csak most a rácsozatot az (x ij,y ij ) pontpárok definiálják. (ha x hossza m, y-e n, akkor zmxn-es mátrix) meshc(...) h( Ugyanolyan hálós rajzot készít, mint ita mesh, csak itt még a grafikon alá az x, y síkra egy szintvonalrajz is készül VI. előadás 21

22 Példaprogramok 1. Ábrázold a következő felületet: 2. Ábrázold a következő felületet: z=sin(x 2 +y 2 ) z=x 3 cos(y) [x,y]=meshgrid(-2:.01:2); [x,y]=meshgrid(-10:.1:10); z=sin(x.^2+y.^2); ^2); z=x.^3.*cos(y) mesh(x,y,z) mesh(x,y,z) VI. előadás 22

23 Felületek rajzolása surf(x,y,z,c) surfc(x,y,z,c) pcolor(z) pcolor(x,y,z) fill(x,y,c) fill3(x,y,z,c) Megrajzolja az (x ij,y ij,z ij ) pontokra illeszkedő felületeket. Ha x, y vektorok hossza m és n, akkor z mátrixnak mxn-esnek kell lennie, a felületeket az (x i,y j,z ij ) pontok definiálják. Ha az x, y paraméterek hiányoznak, a Matlab egyenletes téglalaprácsot l t vesz fl fel. c aszínmátrix. Kirajzolja még a szintvonalakat az xy síkban a felület alá. A z mátrix színes rajzát készíti el úgy, hogy a mátrix minden z ij elemének egy színt feleltet meg, és ezt ábrázolja az (i,j) rácsozaton. Egy kiszínezet két- illetve háromdimenziós poligont rajzol. A poligon csúcsait az x, y vektorok határozzák meg, a c adja meg a kitöltés színét VI. előadás 23

24 Példaprogramok 1. Ábrázold a következő felületet: z=sin(x 2 +y 2 )/(x 2 +y 2 ) [x,y]=meshgrid(-4:0.05:4); z=sin(x.^2+y.^2)./(x.^2+y.^2); ( y ); surfc(x,y,z) shading interp 2. Ábrázold a következő felületet: z= (x 2 -y 2-1) (x 2 -y 2 +1) [x,y]=meshgrid(-4:0.1:4); z=(x.^2-y.^2-1).*(x.^2-y.^2+1); ( y ); surf(x,y,z) shading interp VI. előadás 24

25 Pcolor parancs Egy 4x4-ös rácsot szinez ki, veletlenszerűen. [x,y]=meshgrid(1:5) c=fix(rand(5)*16); pcolor(x,y,c) VI. előadás 25

26 Fill és fill3 parancsok subplot(2,1,1); x=[1 3 2]; y=[ ]; fill(x,y,'b') subplot(2,1,2) B=[2 2 0]; A=[1 1 0]; C=[3 1 0]; D=[ ]; fill3([a(1),b(1),c(1)],[a(2),b(2),c(2)],... [A(2) B(2) C(2)] [A(3),B(3),C(3)],'b') hold on fill3([c(1),a(1),d(1)],[c(2),a(2),d(2)],... [C(3),A(3),D(3)], 'k') k) fill3([a(1),b(1),d(1)],[a(2),b(2),d(2)],... [A(3),B(3),D(3)],'c') fill3([d(1),c(1),b(1)],[d(2),c(2),b(2)],... [D(3),C(3),B(3)],'m') ') grid on VI. előadás 26

27 Animációk készítése 1) Készíts egy programot, ahol egy körön mozogjon egy pont. x = -pi:.1:pi; for k=1:length(x) plot(cos(x),sin(x)); hold on plot(cos(x(k)),sin(x(k)),'*r'); hold off axis([ ]); pause(0.1) end 2) Készíts az előző feladathoz egy animációt (avi állományt). mov = avifile('e4.avi') x=-pi: -pi:.1:pi; for k=1:length(x) plot(cos(x),sin(x)); hold odon plot(cos(x(k)),sin(x(k)),'*r'); hold off axis([ ]); F = getframe(gca); mov = addframe(mov,f); end mov = close(mov); VI. előadás 27

