Hanthy László Tel.:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Hanthy László Tel.: 06 20 9420052"

Átírás

1 Hanthy László Tel.:

2 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban

3 Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)

4 Megválaszolandó kérdések Mit tekintsünk statisztikailag stabil folyamatnak? Hogyan szabályozhatjuk a valóságos előállítási folyamatokat? Hogyan kezdhetünk neki egy folyamat szabályozásának? Mit tegyünk a speciális problémák kezelésére?

5 Stabilitás? A statisztikai stabilitás fogalma helyett az autóipari szerzők az uralt uralt, vagy a minőségképes kifejezést is használják. Az a folyamat, minőségképes, amely bizonyíthatóan képes az előre meghatározott követelmények teljesítésére, és mért értékei a tűréshatárokon belül vannak. (VDA 4) E folyamat a szabályzókártya beavatkozási határain belül marad, és képességindexe is megfelel a követelményeknek. EOQ-előadás Hanthy László

6 Folyamat véletlen zavarokkal Az idei deális Shewhart- folyamat: Idő Idő t µ t4, σ t4 µ t3, σ t3 σ(t) = konstans µ t2, σ t2 µ(t) = konstans µ t1, σ t1

7 Példák a veszélyes (?) zavarokra σ(t) = konstans µ(t) konstans Idő Idő t µ t2, σ µ t3, σ µ t5, σ µ t4, σ µ t2, σ t2 µ t3, σ t3 µ t4, σ t4 µ t5, σ t5 Idő Idő t σ(t) konstans µ t1, σ µ t1, σ t1 µ(t) konstans EOQ-előadás Hanthy László

8 Ezeket kell szabályozni! A hagyományos értelemben vett statisztikailag stabil folyamatok nem léteznek csak egyeseket az alkalmazott matematikai eszközök segítségével annak tekinthetünk. Mérési Mérési módszer módszer Kiértékelés Kiértékelés Környezet Környezet Ember Ember Geometria Geometria Mérőeszköz Mérőeszköz Anyag Anyag Technológia Technológia X kimenet

9 Valóságos gyártási folyamatok EOQ-előadás Hanthy László

10 Folyamatmodellek az ISO/DIS (DIN Folyamatmodellek 55319) szerint A modell betűjele A B C D Folyamathelyzet µ=áll. µ= áll. µ áll. µ áll. Folyamatszórás σ= áll. σ áll. σ= áll. σ áll.

11 A-típusú folyamatmodellek Jele Tulajdonság A szúró- próbák eloszlása sa Eredmény -eloszlás µ=áll., σ= áll. A1 normál normál A2 nem normál, egy- vagy több- csúcsú nem normál, egy- vagy több- csúcsú EOQ-előadás Hanthy László

12 Példák folyamattípusokra Normál eloszlású folyamat (A1)

13 Példák folyamattípusokra Nem normál eloszlású folyamat (A2) EOQ-előadás Hanthy László

14 B-típusú folyamatmodell Jele Tulajdonság A szúró- próbák eloszlása sa Eredmény -eloszlás µ=áll., σ áll. B nem normál, egy- csúcsú normál, vagy más, egy- csúcsú A szórás véletlen- szerűen változik

15 C-típusú folyamatmodellek Jele Tulajdonság A szúró- próbák eloszlása sa Eredmény -eloszlás µ áll., σ= áll. C1 A középérték véletlen- szerűen (normál- eloszlással) szór normál normál C2 A középérték véletlen- szerűen szór normál nem normál, egy- csúcsú EOQ-előadás Hanthy László

16 C-típusú folyamatmodellek Jele Tulajdonság A szúró- próbák eloszlása sa Eredmény -eloszlás µ áll., σ= áll. C3 A középérték szisztemati- kusan változik (pl. trend, ciklikusság) normál tetszőle- ges, általában egy- csúcsú eloszlás C4 A középérték szisztemati- kusan és véletlensze- rűen változik normál tetszőle- ges, általában több- csúcsú eloszlás

