A stabilitás vizsgálata: ellenőrző kártyák
|
|
- Donát Szabó
- 8 évvel ezelőtt
- Látták:
Átírás
1 A miőségszabályozás felaata upper atural tolerace limit ige ige STABIL? em upper specificatio limit (fölső tűréshatár) KÉPES? em lower atural tolerace limit lower specificatio limit (alsó tűréshatár) Méréses elleőrző kártyák 1 A stabilitás vizsgálata: elleőrző kártyák méréses miősítéses commo cause: véletle igaozás specific (assigable) cause: azoosítható, tetteérhető (veszélyes) hiba, megváltozott a folyamat Méréses elleőrző kártyák
2 A folyamatot akkor evezzük stabilak vagy statisztikailag kézbetartottak (agolul: i statistical cotrol), ha az igaozás véletleszerű, iőbe állaó, icseek jól felismerhető és megevezhető okai. Ha a folyamat stabil, a múltbeli aatok alapjá jövőbei viselkeése bizoyos határok között kiszámítható. Ez úgy érteő, hogy meg tujuk moai, milye valószíűséggel aóik e határoko kívüli vagy belüli érték (Shewhart, 1931). Méréses elleőrző kártyák 3 Méréses elleőrző kártyák 1. péla Pörköltkávé-aagoló automata töltötte csomagok tömegéek feltételezett várható értéke 5 g, az aagolás ismert variaciája 1 g. A folyamatból vett 5 elemű mita átlaga: x = g Megfelel-e az aagolt tömeg várható értéke a feltételezések, ha az elsőfajú hiba megegeett valószíűsége α=.5? Méréses elleőrző kártyák 4
3 Emlékeztető a hipotézisvizsgálatból (z-próba) z x µ = σ / elfogaási tartomáy: α/ α/ ( < z z ) = 1 α P -z a a H elutasítás -z α/ elfogaás z α/ z elutasítás P -z x µ < z H = α σ 1 a a µ α / / + α / σ z σ < x < µ z / x z σ < µ < x z / α / / + α / σ a kofiecia-itervallum tartalmazza a µ értéket Méréses elleőrző kártyák 5 ( x) = µ 5 H : E = z σ < x < µ + z µ α α σ α / α / LCL µ UCL x LCL: lower cotrol limit: z / µ α / σ UCL: upper cotrol limit + z / µ α / σ Méréses elleőrző kártyák 6
4 ( x) = µ 5 H : E = Az elfogaási tartomáy µ z σ < x < µ + zα α σ z α / = µ α / σ UCL = x fölső = + z / = LCL = xalsó = z / = Dötés: µ α / σ Méréses elleőrző kártyák 7 elfogaási tartomáy: µ z σ < x < µ + zα α σ Vegyük iőközökét mitát, és ábrázoljuk az iő függvéyébe! elleőrző kártya ha stabil (i statistical cotrol): folytassuk ha em stabil (out of cotrol): avatkozzuk be Méréses elleőrző kártyák 8
5 A beavatkozás sokszor költséges (a gyártó sort meg kell állítai), ezért kis esélyt szokás ai a hamis riasztásra: z α/ =3 (ú. ±3σ határ), ekkor α=.7, vagyis ezer esetből kb. háromszor téveük. Elfogaási tartomáy: µ σ < x < µ 3σ 3 + LCL UCL Méréses elleőrző kártyák 9 Elfogaási tartomáy: µ σ < x < µ 3σ probléma µ és σ em ismert (em tujuk azt, amihez hasolítai kellee) becslés. probléma em tujuk, hogy az a folyamat, amiből µ és σ becslését végeztük, stabil-e elleőrzése kártyával Előzetes aatfelvétel Méréses elleőrző kártyák 1
6 I fázis: a stabilitás megteremtése, beavatkozási határok (előzetes aatfelvétel) II fázis: gyártásközi elleőrzés a korábba megállapított beavatkozási határokkal Méréses elleőrző kártyák 11 Az átlag-terjeelem kártya A gyártásból bizoyos iőközökét elemű (tipikusa =3-5) mitát veszük. Kiszámítjuk a mita terjeelmét és az elemű mita átlagát: 1 R= x max x mi x = x j j= 1 Az i-eik mitára így egy R i terjeelmet és átlagot kapuk. x i ˆ σ = R ahol 1 R = m i R i Méréses elleőrző kártyák 1
7 Az átlag (X-bar) kártya szerkesztése Előzetes aatfelvétel µ σ < x < µ 3σ 3 + CL 1 = x = m x x i i (m a miták száma, az i-eik mita átlaga) x i 3R UCL x = x + = x + A R (fölső beavatkozási határ) 3R LCL x = x = x A R (alsó beavatkozási határ) Méréses elleőrző kártyák 13 Gyártásközi elleőrzéshez x és R az előzetes aatfelvételből, vagyis a középvoal és a beavatkozási határok már aottak Méréses elleőrző kártyák 14