28 Körön mozgó pont x = -pi:.1:pi; for k=1:length(x) plot(cos(x),sin(x)); hold on plot(cos(x(k)),sin(x(k)),'*r'); hold off axis([ ]); F = getframe(gca); nev=strcat('fnev',num2str(k+1000),'.jpg'); imwrite(f.cdata,nev); end VI. előadás 28

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel 6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA Dr`avni izpitni center *P05C10113M* ŐSZI IDŐSZAK MATEMATIKA ÉRTÉKELÉSI ÚTMUTATÓ 005. augusztus 9., hétfő SZAKMAI ÉRETTSÉGI VIZSGA RIC 005 P05-C101-1-3M ÚTMUTATÓ a szakmai írásbeli érettségi vizsga feladatainak

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Név Magasság Szintmagasság tető 2,700 koszorú 0,300 térdfal 1,000 födém 0,300 Fsz. alaprajz 2,700 Alap -0,800

Név Magasság Szintmagasság tető 2,700 koszorú 0,300 térdfal 1,000 födém 0,300 Fsz. alaprajz 2,700 Alap -0,800 Építész Informatika Batyu Előveszünk egy Új lapot 1. Szintek beállítása Lenullázzuk!!!!! A táblázat kitöltését az Alap szinten kezdjük az alap alsó síkjának megadásával. (-0,800) Beírni csak a táblázatba

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

Beregszászi István Programozási példatár

Beregszászi István Programozási példatár Beregszászi István Programozási példatár 2 1. fejezet 1. laboratóriumi munka 1.1. Matematikai kifejezések Írja fel algoritmikus nyelven a megadott kifejezést megfelelő típusú változók segítségével! Figyeljen

Részletesebben

Prezentáció, Diagramok, rajzolt objektumok. Szervezeti diagram

Prezentáció, Diagramok, rajzolt objektumok. Szervezeti diagram A szervezeti diagram fogalma A szervezet egy többé-kevésbé állandó tagsággal rendelkező, emberekből álló csoport, melynek van egy vezető rétege. (forrás: Dr. Sediviné Balassa Ildikó: Szervezési Ismeretek

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Lakóház tervezés ADT 3.3-al. Segédlet

Lakóház tervezés ADT 3.3-al. Segédlet Lakóház tervezés ADT 3.3-al Segédlet A lakóház tervezési gyakorlathoz főleg a Tervezés és a Dokumentáció menüket fogjuk használni az AutoDesk Architectural Desktop programból. A program centiméterben dolgozik!!!

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

A digitális képfeldolgozás alapjai

A digitális képfeldolgozás alapjai A digitális képfeldolgozás alapjai Digitális képfeldolgozás A digit szó jelentése szám. A digitális jelentése, számszerű. A digitális információ számokká alakított információt jelent. A számítógép a képi

Részletesebben

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát!

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát! Konduktometriás titrálás kiértékelése Excel program segítségével (Office 2007) Alapszint 1. A mérési adatokat írjuk be a táblázat egymás melletti oszlopaiba. Az első oszlopba kerül a fogyás, a másodikba

Részletesebben

Görbe- és felületmodellezés. Szplájnok Felületmodellezés

Görbe- és felületmodellezés. Szplájnok Felületmodellezés Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Rajzoljunk a Flash programmal! FLASH ALAPOK I.

Rajzoljunk a Flash programmal! FLASH ALAPOK I. Bódis Attila: FLASH ALAPOK http://members.upclive.hu/abodis/ A dokumentum az Öveges József SZKI tanulói és tanárai, valamint az Öveges Versenyre nevező általános iskolák diákjai és tanárai számára készült.