17 Példák folyamattípusokra Ingadozó középértékű, állandó szórású folyamat (C3) EOQ-előadás Hanthy László

18 Példák folyamattípusokra Ingadozó középértékű, állandó szórású folyamat (C4)

19 D-típusú folyamatmodell Jele Tulajdonság A szúró- próbák eloszlása sa Eredmény -eloszlás µ áll., σ áll. D tetszőle- ges, általában több- csúcsú eloszlás tetszőle- ges, általában több- csúcsú eloszlás Mind a középérték, mind a szórás szisztemati- kusan és véletlensze- rűen változik EOQ-előadás Hanthy László

20 Példák folyamattípusokra Ingadozó középértékű, és szórású, instabil folyamat (D)

21 A folyamatmodellek gyakorisága (egy német felmérésből) 1000 folyamatból, 11 gyárból D - nem képes 23% A1 2% A2 2% C1 és C2 36% D - képes 32% C3 és C4 5% EOQ-előadás Hanthy László

22 Az SPC helye Hatékony -ság 100%-os ellenőrzés Mintavételes ellenőrzések Ellenőrzés a mérési bizonytalansággal csökkentett tűrésre Ellenőrzés (etalonnal v. mérőeszközzel) tűrésre Ellenőrzés kombinált minőségszabályzó-kártyával Ellenőrzés mérési értékkártyával (egyszerű szabályzókártya) Ellenőrzés tűrésre

23 Követelmények a folyamatszabályozással kapcsolatban (ipari sorozatgyártás) Egyszerű interpretálhatóság az alkalmazók számára Interpretálhatóság szoftverrel Automatikus kalkuláció (minél nagyobb arányban) Minimális első fajú hiba Egyértelmű szabályok az alkalmazásra és a bevezetés fázisára EOQ-előadás Hanthy László

24 Követelmények a folyamatszabályozással kapcsolatban Egyszerű interpretálhatóság, kezelhetőség az alkalmazók számára A CUSUM-kártya a versenyből kizárva; Maradnak azok a kártyák, melyekben a folyamat megfelelősége a határokkal történő összeméréssel derül ki. A helyzetkártyán csak a nominális átlag (vagy medián) ) szerepeljen! (short( run-kártyák kizárva illetve szoftver alkalmazásakor feleslegesek)

25 Követelmények a folyamatszabályozással kapcsolatban Interpretálhatóság szoftverrel Szubjektív stabilitáskritériumok, mint pl: láthatóan nem véletlenszerű alakzatok a kártyában kizárva EOQ-előadás Hanthy László

26 Követelmények a folyamatszabályozással kapcsolatban Automatikus kalkuláció (minél nagyobb arányban) A határok számítása legyen megoldható a bevitt mérési eredményekből és/vagy a tűréshatárokból

27 Követelmények a folyamatszabályozással kapcsolatban Minimális első fajú hiba Biztosítani kell a módszer elfogadottságát Speciális szabályzókártyák, melyek kínosan pontos peremfeltételeket igényelnek, (pl. regressziós ellenőrzőkártya) kizárva EOQ-előadás Hanthy László

28 Követelmények a folyamatszabályozással kapcsolatban Alkalmazható szabályzókártyák: Folyamatalapú (Shewhart( Shewhart-)kártyák normális nem normális eloszlásra (Pearson( Pearson-kártyák) Tűrésalapú helyzetkártyák (átvételi kártyák) megadott selejthányad megakadályozására, vagy a megadott folyamatképességi indexre kalkulálva EWMA-kártyák elsősorban a mozgó minták elemzésére (?)