8 A terjeelem (R: rage) kártya szerkesztése Előzetes aatfelvétel CL 1 = R = m R R i i ˆ σ H : ˆ R = 3σ = Var 3R ( x) = σ A beavatkozási határok a ±3σ választás eseté: UCL LCL 3R 3 = R + 3 ˆ σ R = R + 3 = R 1 3 = D + R 4 3 R = R 3 σˆ R = R 3 = D R 3 R R Méréses elleőrző kártyák 15 Ha LCL-re egatív érték aóik, zérusra igazítjuk. 3 c 4 A A 3 B 3 B 4 D 3 D Méréses elleőrző kártyák 16
9 . péla Készítsük átlag-terjeelem kártyát a táblázatba található aatokból! i mitaelem átlag meiá R s s átl Méréses elleőrző kártyák Méréses elleőrző kártyák 18
10 X-bar a R Chart; variable: YS X-bar: (49.96); Sigma: 1.8 (1.8); : Rage:.335 (.335); Sigma:.8665 (.8665); : Méréses elleőrző kártyák 19 A beavatkozási határok az átlagra voatkozak! 53. X-bar Chart; variable: YS Méréses elleőrző kártyák
11 Az átlag-kártya műköési jelleggörbéje (α=.7) β /σ Méréses elleőrző kártyák 1 A terjeelem-kártya műköési jelleggörbéje (±3σ, azaz α=.7?) β σ 1 /σ Méréses elleőrző kártyák
12 A Wester Electric algoritmikus szabályai 1. Egy pot az A zóá kívül. Kilec egymást követő pot a középvoal egyik olalá 3. Hat egymást követő pot övekvő vagy csökkeő meetű 4. Tizeégy egymás utái pot le-föl váltakozik a. ábra b. ábra c. ábra. ábra 5. Három egymást követő pot közül kettő az A zóába vagy azo túl 6. Öt egymást követő pot közül égy a B zóába vagy azo túl (a középső voal egy olalá) 7. Tizeöt pot egymás utá a C zóába (a középvoal bármelyik olalá) 8. Nyolc egymást követő pot a C zóá kívül (a középvoal bármelyik olalá) e. ábra f. ábra g. ábra h. ábra Méréses elleőrző kártyák 3 3. péla Készítsük átlag-terjeelem-kártyát a cpata1.sta aatfile YS5 oszlopára! Hajtsuk végre a Wester Electric szabályok szeriti elleőrzéseket is! Az előzetes aatfelvétel szeriti várható érték 5., variacia 1.. Előzetes aatfelvétel vagy gyártásközi elleőrzés? Statistics>Iustrial Statistics>Quality Cotrol Charts X-bar & R chart for variables Variables: YS, Sample Rus test Méréses elleőrző kártyák 4
13 Zoes A/B/C: 3././1. * Sigma Tests for special causes (rus rules) 9 samples o same sie of ceter 6 samples i row i/ecreasig 14 samples alteratig up & ow of 3 samples i Zoe A or beyo 4 of 5 samples i Zoe B or beyo 15 samples i Zoe C 8 samples beyo Zoe C YS5 ; Rus Tests (CPDATA1.STA) X-bar Chart Ceter lie: 5. Sigma: from to sample sample OK OK OK OK X-bar a R Chart; variable: YS5 15 X-bar: 5.78 (5.); Sigma: 1.8 (1.); : OK OK Rage:.335 (.359); Sigma:.8665 (.8648); : Méréses elleőrző kártyák 5 Mikor haszáljuk átlag-kártyát? ha a mita hasoló körülméyek között vett több elemből állhat; ha agy ( σ) eltérések várhatók, és ezeket akarjuk észleli; ha a kis eltérések em járak súlyos gazasági következméyekkel (em kerülek sokba); ha az eljárás egyszerűsége fotos szempot, e azért az alkalmazókak em okoz ehézséget az átlag kiszámítása; a mitavételi költség viszoylag kicsi. Méréses elleőrző kártyák 6
14 Mikor e haszáljuk átlag-kártyát? ha em lehet a mitákat csoportokba osztai; ha a csoportoko belüli igaozás a csoportok közötti véletle igaozáshoz képest túl kicsi, ekkor ugyais túl sok kieső értéket találuk; ha a kimutataó eltérés a (.5σ< <σ) tartomáyba esik; ha a mitavétel/mérés költséges, és többe kerüle, mit amit az elleőrzéssel yerheték; a folyamat léyegéél fogva ciklikus vagy tre jellegű, ekkor ugyais az egymás utái miták em függetleek. Méréses elleőrző kártyák 7 Az átlag-kártya előkészítéséek és alkalmazásáak lépései A méreő változó meghatározása: olya jellemzőt választuk, ami a miőség szempotjából relevás (problémát okoz vagy okozhat); mérése e kerüljö többe, mit aak a költsége, ha em haszáluk statisztikai miőségszabályozást. A mita-elemszám meghatározása: a mitá belüli változékoyság sokkal kisebb legye, mit a miták közötti, 4-6 elemű mitát szokás vei, 5 tipikusak evezhető. Méréses elleőrző kártyák 8
