matematikai statisztika október 24.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "matematikai statisztika 2006. október 24."

Átírás

1 Valószínűségszámítás és matematikai statisztika október 24.

2 ii

3 Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje Valószínűségi mező Nevezetes véletlen kísérletek Feladatok Feltételes valószínűség, függetlenség A függetlenség tulajdonságai A feltételes valószínűség tulajdonságai Bayes döntés Feladatok Valószínűségi változók Valószínűségi változóval kapcsolatos események Valószínűségi változók struktúrája Valószínűségi változók eloszlása Nevezetes eloszlású valószínűségi változók Feladatok Várható érték, szórás Várható érték Szórás Nevezetes eloszlások várható értéke, szórása Momentumok, kovariancia Feladatok Nagy számok törvénye Nevezetes egyenlőtlenségek Nagy számok törvényei Feladatok Karakterisztikus függvény Határeloszlások Véletlen tagszámú összeg Feladatok iii

4 iv TARTALOMJEGYZÉK 7. Vektor valószínűségi változók jellemzői Jelölések, elnevezések Várható érték, kovariancia mátrix Karakterisztikus függvény Vektor valószínűségi változó főkomponensei Normális eloszlású vektor valószínűségi változó Feladatok Nevezetes eloszlások χ 2 eloszlás T és F-eloszlás Feladatok Regresszió analízis Többváltozós lineáris regresszió Elméleti regresszió, feltételes várható érték Bayes döntés Feladatok Sztochasztikus folyamatok Véletlen eseményfolyamat, Poisson folyamat Brown-mozgás, Wiener folyamat Független és stacionárius növekményű folyamatok Stacionárius folyamatok Feladatok II. Matematikai statisztika A matematikai statisztika alapfogalmai Statisztikai mező Statisztikák Paraméterek Likelihood függvény Feladatok Paraméterbecslés Pontbecslés Becslések hatékonysága Maximum likelihood becslés Hatékonyabb becslés mint az elégséges statisztika függvénye A hatékonyság információs határa Intervallum becslések Feladatok

5 TARTALOMJEGYZÉK v 13.Hipotézis vizsgálat Alapfogalmak Valószínűséghányados próba Bartlett próba Valószínűség próbája, (n;c) terv Normális eloszlás paramétereinek próbái Feladatok Lineáris függőségi kapcsolat Egyenlő mértékű, független megfigyelési hiba Korrelált megfigyelési hibák Ridge becslés Nemlineáris regressziós függvények Feladatok Szórásanalízis Rögzített hatások modellje Véletlen hatások modellje Feladatok: Nem paraméteres próbák Illeszkedés vizsgálat Függetlenség vizsgálat Homogenitás vizsgálat Feladatok A. Mérték és integrál 209 A.1. Mérték A.2. Mérhető függvény A.3. Integrál B. Táblázatok 219 C. Képletek 229 Kézirat, módosítva: október 24.

6 vi TARTALOMJEGYZÉK

7 I. rész Valószínűségszámítás 1

8

9 1. fejezet Véletlen jelenségek matematikai modellje 1.1. Valószínűségi mező Véletlen jelenségek körének meghatározása hasonló nehézségekkel jár, mint más természettudományok esetén a vizsgálatok tárgyának megadása. Azt azonban elfogadhatjuk, és mindennapi szóhasználatunk is ezt jelzi, hogy vannak olyan jelenségek, történések, melyek lejátszódásával kapcsolatos bizonytalanságunkat úgy fejezzük ki, hogy a véletlenül, találomra, stb. kifejezéseket használjuk. Ilyen jelenségek például egy kocka dobása, vagy egy adott helyen és időpontban mérhető időjárási elem (pl. hőmérséklet). Ezen jelenségekről bőséges tapasztalat szerezhető ismételt megfigyelésükkel. Ilyen tapasztalat, hogy szabályos kockát dobva minden eredmény hasonló gyakorisággal következik be, vagy másképp fogalmazva, egyforma esélyű, illetve januárban kevésbé valószínű a 20C feletti hőmérséklet, mint a fagypont alatti, vagy általában a gyakrabban bekövetkező dolgokat, éppen gyakoriságuknak megfelelően, valószínűbbnek mondjuk. Foglaljuk most össze az ilyen, un. véletlen kísérletek közös vonásait: a véletlen kísérletnek jól meghatározható kimenetelei vannak; bizonyos kimenetelek bekövetkezésének eseményéről beszélhetünk; az ilyen események bekövetkezési esélye mennyiségi formában megadható; Célunk olyan modell megfogalmazása, ahol mindezeknek matematikai fogalmakat feleltetünk meg, és matematikai módszerekkel olyan eredményeket nyerhetünk, amelyek segítenek ezen jelenségek megértésében, illetve a tapasztalat által is megerősíthető törvényszerűségeket tudunk bizonyítani. Egy ilyen modell segítségével olyan következtetések is levezethetővé válnak, melyek tapasztalatinkből közvetlenül nem következtethetők ki, lehetővé téve ezzel ilyen eredmények széleskörű alkalmazását. 3