29 A folyamatszabályzáshoz javasolt módszerek az autóipari előírásokkal összehasonlítva Folyamattípus (altípus) SPC-kézikönyv VDA 4 Ringbuch Javasolt szabályzási módszerek A normál eloszlás egyszerű Shewhartszabályzókártya egyszerű Shewhartszabályzókártya egyszerű Shewhartszabályzókártya A nem normál eloszlás nincs módszer megemlítve nincs módszer megemlítve Pearson-féle szabályzókártya B nem szabályozható nem szabályozható egyszerű Shewhartvagy Pearsonszabályzókártya, szükség esetén szakaszokra kalkulált beavatkozási határokkal

30 C a minták eloszlása normális nem szabályozható kibővített Shewhartszabályzókártya, vagy elfogadókártya kibővített Shewhartszabályzókártya, vagy átvételi kártya C a minták eloszlása nem normális nem szabályozható nem, vagy korlátozottan szabályozható kibővített Shewhart-, vagy átvételi középértékkártya, Pearson-féle szóráskártya D a minták eloszlása nem normális nem szabályozható nem szabályozható kibővített Shewhart-, vagy átvételi középértékkártya folyamatszakaszokra kalkulált beavatkozási határokkal, Pearson-féle, vagy szakaszos kiértékeléssel készített Shewhart-szóráskártya

31 Automatikus technológiák Automatikus technológiák

32 Az SPC szakaszai Fázisok: A folyamat előzetes elemzése milyen modellbe tartozik? melyek a befolyásoló tényezők? megfelelő-e e a mérőrendszer? milyen mintavétel javasolt, és lehetséges (fázisonként)? Adatgyűjtés alkalmazzunk előzetes szabályzókártyát, vagy sem? milyen kiegészítő adatokat naplózzunk? hogyan biztosítsuk a folyamatképességet? milyen szabályok vonatkozzanak a személyzetre?

33 Az SPC szakaszai Fázisok: Előzetes szabályzókártya elemzés: összehasonlítás a 0-hipotézissel0 ideiglenesen tűrés alapú kártyák alkalmazása speciális eljárás folyamatsérülések esetén Folyamatos folyamatszabályzás- és elemzés a kártyahatárok után-igazítása részletes elemzés keretében rendszeres kiértékelés FOLYAMATELEMZÉS, FOLYAMATFEJLESZTÉS standard, de folyamatspecifikus szabályok alkalmazása EOQ-előadás Hanthy László

34 Speciális problémák a folyamatszabályozásban A folyamatképesség biztosítása átvételi kártya, α-hiba kontra a kártyk rtyában leképezett matematikai modell Folyamatos, 1-elemű 1 mintavétel (mozgó mintaképzés) mintanagyság, kártyatípus- és interpretáció! Több folyamat keveredik (termékek pl. több szerszámfészekből) mintavételi módszer, terjedelemkártya Nem megfelelő mérőeszköz-felbontás terjedelemkártya

35 A fő kérdés Miért nincs Magyarországon (és nem csak itt) valóságos folyamatelemzésen alapuló folyamatszabályzás csak a 6σ-projektekben, 6 csak bújócskázás a statisztikával? (Show Program for Customer) Az Az üzleti környezet A (a (a mindenképpen betartandó) folyamatképesség (tűrés) mumusa A képzés felelőssége EOQ-előadás Hanthy László

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás

Részletesebben

STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69)

STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69) STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69) 1. AZ ISO SZABVÁNYOK TÉRKÉPE 2. A SZABVÁNYOK BEMUTATÁSA 3. HASZNÁLATI TANÁCSOK 4. A STATISZTIKAI SZABVÁNYOK ÉS AZ ISO 9001 5. JAVASLATOK

Részletesebben

Kontrol kártyák használata a laboratóriumi gyakorlatban

Kontrol kártyák használata a laboratóriumi gyakorlatban Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem

Budapesti Műszaki és Gazdaságtudományi Egyetem Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet Menedzsment és Vállalatgazdaságtan Tanszék MINŐSÉGMENEDZSMENT ALAPJAI 11. előadás Folyamatszabályozás

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

A képzés elvégzése tökéletes alapot nyújt a lean menedzsment megismeréséhez is.