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Geometriai alapok Felületek

Geometriai alapok Felületek Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

1.1.1 Dátum és idő függvények

1.1.1 Dátum és idő függvények 1.1.1 Dátum és idő függvények Azt már tudjuk, hogy két dátum különbsége az eltelt napok számát adja meg, köszönhetően a dátum tárolási módjának az Excel-ben. Azt is tudjuk a korábbiakból, hogy a MA() függvény

Részletesebben

OPTIKAI CSALÓDÁSOK. Vajon valóban eltolódik a vékony egyenes? A kávéházi fal. Úgy látjuk, mintha a vízszintesek elgörbülnének

OPTIKAI CSALÓDÁSOK. Vajon valóban eltolódik a vékony egyenes? A kávéházi fal. Úgy látjuk, mintha a vízszintesek elgörbülnének OPTIKAI CSALÓDÁSOK Mint azt tudjuk a látás mechanizmusában a szem által felvett információt az agy alakítja át. Azt hogy valójában mit is látunk, nagy szerepe van a tapasztalatoknak, az emlékeknek.az agy

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

CAD-ART Kft. 1117 Budapest, Fehérvári út 35.

CAD-ART Kft. 1117 Budapest, Fehérvári út 35. CAD-ART Kft. 1117 Budapest, Fehérvári út 35. Tel./fax: (36 1) 361-3540 email : cad-art@cad-art.hu http://www.cad-art.hu PEPS CNC Programozó Rendszer Oktatási Segédlet Laser megmunkálás PEPS 4 laser megmunkálási

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. október 16. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK I. Témakör: feladatok 1 Huszk@ Jenő IX.TÉMAKÖR I.TÉMAKÖR HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK Téma A halmaz fogalma, alapfogalmak, elemek száma, üres halmaz, egyenlő halmazok, ábrázolás Venn-diagrammal

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Gábor Dénes Számítástechnikai Emlékverseny 2009/2010 Alkalmazói kategória, I. korcsoport Második forduló

Gábor Dénes Számítástechnikai Emlékverseny 2009/2010 Alkalmazói kategória, I. korcsoport Második forduló Gábor Dénes Számítástechnikai Emlékverseny 2009/2010 Alkalmazói kategória, I. korcsoport Második forduló Kedves Versenyző! A feladatok megoldását beküldheted: CD-n az azonosító kódnak megfelelő könyvtárban.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2010. október 19. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2010. október 19. EMELT SZINT 1) MATEMATIKA ÉRETTSÉGI 010. október 19. EMELT SZINT a) Mely valós számok elégítik ki az alábbi egyenlőtlenséget? 3 3 1 1 8 b) Az alábbi f és g függvényt is a f 3 és g 0,5,5 I. 3;6. intervallumon értelmezzük.

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat1 Javítási-értékelési útmutató MTEMTI a 8. évfolyamosok számára Mat1 JVÍTÁSI-ÉRTÉEÉSI ÚTMUTTÓ 201. január 18. javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. pontszámok

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

Matematika kisérettségi

Matematika kisérettségi Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban tehát attól függ, hogy x milyen értéket vesz fel. A függvényeket a közgazdaságtanban is a jól ismert derékszögû koordináta-rendszerben ábrázoljuk, ahol a változók nevének megfelelõen általában a vízszintes

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT 1. FELADATSOR Felhasználható idő: 40 perc I. rész 1.1.) Oldja meg grafikusan az alábbi egyenlőtlenséget! x + 1 + 1 x + x + 11 1..) Mekkora legyen az x valós szám értéke, hogy az alábbi három mennyiség

Részletesebben

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M) Matematika PRÉ megoldókulcs 04. január 8. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi feladat megoldása kötelező volt! ) Adja meg az x+ y = 3 és az y = egyenletű egyenesek metszéspontjának

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Nagy Ilona 2013.06.01.