15 A folyamat eloszlása paramétereiek (µ és σ ) előzetes becslése a mita-elemszám meghatározásához; <1 eseté haszálhatuk terjeelem-kártyát. Előzetes aatfelvétel a folyamat eloszlása paramétereiek (µ és σ ) becslésére, ehhez megfelelő kártya-kombiáció választása, 5 mita gyűjteő. Az aatok ábrázolása kártyáko, a középvoal és a beavatkozási határok kiszámítása; istabilitás vizsgálata, a veszélyes hibák okaiak megtalálása és azok kiküszöbölése utá a megfelelő potok elhagyaók. Méréses elleőrző kártyák 9 Gyártásközi elleőrzés akkor kezőhet, ha az előzetes aatfelvétel sorá a folyamat stabilak bizoyult. Az elemzést a szóróási jellemző (pl. terjeelem) kártyájával kell kezei, mert az átlag-kártya határai σ=kost esetre érvéyesek. Ha kieső érték va, először számolási vagy aatleírási hibára gyaakojuk, aak kiszűrése a legolcsóbb. A gyártásközi elleőrzések a gyártással egy iőbe kell folyia, keveset ér, ha megtujuk, hogy az előző apo valami törtét. Méréses elleőrző kártyák 3
16 Elleőrző kártya egyei értékekre A termékek egyekét keletkezek, vagy a gyártás lassú ahhoz, hogy csoportokat lehesse formáli a termékekből. Ilyekor ics többelemű mita, em tuuk terjeelmet (szórást) számoli. Méréses elleőrző kártyák 31 Egyei érték (I vagy X) kártya Középvoal és a beavatkozási határok: CL x = x MR i = xi xi 1 MR = m i= MR m 1 i mozgó terjeelem (Movig Rage) ˆ σ = MR 3MR UCL x = x + 3MR LCL x = x Méréses elleőrző kártyák 3
17 Mozgó terjeelem (MR) kártya A középvoal és a beavatkozási határok: CL MR = MR UCL 3R = R + 3 ˆ σ R = R + 3 = D R 4 R UCL MR = D 4 MR LCL MR = D 3 MR Méréses elleőrző kártyák péla Készítsük egyei érték + mozgó terjeelem kártyát a következő aatokból! Iiv1.sta Előzetes aatfelvétel vagy gyártásközi elleőrzés? x i M R i = x i x i átlag Méréses elleőrző kártyák 34
18 Statistics>Iustrial Statistics>Quality Cotrol Charts Iiviuals & movig rage Variables: X X a Movig R Chart; variable: x X: 5.4 (5.4); Sigma:.5334 (.5334); : Movig R:.5984 (.5984); Sigma:.4511 (.4511); : Méréses elleőrző kártyák péla CO yomásáak évleges értéke 3.6 bar, az előírt miimum 3.39 bar, maximum 3.91 bar. Az üzembe elhatározott beavatkozási határok 3.5 és 3.7 bar X a Movig R Chart; variable: CO X: (3.574); Sigma:.768 (.768); : USL LSL Movig R:.8585 (.8585); Sigma:.6486 (.6486); : Méréses elleőrző kártyák 36
19 Az ábrázolás hasza, avagy mire szolgálak az elleőrző kártyák (T. Pyzek: The Six Sigma Habook, McGraw-Hill - Quality Publishig, 1999) 1 palack töltött tömege, átlag ucia, szórás.1 ucia USL=1.1, LSL=11.9 Mit tegyük vele? Méréses elleőrző kártyák 37 (ru charts) Méréses elleőrző kártyák 38
20 Miért em a tűréshatárokhoz szabályozuk? UCL USL LSL LCL a) Méréses elleőrző kártyák 39 USL UCL LCL LSL b) Méréses elleőrző kártyák 4
MINİSÉGBIZTOSÍTÁS 6. ELİADÁS Március 19. Összeállította: Dr. Kovács Zsolt egyetemi tanár
MINİSÉGBIZTOSÍTÁS Özeállította: Dr. Kovác Zolt egyetemi taár 6. ELİADÁS 011. Márciu 19. NyME FMK Terméktervezéi é Gyártátechológiai Itézet http://tgyi.fmk.yme.hu NYME FMK TGYI 006.08.8. 1. fólia Kézült
4. A méréses ellenırzı kártyák szerkesztése
4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.
Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás
Minőségellenőrzés. Miről lesz szó? STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Minőségszabályozás. Mikor jó egy folyamat? Ellenőrzés Szabályozás
STATISZTIKAI FOLYAMATSZABÁLYOZÁS (SPC) Erdei János Miről lesz szó? Mit értünk folyamatok stabilitásán, szabályozottságán? Mit jelent a folyamatképesség, és hogyan mérhetjük azt? Hogyan vehetjük észre a
You created this PDF from an application that is not licensed to print to novapdf printer (
4.6 4. 4.8 4.4 4.0 4.6 4. 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 Run: Run: Run: Run: 4 Run: 5 Run: 6 4.6 4. 4.8 4.4 4.0 4.6 4. 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus
Minőségirányítási rendszerek 8. előadás 2013.05.03.
Miőségiráyítási redszerek 8. előadás 2013.05.03. Miőségtartó szabályozás Elleőrző kártyák miősítéses jellemzőkre Két esete: A termékre voatkozó adat: - valamely jellemző alapjá megfelelő em megfelelő:
A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai
05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:
A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.
Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat
Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke
17. Folyamatszabályozás módszerei
17. Folyamatszabályozás módszerei 200. Egyéb módszerek A folyamatszabályozás alapjai Minőségképesség-elemzés Mérőeszköz-képességelemzés Ellenőrzőkártyák Bedzsula Bálint 249 215. Mérőeszköz-képességelemzés
Kockázatalapú szabályozó kártyák tervezése, kiválasztása és folyamatra illesztése
Kockázatalapú szabályozó kártyák tervezése, kiválasztása és folyamatra illesztése Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program
f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben
Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,
A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html
6. Minısítéses ellenırzı kártyák
6. Miısítéses elleırzı kártyák Sokszor elıfordul, hogy a termék-egyedek miıségét em tudjuk mérhetı meyiségekkel jellemezi, csak megfelelı/em megfelelı kategóriákba sorolhatjuk ıket, és a hibás darabokat,
Statisztika 1. zárthelyi dolgozat március 18.
Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati
MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia
MINİSÉGSZABÁLYOZÁS A GÉPIPARBAN Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia ISO 9000:2008 A STATISZTIKAI MÓDSZEREK HASZNÁLATÁRÓL A statisztikai módszerek
AZ SPC gyakorlati kérdései és alkalmazási tapasztalatai
AZ SPC gyakorlati kérdései és alkalmazási tapasztalatai Kemény Sándor BME Vegyipari Műveletek Tanszék kemeny@mail.bme.hu EOQ 006. szept. 1. 1 A gyakorlatban minden másképpen van? Helmholtz: Nincs praktikusabb
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése
1. A radioaktivitás statisztikus jellege
A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a
VII. A határozatlan esetek kiküszöbölése
A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely
Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.
Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet
Statisztikai hipotézisvizsgálatok
Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy
2013.03.11. Az SPC alapjai. Az SPC alapjai SPC 5. 5. Az SPC (Statistic Process Control) módszer. Dr. Illés Balázs
SPC 5 5. Az SPC (Statistic Process Control) módszer Dr. Illés Balázs BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ELEKTRONIKAI TECHNOLÓGIA TANSZÉK Az SPC alapjai SPC (Statistical Process Controll) =
Kontrol kártyák használata a laboratóriumi gyakorlatban
Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak
MINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK. Dr. Drégelyi-Kiss Ágota ÓE BGK
MINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK Dr. Drégelyi-Kiss Ágota ÓE BGK e-mail: dregelyi.agota@bgk.uni-obuda.hu 1 STATISZTIKA CÉLJA Sokaság Következtetés bizonytalansága Véletlenszerű és reprezentatív mintavétel
Statistical Process Control (SPC), Statisztikai Folyamatszabályozás
Statistical Process Control (), Statisztikai Folyamatszabályozás 1 2 2 A statisztikai folyamatszabályozás () koncepcióját először Dr Walter Shewhart fejlesztette ki a Bell laboratóriumokban, az 1920-as
Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével
Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT
Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás
specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat
ELLENŐRZŐ KÁRTYÁK méréses mősítéses commo cause: véletle gadozás secfc (assgable) cause: azoosítható, tetteérhető (veszélyes) hba megváltozott a folyamat Mősítéses elleőrző kártyák 41 Mősítéses elleőrző
2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;
Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:
Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak
Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia
Statisztikai programcsomagok
Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Populáció nagyságának felmérése, becslése
http:/zeus.yf.hu/~szept/kuzusok.htm Populáció agyságáak felméése, becslése Becsült paaméteek: N- az adott populáció teljes agysága (egyed, pá, stb) D- dezitás (sűűség), egységyi felülete/téfogata számított
Statisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
Kidolgozott feladatok a nemparaméteres statisztika témaköréből
Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.
Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.
Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
Statisztika. Földtudomány szak, geológus szakirány, 2015/2016. tanév tavaszi
Statisztika Földtudomáy szak, geológus szakiráy, 015/016. taév tavaszi félév Backhausz Áges (ELTE TTK Valószíűségelméleti és Statisztika Taszék)1 Tartalomjegyzék 1. Bevezetés 3 1.1. Példa: az adatok elemzése....................
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén
Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia program Projekt
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.
3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.
Minőség-képességi index (Process capability)
Minőség-képességi index (Process capability) Folyamatképesség 68 12. példa Egy gyártási folyamatban a minőségi jellemző becsült várható értéke µ250.727 egység, a variancia négyzetgyökének becslése σ 1.286
III. Képességvizsgálatok
Képességvizsgálatok 7 A folyamatképesség vizsgálata A 3 fejezetben láttuk, hogy ahhoz, hogy egy folyamat jellemzıjét a múltbeli viselkedése alapján egy jövıbeni idıpontra kiszámíthassuk (pontosabban, hogy
Sorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet
Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz
BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika
BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,
6. feladatsor. Statisztika december 6. és 8.
6. feladatsor Statisztika 200. december 6. és 8.. Egy = 0 szervert tartalmazó kiszolgáló mide szervere mide pillaatba 0 < p < valószíűséggel foglalt, a foglaltságok szerverekét függetleek. Tehát a foglaltak
kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk
ÚJRAMINTAVÉTELEZÉSI ELJÁRÁSOK A jackkife (zsebkés) és bootstrap (cipőhúzó a saját kallatyújáál fogva) eljárások agol elevezése is arra utal, hogy itt ad hoc eljárásokról va szó, melyek azoba agyo haszosak
2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya
II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve
VÉLETLENÍTETT ALGORITMUSOK. 1.ea.
VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.
Egy lehetséges tételsor megoldásokkal
Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe
Tájékoztató. Normális (Gauss-) eloszlás. Következtetés hibái. Mintavételi alapelvek. Minőségmenedzsment módszerek (SPC) 3σmás szabály.
Minőségmenedzsment módszerek (SPC) Erdei János Tájékoztató Előadó: Erdei János Tematika: Minőségmenedzsment módszerek Folyamatszabályozás logikája, eszközei, mintavételes átvételi minőség-ellenőrzés alapjai
Matematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.
Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések
AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL
36 MIXCONTROL AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL Subert Istvá deformáció-elleálló keverékvázat lehet létrehozi. Kiidulási feltétel az alkalmazás helyéek
V. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
Define Measure Analyze Improve Control. F(x), M(ξ),
5.5.5. Six Sigma Minőségmenedzsment Statisztikai folyamatszabályozási (SPC) rendszer Erdei János Egy fegyelmezett és erősen mennyiségi szemléletű folyamatfejlesztési megközelítés, amely a gyártási, szolgáltatási
kritikus érték(ek) (critical value).