A képzés elvégzése tökéletes alapot nyújt a lean menedzsment megismeréséhez is. MINŐSÉGMENEDZSMENT A KÉPZÉSRŐL Minőségmenedzsment képzésünk segítségével a résztvevők az alapfogalmak megismerésén túl többek között az általános, szabványos (ISO 9000-es sorozat) és az ágazat-specifikus

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011. Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Minőség-képességi index (Process capability)

Minőség-képességi index (Process capability) Minőség-képességi index (Process capability) Folyamatképesség 68 12. példa Egy gyártási folyamatban a minőségi jellemző becsült várható értéke µ250.727 egység, a variancia négyzetgyökének becslése σ 1.286

Részletesebben

Minőségelmélet kommunikációs dosszié MINŐSÉGELMÉLET. Anyagmérnök mesterképzés (MsC) Tantárgyi kommunikációs dosszié

Minőségelmélet kommunikációs dosszié MINŐSÉGELMÉLET. Anyagmérnök mesterképzés (MsC) Tantárgyi kommunikációs dosszié MINŐSÉGELMÉLET Anyagmérnök mesterképzés (MsC) Tantárgyi kommunikációs dosszié MISKOLCI EGYETEM Műszaki Anyagtudományi Kar Energia- és Minőségügyi Intézet Minőségügyi Intézeti Kihelyezett Tanszék MISKOLC,

Részletesebben

2011. ÓE BGK Galla Jánosné,

2011. ÓE BGK Galla Jánosné, 2011. 1 A mérési folyamatok irányítása Mérésirányítási rendszer (a mérés szabályozási rendszere) A mérési folyamat megvalósítása, metrológiai megerősítés (konfirmálás) Igazolás (verifikálás) 2 A mérési

Részletesebben

Egy lehetséges tartalomjegyzék TÜV 100

Egy lehetséges tartalomjegyzék TÜV 100 A TÜV 100 egy olyan fogalomgyûjtemény, amely a minõséget oktató felsõoktatási intézmények számára a TÜV Rheinland Akadémia által meghirdetett "Minõségügyi rendszerreferens" és "Minõségügyi rendszerfejlesztõ"

Részletesebben

A Q-DAS CAMERA koncepció fázisai

A Q-DAS CAMERA koncepció fázisai Q-DAS - fıbb referenciák 32012.09.25. Q-DAS-ismertetı Q-DAS - fıbb referenciák 4 Q-DAS-ismertetı A Q-DAS CAMERA koncepció fázisai COLLECTING (adatgyőjt jtés) procella Q-DAS -adatformátumok Folyamat-ismeret

Részletesebben

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

FOLYAMATSZABÁLYOZÁS a Wescast Hungary-nél

FOLYAMATSZABÁLYOZÁS a Wescast Hungary-nél FOLYAMATSZABÁLYOZÁS a Wescast Hungary-nél Dózsa Zoltán folyamat fejlesztési szakértő 2006. November 23 (EOQ-MNB Hat Szigma Szakbizottság ülésére) Tartalom Bemutatkozás Személyes Cég Termék A Wescast termelő

Részletesebben

Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján

Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján Eur.Ing. Frank György c. docens az SzVMSzK Szakmai Kollégium elnöke SzVMSzK mérnök szakértő (B5) A lövedékálló

Részletesebben

Az SPC (statisztikai folyamatszabályozás) ingadozásai

Az SPC (statisztikai folyamatszabályozás) ingadozásai A TERMELÉSI FOLYAMAT MINÕSÉGKÉRDÉSEI, VIZSGÁLATOK 2.3 Az SPC (statisztikai folyamatszabályozás) ingadozásai Tárgyszavak: statisztikai folyamatszabályozás; Shewhart-féle szabályozókártya; többváltozós szabályozás.

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos: A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

1/8. Iskolai jelentés. 10.évfolyam matematika

1/8. Iskolai jelentés. 10.évfolyam matematika 1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések

Részletesebben

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Minőségi indikátorok az analitikai szakaszban Dr. Kocsis Ibolya Semmelweis Egyetem Laboratóriumi Medicina Intézet Központi Laboratórium

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Információtartalom vázlata

Információtartalom vázlata 1. Ön azt a feladatot kapta munkahelyén, hogy mutassa be tanuló társainak, hogyan épül fel a korszerű logisztikai rendszer, és melyek a feladatai. Miről fog beszélni? Információtartalom vázlata - logisztika