10 4 1. FEJEZET. VÉLETLEN JELENSÉGEK MATEMATIKAI MODELLJE 1.1. Definíció. Valószínűségi mezőnek nevezzük az (Ω, A, P ) hármast, ahol Ω az elemi események halmaza, eseménytér; A 2 Ω az eseménytér részeinek egy σ-algebrája, az eseményalgebra, azaz teljesülnek: A1 Ω A ; A2 ha A A akkor A = Ω \ A A ; A3 ha A n A n = 1, 2,... akkor n=1 A n A ; P : A R függvény, a valószínűségi mérték, azaz teljesülnek: P1 P (Ω) = 1 ; P2 ha A A akkor P (A) 0 ; P3 ha A n A n = 1, 2,... és A k A l = k l = 1, 2,... akkor ( ) P A n = P (A n ) ; n=1 Tehát a valószínűségi mező egy mértéktér véges mértékkel (lásd A. Függelék). A továbbiakban minden esetben egy ilyen modellt tételezünk fel, és ha külön nem is említjük, fogalmaink egy (Ω, A, P ) valószínűségi mezővel lesznek kapcsolatosak. Az alábbiakban felsorolunk néhány egyszerűen következő tulajdonságot, és itt használatos elnevezést, kifejezést. 1. Az A eseményalgebra elemei az események, Ω A a biztos esemény. 2. Mivel = Ω A, az üres halmazt lehetetlen eseménynek nevezzük. 3. Az eseményalgebra zárt a szokásos müveletekre: ha A, B A akkor A B = A B... A A B = A B A A \ B = A B A 4. A lehetetlen esemény valószínűsége 0, mivel n=1 P ( ) = P (...) = P ( ) + P ( ) + P ( ) +... ami csak úgy teljesülhet, ha P ( ) = 0.

11 1.1. VALÓSZÍNŰSÉGI MEZŐ 5 5. A valószínűségi mérték végesen additív: ha A, B A és A B = vagyis A és B kizárják egymást, akkor kizáró események egyesítése, és így A B = A B... P (A B) = P (A) + P (B) = P (A) + P (B). 6. Néhány további számolási szabály : ha A, B A akkor mivel Ω = A A kizáró események úniója, így 1 = P (A) + P (A), tehát P (A) 1 és P (A) = 1 P (A) ; mivel A = (A B) (A \ B) kizáró események úniója, így P (A \ B) = P (A) P (A B) ; ha teljesül még A B, vagyis B bekövetkezése maga után vonja A bekövetkezését, akkor P (A) P (B) és P (A \ B) = P (A) P (B) ; mivel A B = A (B \ A) kizáró események úniója, használva az előző eredményt, kapjuk P (A B) = P (A) + P (B) P (A B) ; az előző eredményből kapjuk a valószínűség un. szubadditív tulajdonságát: P (A B) P (A) + P (B) ami véges vagy megszámlálható únióra is következik. 7. A valószínűségi mérték folytonossága: ha A 1 A 2... A, akkor B 1 = A 1, B 2 = A 2 \ A 1, B 3 = A 3 \ A 2,... páronként kizáró események, és egyesítésük B n = A n, n=1 amiből kapjuk ( ) P A n = P (A 1 ) + (P (A 2 ) P (A 1 )) + (P (A 3 ) P (A 2 )) +... = lim P (A n ). n n=1 n=1 Hasonlóan teljesül A 1 A 2... A esetén ( ) P A n = lim P (A n ). n n=1 Kézirat, módosítva: október 24.

12 6 1. FEJEZET. VÉLETLEN JELENSÉGEK MATEMATIKAI MODELLJE A továbbiakban néhány tipikus, véletlen jelenségek modellezésére jól használható példát adunk valószínűségi mezők megadására. 1. Kombinatórikus valószínűségszámítási problémák Véges sok, egyformán valószínű kimenetellel rendelkező véletlen kísérlet modellje. Ω = {ω 1, ω 2,..., ω n } A = 2 Ω P (A) = < A elemeinek száma > < Ω elemeinek száma > A Ω ahol 2 Ω jelölöli Ω összes részeinek halmazát (hatványhalmazát). 2. Diszkrét valószínűségi mező Véges vagy megszámlálhatóan végtelen sok kimenetelű véletlen kísérlet modellje, ahol a kimenetelek valószínűségei egy (p n ) n=1,2,... diszkrét valószínűségeloszlással adottak. Ω = {ω 1, ω 2,..., ω n,...} A = 2 Ω P (A) = ω n A ahol (p n ) n=1,2,... egy diszkrét valószínűségeloszlás, azaz p n p n 0 n = 1, 2,... és 3. Geometriai valószínűségszámítási problémák p n = 1. R n valamely véges, pozitív mértékű részhalmazát kitöltő kimenetelekkel rendelkező véletlen kísérlet modellje, ahol egy résztartomány bekövetkezési valószínűsége arányos annak mértékével. Ω R n A = {Ω B B B n } P (A) = < A mértéke > < Ω mértéke > A A ahol B n jelöli az R n intervallumait tartalmazó legszűkebb σ-algebrát. 4. Folytonos valószínűségi mező A véletlen kísérlet kimenetelei R n (vagy valamely mérhető részének) pontjaival azonosíthatók, és egy x R n pont kis környezetébe esés valószínűsége arányos n