Nagy Ilona 2013.06.01. Bevezető matematika példatár Kádasné Dr. V. Nagy Éva Nagy Ilona 0.06.0. Tartalomjegyzék Bevezető. Gyakorlatok.. Műveletek törtekkel, hatványokkal, gyökökkel................. A logaritmus fogalma; arány-

Részletesebben

Koordináta-rendszerek

Koordináta-rendszerek Koordináta-rendszerek Térkép: a Föld felszín (részletének) ábrázolása síkban Hogyan határozható meg egy pont helyzete egy síkon? Derékszögű koordináta-rendszer: a síkban két, egymást merőlegesen metsző

Részletesebben

A LOGO MOTION TANÍTÁSA

A LOGO MOTION TANÍTÁSA A LOGO MOTION TANÍTÁSA ÍRTA: SZABÓ JÁNOS TANÍTÓ 2010, KECEL LOGO MOTION TANÍTÁSA KÉSZÍTETTE: SZABÓ JÁNOS TANÍTÓ 2010. 1 1. FOGLALKOZÁS Kattintsunk a Logo motion ikonjára. A Színes teki. Ez a program ablaka.

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

II. rész. Valós függvények

II. rész. Valós függvények II. rész Valós függvények Feladatok 3 4 3.. Értelmezési tartomány Határozza meg a következ függvények értelmezési tartományát! 3.. y = + + 3.. 3.4. 3.6. y = y = 3 y = + 3 ln 5 4 3.3. 3.5. 3.7. y = 3 +

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0622 ÉRETTSÉGI VIZSGA 2007. november 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

6000 Kecskemét Nyíri út 11. Telefon: 76/481-474; Fax: 76/486-942 bjg@pr.hu www.banyai-kkt.sulinet.hu. Gyakorló feladatok

6000 Kecskemét Nyíri út 11. Telefon: 76/481-474; Fax: 76/486-942 bjg@pr.hu www.banyai-kkt.sulinet.hu. Gyakorló feladatok BÁNYAI JÚLIA GIMNÁZIUM 6000 Kecskemét Nyíri út 11. Telefon: 76/481-474; Fax: 76/486-942 bjg@pr.hu www.banyai-kkt.sulinet.hu Gyakorló feladatok I. LEGO Robotprogramozó országos csapatversenyre A következő

Részletesebben

MATEMATIKA 11. évfolyam osztályozóvizsga/javítóvizsga témakörei

MATEMATIKA 11. évfolyam osztályozóvizsga/javítóvizsga témakörei MATEMATIKA 11. évfolyam osztályozóvizsga/javítóvizsga témakörei 1.félév I. Kombinatorika, gráfok Permutációk, variációk Ismétlés nélküli kombinációk Binomiális együtthatók, Pascal-háromszög Gráfok pontok,

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

VII. Appletek, grafika

VII. Appletek, grafika VII. Appletek, grafika 1. Bevezetés A tantárgy elején említettük, hogy a Java alkalmazásokat két nagy csoportba sorolhatjuk. Ezek: alkalmazások (applications) alkalmazáskák (applets) Az eddig megírt programjaink

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 005. május 0. MATEMATIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 40 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Adatelemzés az R-ben. 2014. április 25.

Adatelemzés az R-ben. 2014. április 25. Adatelemzés az R-ben 2014. április 25. Kísérleti adatok elemzése Kísérlet célja: valamilyen álĺıtás vagy megfigyelés empirikus és szisztematikus tesztelése. Pl. a nők többet beszélnek, mint a férfiak,

Részletesebben

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez Bevezetés Ebben a fejezetben megismerkedünk a Logikai függvények típusaival és elsajátítjuk alkalmazásukat. Jártasságot szerzünk bonyolultabb feladatok megoldásában, valamint képesek leszünk a függvények

Részletesebben

Surfer for Windows alapismeretek. A Surfer for Windows használata (8. verzió) A Surfer fontosabb jellemzői

Surfer for Windows alapismeretek. A Surfer for Windows használata (8. verzió) A Surfer fontosabb jellemzői Surfer for Windows alapismeretek A Surfer for Windows használata (8. verzió) Kovács Balázs & Szanyi János Kovács Szanyi, 2004-2006 Hidrodinamikai és transzportmodellezés kurzus kezdőknek A Surfer fontosabb

Részletesebben

XTB TŐZSDEVERSENY 2012

XTB TŐZSDEVERSENY 2012 2. KERESKEDÉSI FELÜLETEK (PLATFORMOK) Két kereskedési felületet ajánlunk a verseny során: MetaTrader nemzetközileg ismert online tőzsde kereskedési platform, illetve xstation a web-böngésző alapú felület.