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Folyamatképes gyártási folyamatok a Roto lövői gyárában 2014.06.26

Folyamatképes gyártási folyamatok a Roto lövői gyárában 2014.06.26 Folyamatképes gyártási folyamatok a Roto lövői gyárában 1 Bevezetés Statisztikai folyamatszabályozás 2 A hibaköltségek nagyobbak, mint gondolnánk Cél A hibák nagyon nagy ráfordítást jelentenek. Csak kis

Részletesebben

A Six Sigma és a destra

A Six Sigma és a destra A Six Sigma és a destra A Q-DAS termékek felhasználhatósága a Six Sigma projektekben Hanthy László T&T Quality Kft. Q DAS - Experts in Statistics 2 www.ttq.hu 1 A Q-DAS szoftverrendszer rövid bemutatása

Részletesebben

Mérési struktúrák

Mérési struktúrák Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést

Részletesebben

Gondolatok a belső auditorok felkészültségéről és értékeléséről Előadó: Turi Tibor vezetési tanácsadó, CMC az MSZT/MCS 901 szakértője

Gondolatok a belső auditorok felkészültségéről és értékeléséről Előadó: Turi Tibor vezetési tanácsadó, CMC az MSZT/MCS 901 szakértője Gondolatok a belső auditorok felkészültségéről és értékeléséről Előadó: Turi Tibor vezetési tanácsadó, CMC az MSZT/MCS 901 szakértője 1 Az előadás témái Emlékeztetőül: összefoglaló a változásokról Alkalmazási

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész 2011.

Gyártástechnológia alapjai Méréstechnika rész 2011. Gyártástechnológia alapjai Méréstechnika rész 2011. 1 Kalibrálás 2 Kalibrálás A visszavezethetőség alapvető eszköze. Azoknak a műveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

SPC egyszerően, olcsón, eredményesen

SPC egyszerően, olcsón, eredményesen SPC egyszerően, olcsón, eredményesen Rába Tivadar Six Sigma Black Belt BorgWarner Turbo System April 7, 2007 1 Mi az SPC? Miért pont SPC? Tán Show Program for Costumer? Szakértık Statisztikai folyamat

Részletesebben

17. Folyamatszabályozás módszerei

17. Folyamatszabályozás módszerei 17. Folyamatszabályozás módszerei 200. Egyéb módszerek A folyamatszabályozás alapjai Minőségképesség-elemzés Mérőeszköz-képességelemzés Ellenőrzőkártyák Bedzsula Bálint 247 Adatgyűjtő lap 200. A probléma

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

BME MVT. Dr. Topár József 1. Minőségmenedzsment MSc_ /2013 II felév

BME MVT. Dr. Topár József 1. Minőségmenedzsment MSc_ /2013 II felév 1 Bevezettük az ISO-t, aztán foglalkoztunk a TQM-mel, belevágtunk a SixSigmába, most pedig Leanezünk..?????? Módszer? Divat???? Vezetési eszköz? Gondolkodás mód?????? 2 3 Dr. Topár József 1 1. generáció

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Ellenőrizze folyamata stabilitását!

Ellenőrizze folyamata stabilitását! Ellenőrizze folyamata stabilitását!, avagy mindig készítsen gyors spc grafikont cp / cpk elemzés előtt Lean Six Sigma projektjében Lean Six Sigma projekt végrehajtása során kevésbé tapasztalt folyamatfejlesztők

Részletesebben

Minőségirányítási rendszerek 9. előadás

Minőségirányítási rendszerek 9. előadás Minőségirányítási rendszerek 9. előadás 013.05.03. MÉRŐESZKÖZÖK MÉRÉSTECHNIKAI TULAJDONSÁGAI Mérőeszköz rendszeres hibája (Systematic Error of Measurement) alatt ugyanannak az értéknek megismételhetőségi

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése Szegény Zsigmond WESSLING Közhasznú Nonprofit Kft., Jártassági Vizsgálati Osztály szegeny.zsigmond@qualcoduna.hu 2014.01.21. 2013.