13 1.2. NEVEZETES VÉLETLEN KÍSÉRLETEK 7 egy valószínűségi sűrűségfüggvény f(x) értékével. Ω = R n A = B n P (A) = f A A ahol az f : R n R egy valószínűségi sűrűségfüggvény, azaz f(x) 0 x R n és f = 1. R n A fenti példákban a 1.1 definíciónak megfelelő hármast adtunk meg, ami a 2. példa kapcsán egyszerűen ellenőrízhető, az 1. példa pedig ennek speciális esete a A p k = 1 n k = 1, 2,... n valószínűségeloszlással. A 4. példa az A. függelék egyik példája mérték megadására, és a 3. példa lényegében az előbbi speciális esete az { 1 ha x Ω f(x) = <Ω mértéke> 0 egyébként valószínűségi sűrűségfüggvény választásával Nevezetes véletlen kísérletek Az alábbiakban felsorolunk néhány nevezetes véletlen jelenséget, megfogalmazzuk a velük kapcsolatos valószínűségi modellt, és megadjuk események valószínűségeit. Ezek a valószínűségi mezők a fenti példák konkrét esetei lesznek, ezért mindíg csak az Ω eseményteret és a megfelelő diszkrét valószínűségeloszlást, illetve valószínűségi sűrűségfüggvényt adjuk meg. (1) Visszatevés nélküli mintavétel Egy N N + elemszámú halmaz elemei között M N számú megjelölt van. Véletlenszerűen kiválasztva n N számút, mennyi annak valószínűsége, hogy k számú megjelölt van a kiválasztottak között, azaz a mintában? Legyen Ω az N elem n-ed osztályú ismétlés nélküli kombinációinak C n N = ( N n) elemszámú halmaza, minden kombináció egyformán valószínű, A k esemény (azon kombinációk halmaza). amikor a kiválasztottak között k-számú megjelölt van, k = 0, 1, 2,... n. Kézirat, módosítva: október 24.

14 8 1. FEJEZET. VÉLETLEN JELENSÉGEK MATEMATIKAI MODELLJE Használjuk a továbbiakban az ( ) a = 0 b ha a < b N értelmezést, amivel A k elemszáma ( ) M k tehát ( ) N M, n k ( M ) ( k N M ) n k P (A k ) = ( N k = 0, 1, 2,... n. (1.1) n) Mivel az A k k = 0, 1, 2,... n események páronként kizáróak, és Ω = n k=0 A k, teljesül n P (A k ) = 1 k=0 vagyis (1.1) egy diszkrét valószínűségeloszlás, amit hipergeometriai eloszlásnak nevezünk. (2) Visszatevéses mintavétel Egy N N + elemszámú halmaz elemei között M N számú megjelölt van. Véletlenszerűen kiválasztva n N számút egymás után a kiválasztottak visszatevésével, mennyi annak valószínűsége, hogy k számú megjelölt van a mintában? Legyen Ω az N elem n-ed osztályú ismétléses variációinak V n,i N = N n elemszámú halmaza, minden variáció egyformán valószínű, A k esemény (azon variációk halmaza), amikor a választottak között k-számú megjelölt van, k = 0, 1, 2,... n. Mivel A k elemszáma a p = M N ( ) n M k (N M) n k, k jelölést bevezetve kapjuk: ( ) n P (A k ) = p k (1 p) n k k k = 0, 1, 2,... n. (1.2) Az A k k = 0, 1, 2,... n események most is páronként kizáróak, és Ω = n k=0 A k, tehát n P (A k ) = 1 k=0 vagyis (1.2) egy diszkrét valószínűségeloszlás, amit binomiális eloszlásnak nevezünk.