Részletesebben

Több oldalas dokumentum készítése. MS Word 2010 szövegszerkesztővel

Több oldalas dokumentum készítése. MS Word 2010 szövegszerkesztővel Több oldalas dokumentum készítése MS Word 2010 szövegszerkesztővel Egy többoldalas dokumentummal szemben támasztott követelmények (példa feladaton keresztül bemutatva) Készítsünk hat oldalas dokumentumot,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

Másolás, mozgatás. Kijelölés. Másolás

Másolás, mozgatás. Kijelölés. Másolás Kijelölés Másolás, mozgatás Kijelölt terület: téglalap alakú (az egér bal gombjának nyomva tartása melletti átlós mozgatással rakható le) szabadkézzel körülhatárolt tartomány szaggatott vonal veszi körül

Részletesebben

3. MINTAFELADATSOR KÖZÉPSZINT

3. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

Teljesítményprognosztizáló program FELHASZNÁLÓI KÉZIKÖNYV

Teljesítményprognosztizáló program FELHASZNÁLÓI KÉZIKÖNYV Teljesítményprognosztizáló FELHASZNÁLÓI KÉZIKÖNYV Tartalomjegyzék 1. A szoftver feladata...3 2. Rendszerigény...3 3. A szoftver telepítése...3 4. A szoftver használata...3 4.1. Beállítások...3 4.1.1. Elszámolási

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1313 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

Az eszközpaletta. Felsı sor balról jobbra. Második sor balról jobbra 1/7

Az eszközpaletta. Felsı sor balról jobbra. Második sor balról jobbra 1/7 Az eszközpaletta Látható, hogy a Delphi 7.0 ablakai a Windows operációsrendszernél megszokott jellemzıkkel bírnak: címsor, ablakkezelı gombok, vezérlımenü stb. A Delphi címsora a Delphi 7 - Project1 feliratot

Részletesebben

M-Fájlok létrehozása MATLAB-ban

M-Fájlok létrehozása MATLAB-ban M-Fájlok létrehozása MATLAB-ban 1 Mi az M-fájl Annak ellenére, hogy a MATLAB rendkívül kifinomult és fejlett számológépként használható, igazi nagysága mégis abban rejlik, hogy be tud olvasni és végrehajtani

Részletesebben

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont)

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont) 1997 Írásbeli érettségi-felvételi feladatok 1. Oldja meg a következő egyenletet a valós számok halmazán: 3 2 x 1 2 2 x 1 + 2 2x 1 3 2 x 1 = 5. (9 pont) 2 2. Mekkora a szabályos kilencszög kerülete és területe,

Részletesebben

1. Írjunk programot mely beolvas két egész számot és kinyomtatja az összegüket.

1. Írjunk programot mely beolvas két egész számot és kinyomtatja az összegüket. 1. Írjunk programot mely beolvas két egész számot és kinyomtatja az összegüket. // változó deklaráció int number1; // első szám int number2; // második szám int sum; // eredmény std::cout

Részletesebben

TÉRINFORMATIKAI MODELLEZÉS TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI A VALÓSÁG MODELLEZÉSE

TÉRINFORMATIKAI MODELLEZÉS TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI A VALÓSÁG MODELLEZÉSE TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI TÉRINFORMATIKAI MODELLEZÉS A VALÓSÁG MODELLEZÉSE a valóság elemei entitásosztályok: települések utak, folyók domborzat, növényzet az entitás digitális megjelenítése

Részletesebben