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Variancia-analízis (VA)

Variancia-analízis (VA) Variancia-analízis (VA) 5. elıadás (9-10. lecke) VA lényege, alkalmazásának feltételei, adat-transzformációk 9. lecke Variancia-analízis lényege Szórások egyezésének ellenırzése A Variancia-Analízis (VA)

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

MÉRÉSTECHNIKA. Előadások (2.) Galla Jánosné

MÉRÉSTECHNIKA. Előadások (2.) Galla Jánosné 1 MÉRÉSTECHNIKA Előadások (2.) 2014 Galla Jánosné 1. A hiba rendűsége Az 2. előadás témái 2. A mérési módszer hibája 3. Műszerhibák 4. A mérési hibák új megközelítése 5. A járműgyártás metrológiai többletkövetelményei

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

Levegőtisztaság-védelmi mérések, aktuális és várható szabályok

Levegőtisztaság-védelmi mérések, aktuális és várható szabályok Levegőtisztaság-védelmi mérések, aktuális és várható szabályok KSZGYSZ konferencia 2012. május 22. Bibók Zsuzsanna Tartalom A 2011-ben hatályba lépett jogszabályok új előírásai; 306/2011.(XII.23.)kormányrendelet,

Részletesebben

1. Két pályázat esetén a nyerési esélyeket vizsgálják. Mintát véve mindkét pályázat esetén az egyik. (b) Mit nevezünk másodfajú hibának?

1. Két pályázat esetén a nyerési esélyeket vizsgálják. Mintát véve mindkét pályázat esetén az egyik. (b) Mit nevezünk másodfajú hibának? Statisztika 2015. május 08. D csoport Név Neptun kód 1. Két pályázat esetén a nyerési esélyeket vizsgálják. Mintát véve mindkét pályázat esetén az egyik pályázatnál 320 pályázóból 42 nyert, a másik pályázatnál

Részletesebben

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:

Részletesebben

Képfeldolgozó rendszerek a méréstechnikában

Képfeldolgozó rendszerek a méréstechnikában Képfeldolgozó rendszerek a méréstechnikában www.falcon-vision.com GYÁRTÓSORI ELLENÔRZÉS MINÔSÉGBIZTOSÍTÁS FOLYAMATDIAGNOSZTIKA www.falcon-vision.com Termékeink felhasználási köre Képfeldolgozó mérôrendszerek

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

HAT SZIGMA FEKETEÖVES SZAKEMBEREK ISMERETANYAGA

HAT SZIGMA FEKETEÖVES SZAKEMBEREK ISMERETANYAGA HAT SZIGMA FEKETEÖVES SZAKEMBEREK ISMERETANYAGA Az alábbi témafelsorolás a hat szigma feketeöves szakemberek tudásanyagát tartalmazza. Az egyes témakörökhöz fűzött megjegyzések a megkövetelt ismeretszintet

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások

Részletesebben

Nemparametrikus tesztek. 2014. december 3.

Nemparametrikus tesztek. 2014. december 3. Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

STATISZTIKA PÉLDATÁR

STATISZTIKA PÉLDATÁR STATISZTIKA PÉLDATÁR www.matektanitas.hu www.matektanitas.hu info@matektanitas.hu 1 Minden feladat csak szöveges válasszal együtt ad teljes értékű megoldást! Becslés 1. feladat Az alábbi táblázat megadja

Részletesebben

Az SPC rendszerekkel szemben támasztott felhasználói többletkövetelmények

Az SPC rendszerekkel szemben támasztott felhasználói többletkövetelmények Varga István szoftverfejlesztő, projektvezető - HNS Műszaki Fejlesztő Kft. Az SPC rendszerekkel szemben támasztott felhasználói többletkövetelmények A 2006-ben kidolgozott SPC szoftver minőségprofil szempontrendszeréből

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

időpont? ütemterv számonkérés segédanyagok

időpont? ütemterv számonkérés segédanyagok időpont? ütemterv számonkérés segédanyagok 1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. műszaki számítások: - analitikus számítások

Részletesebben