15 1.2. NEVEZETES VÉLETLEN KÍSÉRLETEK 9 (3) Bernoulli kísérlet Egy p [0; 1] valószínűségű esemény n-ismételt megfigyelése esetén mennyi annak valószínűsége, hogy a figyelt esemény k-szor következik be? Vegyük észre, hogy a visszatevéses mintavételtben egy p = M valószínűségű eseményt figyelünk meg n-szer, és A k éppen azt jelenti, hogy k-szor következik be a N figyelt esemény, azaz a megjelölt választása. Tehát választhatjuk Ω = {0, 1, 2,..., n} p k = ( n k) pk (1 p) n k k = 0, 1, 2,... n. Ezek a példák a véletlen jelenségekről szerezhető tapasztalatok leggyakoribb forrásait modellezik. Az ismételt megfigyelésből szerezhető tapasztalataink szerint egy esemény bekövetkezéseinek relatív gyakorisága a vélelmezett valószínűség egyfajta közelítése. Ezt igazolni látszik az a könnyen ellenőrízhető körülmény is, hogy a hipergeometriai és binomiális eloszlások legnagyobb valószínűségei az np értékhez legközelebbi egészek egyike lesz. Tehát az np érték mint átlagos illetve legvalószínűbb gyakoriság értelmezhető. Ezzel a fogalommal lehetővé válik olyan jelenségek modellezése, ahol a megfigyelések n száma igen nagy, és a p bekövetkezési valószínűség nagyon kicsi, de az átlagos gyakoriság megadható mint egy 0 < λ mennyiség. Létezik ugyanis a következő határérték és lim n np=λ ( ) n p k (1 p) n k = λk k k! e λ k = 0, 1, 2,... (1.3) k=0 λ k k! e λ = 1, tehát (1.3) egy diszkrét valószínűségeloszlást, az un. Poisson eloszlást határoz meg, amivel megfogalmazhatjuk a következő véletlen kísérletet. (4) Véletlen eseményszám Egy átlagosan λ-szor bekövetkező esemény véletlen számú bekövetkezésének megfigyelése. Legyenek Ω = N p k = λk k! e λ k N. Ha ez utóbbi kísérletet olyan esetben fogalmazzuk meg, amikor egy esemény bekövetkezése egy berendezés meghibásodását jelenti, és λ az időegységre jutó meghibásodások átlagos száma, akkor t-időtartamú meghibásodás mentes működés valószínűsége: p 0 = e λt = t λ e λt dt, Kézirat, módosítva: október 24.

16 10 1. FEJEZET. VÉLETLEN JELENSÉGEK MATEMATIKAI MODELLJE ahol f(t) = { λ e λt ha 0 t 0 egyébként egy un. exponenciális valószínűségi sűrűségfüggvény. Megfogalmazhatjuk tehát a következő véletlen kísérletet, melynek modellje egy folytonos valószínűségi mező. (5) Véletlen időtartam Egy átlagosan T = 1 idejű véletlen időtartam megfigyelése esetén, adjuk meg egy λ t-nél hosszabb időtartam bekövetkezésének valószínűségét! Legyenek Ω = R + f(t) = λ e λt t R + A t = [t; + [ a 0 < t-nél hosszabb időtartam megfigyelésének eseménye, akkor P (A t ) = e λt = t λ e λt dt t > 0. (1.4) Vizsgáljuk a következő kísérletet: egy lejtőn az alábbi módon helyezünk el ékeket 2n számú sorban, és egy golyót legurítunk úgy, hogy az minden soron áthaladva, és egy éknél véletlenszerűen irányt változtatva érkezik le a k = n, (n 1),..., 1, 0, 1,..., (n 1), n helyek valamelyikére. 1. sor 2. sor 3. sor n. sor n 0 n érkezési helyek A k helyre érkezés pontosan akkor következik be, ha a golyó 2n számú ütközésből n k számúszor fog jobbra gurulni, és feltehetjük a jobbra és balra haladás egyforma valószínűségét. Tehát a Bernoulli késérlet szerint a k helyre érkezés valószínűsége: p k = ( ) 2n n k 1 2 2n k = 0, ±1, ±2,..., ±n. Ha a sorok számát növeljük, de egyben a méretek csökkentésével elérjük, hogy a leérkezési helyek egymás közti távolsága csökkenjen, és éppen 1 n legyen, az x = k n rögzített helyre érkezés valószínűségére nyerjük a következő határértéket: lim n pk = 1 e x2 x R. (1.5) π n n x= k