Hipotézisvizsgálatok (hypothesis testig) A statisztikáak egyik célja lehet a populáció tulajdoságaiak, ismeretle paramétereiek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus bizoyítása
Termelés- és szolgáltatásmenedzsment
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Az SPC (statisztikai folyamatszabályozás) ingadozásai
A TERMELÉSI FOLYAMAT MINÕSÉGKÉRDÉSEI, VIZSGÁLATOK 2.3 Az SPC (statisztikai folyamatszabályozás) ingadozásai Tárgyszavak: statisztikai folyamatszabályozás; Shewhart-féle szabályozókártya; többváltozós szabályozás.
Bootstrap (Efron, 1979)
Bootstrap (Efro, 979) 4. elıadás 204. március 3. Bootstrap módszerek, többdimeziós extrém-érték eloszlások illeszkedésvizsgálata Újramitavételezési eljárás, a becsléseik szórásáak vizsgálatára, modell-illeszkedés
Kvantummechanika gyakorlo feladatok 1 - Megoldások. 1. feladat: Az eltolás operátorának megtalálásával teljesen analóg módon fejtsük Taylor-sorba
Kvatummechaika gyakorlo felaatok - Megolások felaat: z eltolás operátoráak megtalálásával teljese aalóg móo fejtsük Taylor-sorba a hullámfüggvéyt a változójába: ψr θ ϕ + ϕ ψr θ ϕ + ψr θ ϕ ϕ + ψr θ ϕ ϕ
Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása
Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai
A brexit-szavazás és a nagy számok törvénye
Mûhely Medvegyev Péter kadidátus, a Corvius Egyetem egyetemi taára E-mail: peter.medvegyev@uicorvius.hu A brexit-szavazás és a agy számok törvéye A 016. év, de vélhetőe az egész évtized legfotosabb politikai
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
A matematikai statisztika elemei
A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................
( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn
Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes
ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,
A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés
Matematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...
. Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk
? közgazdasági statisztika
Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem
Szemmegoszlási jellemzők
Szemmegoszlási jellemzők Németül: Agolul: Charakteristike er Korgrößeverteilug Characteristics of particle size istributio Fraciául: Caractéristique e compositio graulométrique Kutatási, fejlesztési és
Matematika I. 9. előadás
Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):
A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak
24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.
24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset:
Tartalom A bootstrap módszer Zempléi Adrás TTK, Valószíőségelméleti és Statisztika Taszék 2010. október 21 Bevezetés A függetle, azoos eloszlású eset: emparaméteres paraméteres eset Alkalmazások a rétegzett
Hanthy László Tel.: 06 20 9420052
Hanthy László Tel.: 06 20 9420052 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)9420052 Megválaszolandó
Diszkrét matematika II., 3. előadás. Komplex számok
1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,
Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév
Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis. Írásbeli tételek Készítette: Szátó Ádám 20. Tavaszi félév . Archimedes tétele. Tétel: a > 0 és b R : N : b < a. Bizoyítás: Idirekt úto tegyük fel, hogy
VILLAMOS ENERGETIKA Vizsgakérdések (BSc. 2011. tavaszi félév)
1 VILLAMOS ENERGETIKA Vizsgaérdése (BSc. 2011. tavaszi félév) 1. Isertesse a villaoseergia-hálózat feladatr szeriti felosztását a jellegzetes feszültségsziteet és az azohoz tartozó átvihető teljesítéye
SPC egyszerően, olcsón, eredményesen
SPC egyszerően, olcsón, eredményesen Rába Tivadar Six Sigma Black Belt BorgWarner Turbo System April 7, 2007 1 Mi az SPC? Miért pont SPC? Tán Show Program for Costumer? Szakértık Statisztikai folyamat
Statisztikai folyamatszabályozás Minitab szoftverrel
Statisztikai folyamatszabályozás Minitab szoftverrel A Minitab általános statisztikai szoftvert elsősorban statisztikai feladatok megoldására (oktatásra és minőségfejlesztésre) használják, és másodsorban
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak
véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?
BEVEZETÉS A statisztika teljese laikusokak: agy mukával gyűjtött adatok vizsgálata, abból következtetések levoása ( statistical iferece ) (Egy kicsit sok hűhó semmiért azaz Much ado about othig.) Mi is
Budapesti Műszaki és Gazdaságtudományi Egyetem
Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet Menedzsment és Vállalatgazdaságtan Tanszék MINŐSÉGMENEDZSMENT ALAPJAI 11. előadás Folyamatszabályozás
Kutatói pályára felkészítı modul
Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI
Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia
Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Lineáris programozás
Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek
1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1
A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H