17 1.2. NEVEZETES VÉLETLEN KÍSÉRLETEK 11 Ezt felhasználva, elég nagy tábla esetén, két x 1 = l 1 n < x 2 = l 2 n hely közé érkezés A [x1 ;x 2 ] eseményének valószínűségére kapjuk: P ( ) l 2 A [x1 ;x 2 ] = p k k=l 1 l 2 k=l 1 1 π e x2 k 1 x2 1 π e x2 dx n x 1 ahol x k = k n k = l 1,, l 2. Tehát egy folytonos valószínűségi modellt kapunk az f(x) = 1 π e x2 x R sűrűségfüggvénnyel. Ennek egyszerű transzformáltjaként kapható f(x) = 1 2π σ e (x m)2 2σ 2 x R (1.6) az un. Gauss, vagy normális valószínűségi sűrűségfüggvény általános alakja, ahol m R és σ > 0. Mindezek alapján megfogalmazhatjuk sok véletlen eltérés összegének, mint pl. egy mérés véletlen eredményének modelljét. (6) Mérési eredmény Sok kicsiny eltérés összegeként nyerhető véletlen érték megfigyelése. Legyenek Ω = R f(x) = 1 2π σ e (x m)2 2σ 2 x R ahol az f normális sűrűségfüggvény alakja miatt, m a hiba mentes, igazi érték, σ > 0 pedig a pontosság egyfajta mértékeként értelmezhető. Egy [x 1 ; x 2 ] intervallumba eső érték megfigyelésének valószínűsége P ([x 1 ; x 2 ]) = (7) Véletlen pont választása x2 e (x m)2 2σ 2 dx. (1.7) 2π σ x 1 1 Egy [a; b] R intervallumban válasszunk találomra egy számot, adjuk meg annak valószínűségét, hogy a pont egy [x; y] [a; b] részintervallumba esik! Legyenek Ω = [a; b] f(x) = 1 b a x [a; b], akkor egy [x 1 ; x 2 ] [a; b] intervallumba eső érték választásának valószínűsége P ([x 1 ; x 2 ]) = x 2 x 1 b a = x2 1 dx. (1.8) x 1 b a Kézirat, módosítva: október 24.

18 12 1. FEJEZET. VÉLETLEN JELENSÉGEK MATEMATIKAI MODELLJE 1.3. Feladatok 1. Legyenek A 1, A 2,..., A n páronként diszjukt halmazok, és Ω = n k=1 A k. Adjuk meg az ezeket tartalmazó legszűkebb eseményalgebrát, és az ezen értelmezhető valósznínűségi mértékeket mi határozza meg? 2. Legyenk A 1, A 2,..., A n halmazok, és Ω = n k=1 A k, továbbá teljesüljön A 1 A 2... A n ahol A k vagy az A k halmaz, vagy Āk = Ω \ A k k = 1, 2,... n. Adjuk meg az ezeket tartalmazó legszűkebb eseményalgebrát, és mutassuk meg, hogy pontosan egy olyan valószínűségi mérték adható meg ezen, hogy teljesüljenek P (A k ) = p k [0; 1] k = 1, 2,... n P (A 1 A 2... A n ) = P (A 1 ) P (A 2 )... P (A n ). 3. Adjuk meg a hipergeometriai, binomiális és Poisson eloszlás legnagyobb valószínűségét! 4. Igazoljuk az (1.5) határértéket az n! = α n 2πn n n e n ahol lim α n = 1 n Stirling formula segítségével! 5. Vizsgáljuk az (1.6) függvény menetét, és mutassuk meg, hogy valószínűségi sűrűségfüggvény! 6. Számítsuk ki a LOTTO jéték kapcsán a különböző nyerő osztályok valószínűségeit! 7. Egy jegypénztárban 500Ft-ért lehet egy jegyet vásárolni. Ha 100 sorbanálló mindegyike egy jegyet vásárol, és negyvenen ezressel, hatvanan pedig ötszázassal akarnak fizetni, mennyi annak valószínűsége, hogy a nyitáskor üres pénztár ellenére nem lesz fennakadás? 8. Mi valószínűbb: (a) egy kockával 4 dobásból legalább egyszer hatost dobni? (b) két kockával 24 dobásból legalább egyszer dupla hatost dobni? 9. n 1 számú 1-est és n 2 számú 0-át véletlenszerűen elrendezve, adjunk rekurzív formulát annak valószínűségére, hogy a véletlen sorrendben az egyeseket összesen k = 0, 1,..., n 1 n 2 számú nulla előzi meg! 10. Egy síklapon egymástól d távolságra párhuzamos vonalak vannak, és egy l < d hosszúságú tűt ejtünk találomra a síkra. Mennyi annak valószínűsége, hogy valamelyik vonalat metszi a tű? 11. Egy r sugarú körben találomra választott húr milyen valószínűséggel lesz r-nél rövidebb?

19 2. fejezet Feltételes valószínűség, függetlenség Véletlen jelenségek kapcsán megfogalmazott valamely esemény bekövetkezése esetén, más események bekövetkezésének esélyét sok esetben újra értékeljük, és kevésbé vagy még inkább valószínűnek véljük mint korábban. Mindezt annak megfelelően tesszük, hogy a vizsgált eseményt alkotó kimenetelek milyen mértékben töltik ki a bekövetkezett eseményt Definíció. Legyenek A, B A események, és P (B) > 0. Az A esemény B-re vonatkozó feltételes valószínűségének nevezzük: P (A B) = P (A B) P (B) Az így definiált feltételes valószínűséget az A esemény (feltétel nélküli, abszulut, teljes) valószínűségével összehasonlítva, mondhatjuk: P (A B) > P (A) B bekövetkezése esetén az A esemény bekövetkezése valószínűbb. P (A B) < P (A) B bekövetkezése esetén az A esemény bekövetkezése kevésbé valószínű. P (A B) = P (A) B bekövetkezése nem befolyásolja az A esemény bekövetkezési esélyét, és ilyenkor ha még P (A) > 0 is teljesül, kapjuk P (B A) = P (B) és P (A B) = P (A) P (B). Tehát ez utóbbi esetben A bekövetkezése sem befolyásolja a B esemény bekövetkezési esélyét, ami a következő fogalom definíciójához vezet Definíció. i) Az A, B A eseményeket függetleneknek nevezzük, ha teljesül P (A B) = P (A) P (B). 13

20 14 2. FEJEZET. FELTÉTELES VALÓSZÍNŰSÉG, FÜGGETLENSÉG ii) Az A 1, A 2,... A eseményhalmazokat, vagy másképpen eseményrendszereket páronként függetleneknek nevezzük, ha A A k és B A l függetlenek k l = 1, 2,.... iii) Az A 1, A 2,... A eseményrendszereket teljesen függetleneknek nevezzük, ha A ki A ki {k 1, k 2,..., k n } N + n N + esetén teljesül P (A k1 A k2... A kn ) = P (A k1 ) P (A k2 )... P (A kn ). A függetlenség fogalma tehát a feltételes valószínűség értelmezésének egyszerű következménye. Ha az eseményrendszerek egyetlen eseményből állnak, az eseményeket mondjuk páronként illetve teljesen függetleneknek A függetlenség tulajdonságai A 2.2 definícióból következik néhány egyszerű állítás, megjegyzés: 1. Ha eseményrendszerek teljesen függetlenek, akkor páronként is függetlenek, és az A k1 A k2... A kn A l1 A l2... A lm események függetlenek, ahol A ki A ki {k 1, k 2,..., k n } N + n N + A li A li {l 1, l 2,..., l m } N + m N + = {k 1, k 2,..., k n } {l 1, l 2,..., l m }. A teljes függetlenség tehát azt jelenti, hogy az egyes eseményrendszerek eseményeinek együttes bekövetkezése független más, ugyancsak véges sok eseményrendszer eseményeinek együttes bekövetkezésétől. Ez nem következik a páronkénti függetlenségből (lásd 1. feladat). A továbbiakban, több esemény, eseményrendszer esetén, a függetlenség mindíg a teljes függetlenséget fogja jelenteni. 2. A lehetetlen illetve biztos esemény minden eseménytől független, mivel A A esetén P (A ) = 0 = P (A) 0, P (A Ω) = P (A) = P (A) 1.

21 2.1. A FÜGGETLENSÉG TULAJDONSÁGAI Ha A és B független események, akkor függetlenek, mert pl. Ā és B, A és B, Ā és B P (Ā B) = P (B \ A) = P (B) P (A) P (B) = P (Ā) P (B). Következmény: Független eseményrendszerek bővíthetők az események komplementereivel, a páronkénti illetve teljes függetlenség megtartásával. 4. Véletlen kísérletek függetlenségét modellezhetjük valószínűségi mezők szorzat mértékterével. Legyen (Ω 1, A 1, P 1 ) és (Ω 2, A 2, P 2 ) két valószínűségi mező, akkor az (Ω, A, P ) szorzat mértéktér (lásd A. Függelék) egy valószínűségi mező, ahol és ebben az Ω = Ω 1 Ω 2 A = σ {A B A A 1, B A 2 } P (A B) = P 1 (A) P 2 (B) A A 1, B A 2, Ã 1 = {A Ω 2 A A 1 } A Ã 2 = {Ω 1 B B A 2 } A eseményrendszerek függetlenek. Hasonlóan kapjuk több véletlen kísérlet teljesen független beágyazását a szorzat modellbe. A függetlenség fogalmával a korábban már említett Bernoulli kísérlet újra megfogalmazható, és újabb nevezetes véletlen kísérleteket vizsgálhatunk. (3) Bernoulli kísérlet Egy p [0; 1] valószínűségű eseményt n-szer megfigyelve, mennyi annak valószínűsége, hogy k-szor következik be? Legyenek a B 1, B 2,..., B n események függetlenek, és P (B i ) = p i = 1, 2,..., n. Jelölje továbbá A k esemény k-számú bekövetkezését a B 1, B 2,..., B n események közül. Akkor A k = ( B 1 B 2... B k B k+1... B n )... olyan ( n k) -tagú diszjunkt únió, melynek minden tagja k-számú B és (n k)-számú B esemény közös része, ezért ( ) n P (A k ) = p k (1 p) n k k = 0, 1, 2,... n. k Kézirat, módosítva: október 24.

22 16 2. FEJEZET. FELTÉTELES VALÓSZÍNŰSÉG, FÜGGETLENSÉG (8) Több kimenetelű kísérlet ismételt megfigyelése Egy r kimenetelű kísérletet n-szer megismételve, adjuk meg annak valószínűségét, hogy az egyes kimenetelek k 1, k 2,... k r -szer következnek be, ha az egyes kimenetelek valószínűségei a p 1, p 2,..., p r diszkrét valószínűségeloszlással adottak! Legyenek a teljes eseményrendszerek függetlenek, és Ekkor a vizsgált {B i1, B i2,..., B ir } A i = 1, 2,..., n P (B ij ) = p i i = 1, 2,..., n, j = 1, 2,..., r. A k1,k 2,...,k r = j 1,j 2,...,j n ( n ) B iji esemény egy pontosan n! k 1! k 2!... k r! tagú diszjunkt únió, ahol j 1, j 2,..., j n egy ismétléses permutáció k 1 számú 1-essel, k 2 számú 2-essel,... és k r számú r-essel, így a függetlenséget is használva, kapjuk P (A k1,k 2,...,k r ) = n! k 1! k 2!... k r! pk 1 1 pk pkr r (2.1) r ha k j N j = 1, 2,..., n és k j = n. Mivel (2.1) valószínűségeinek összege (a polinomiális tétel szerint is) 1, ezt a valószínűségeloszlást polinomiális eloszlásnak nevezzük. (9) Esemény megfigyelése az első bekövetkezésig Egy p ]0; 1[ valószínűségű eseményt figyelünk meg az első bekövetkezésig, adjuk meg annak valószínűségét, hogy ez a k-adik kisérletben történik meg! Legyenek a B 1, B 2,... események függetlenek, és P (B i ) = p továbbá a vizsgálandó eseményt akkor a függetlenségből kapjuk: i=1 A k = B 1 B 2... B k 1 B k k = 1, 2,... j= i = 1, 2,.... Jelölje P (A k ) = p (1 p) k 1 k = 1, 2,... (2.2) ami az un. diszkrét geometriai eloszlás, ugyanis konvergens geometriai sor összegeként kapjuk p (1 p) k 1 = 1. k=1 Ez egyben azt is jelenti, hogy az A = B 1 B 2... = A 1 A 2... esemény valószínűsége P (A ) = 0.

23 2.2. A FELTÉTELES VALÓSZÍNŰSÉG TULAJDONSÁGAI A feltételes valószínűség tulajdonságai Az alábiakban felsoroljuk a feltételes valószínűség néhány egyszerűen ellenőrízhető fontos tulajdonságát, melyek indokolják a fogalom értelmezését, és módszereket adnak bizonyos típusú problémák megoldásához. 1. Ha B, A A függetlenek, és P (B) > 0, akkor P (A B) = P (A), tehát a feltételtől független esemény feltételes valószínűsége változatlan. 2. Legyen P (B) > 0, ha B A A akkor P (A B) = 1, tehát ha B maga után vonja az A eseményt, annak erre vonatkozó valószínűsége 1. Ha pedig A, B A kizáróak, akkor P (A B) = Ha B A egy rögzített esemény, és P (B) > 0, akkor valószínűségi mérték A-n. P ( B) : A R A P (A B) Következmény: A valószínűségggel kapcsolatos számolási szabályokat a feltételes valószínűségre is alkalmazhatjuk, mint pl. P (Ā B) = 1 P (A B) P (A 1 \ A 2 B) = P (A 1 B) P (A 1 A 2 B) P (A 1 A 2 B) = P (A 1 B) + P (A 2 B) P (A 1 A 2 B). 4. Szorzási szabály Legyenek A 1, A 2,..., A n A események olyanok, hogy P (A 1 A 2... A n ) > 0, akkor P (A 1 A 2... A n ) = P (A 1 ) P (A 2 A 1 ) P (A 3 A 1 A 2 )... P (A n A 1 A 2... A n 1 ). 5. Teljes valószínűség tétel Legyenek B 1, B 2,..., B n A, B k B l = ha k l = 1, 2,..., n és n k=1 B k = Ω, vagyis egy un. teljes esményrendszer, továbbá A A, akkor n P (A) = P (A B k ) P (B k ). k=1 Kézirat, módosítva: október 24.

24 18 2. FEJEZET. FELTÉTELES VALÓSZÍNŰSÉG, FÜGGETLENSÉG 6. Bayes tétel Legyen B 1, B 2,..., B n A egy teljes eseményrendszer, A A és P (A) > 0, akkor P (B l A) = P (A B l ) P (B l ) n k=1 P (A B k) P (B k ) l = 1, 2,..., n Bayes döntés A feltételes valószínűség segítségével megadhatjuk a következő, un. döntési feladat megoldását. Feladat: Legyenek (A i ) n i=1 és (B j) m j=1 teljes eseményrendszerek, és P (B j) > 0 j = 1, 2,... m. Keressük azt a un. döntés függvényt, mellyel a d : {1, 2,..., m} {1, 2,..., n} H d = m ) (Ād(j) B j j=1 döntési hiba valószínűsége a legkisebb. A döntési hiba valószínűségét átalakítva kapjuk: P (H d ) = 1 m P ( ) m A d(j) B j = 1 P ( ) A d(j) B j P (Bj ). j=1 Ez pedig akkor maximális, ha azt a d döntésfüggvényt választjuk, melyre teljesül P (A d (j) B j ) P (A i B j ) i = 1, 2,..., n j = 1, 2,..., m, amit Bayes döntésnek nevezünk. Természetesen d nem egyértelműen adott, de minden Bayes döntés hibavalószínűsége ugyanaz. Egy másik lehetséges döntésfüggvény az a konstans d max, melyre teljesül amivel a döntés hibája j=1 P (A dmax ) = max {P (A 1 ), P (A 2 ),..., P (A n )} P (H dmax ) = 1 P (A dmax ) P (H d ). Könnyen belátható, hogy a két teljes eseményrendszer függetlensége esetén d = d max. Egy másik szélsőséges eset, amikor minden B j -hez van olyan A i esemény, hogy B j A i, vagyis az Ω eseménytér (B j ) m j=1 feloszása finomabb, mint az (A i ) n i=1 felosztás, másképpen fogalmazva minden B j esemény maga után vonja egy A i esemény bekövetkezését. Ekkor d (j) = i ha B j A i amiből következik, hogy ilyenkorp (H d ) = 0.

25 2.4. FELADATOK Feladatok 1. Válasszunk egy origó középpontú r sugarú körben találomra egy pontot, és jelölje A a pont az x tengely fölötti félkörbe esik; B a pont az y tengelytől jobbra eső félkörbe esik; C a pont az első, vagy a harmadik síknegyedbe esik; Mutassuk meg, hogy az A, B és C események páronként függetlenek, de nem teljesen! 2. Mutassuk meg, hogy ha Ω = I 0 J 0 R 2 intervallum, és a geometriai valószínűségszámítás modelljét használjuk, akkor az és eseményrendszerek függetlenek. I x = {I J 0 I I 0 intervallum} J y = {I 0 J J J 0 intervallum} 3. Bizonyítsuk a feltételes valószínűség tulajdonságait! 4. Két céllövő felváltva lő, és az nyer, aki először eltalálja a célt. Ha feltesszük, hogy a cél eltalálásának eseményei az egymást követő lövések során teljesen függetlenek, és az elsőnek lövő esetén 0.6, illetve a másodiknál 0.8 a találati valószínűség, adjuk meg annak valószínűségét, hogy az első, illetve a második lövő nyer! 5. Egy kosárlabda játékos egymás után végez büntető dobásokat. Az elsőt bedobja, a másodikat nem, és minden további dobása akkora valószínűséggel lesz sikeres, mint amennyi a megelőző dobásokban a kosarak relatív gyakorisága. Mennyi annak valószínűsége, hogy 100 dobásból pontosan 50 kosarat fog dobni? 6. Szinbád, a szultánnak tett szolgálataiért, választhat egyet az N számú háremhölgy közül úgy, hogy az egyenként előtte elvonuló hölgyek valamelyikére rámutat. Tegyük fel, hogy a háremhölgyek szépségük szerint egyértelműen sorrendbe állíthatóak, és Szinbád stratégiája a következő: az első n számú hölgy szemrevétele után azt választja, aki szebb minden korábban látottnál. Mennyi annak valószínűsége, hogy Szinbád a legszebb háremhölgyet választja? Hogyan kell az N értékét megválasztani n elég nagy N esetén, hogy ez a valószínűség a legnagyobb legyen? 7. Két város közötti távíró összeköttetés olyan, hogy a leadott távíró jelek közül a pontok 2-e vonallá torzul, a vonalak 1 -a pedig ponttá. A leadott jelek közül a 5 3 pontok és vonalak aránya 5 : 3. Adjunk döntési szabályt a vevő számára, mennyi a hibás dekódolás valószínűsége? Kézirat, módosítva: október 24.

26 20 2. FEJEZET. FELTÉTELES VALÓSZÍNŰSÉG, FÜGGETLENSÉG

27 3. fejezet Valószínűségi változók Egy véletlen kísérlet eredményéhez sok esetben természetes módon tartozik egy vagy több (véletlen) mennyiség. A matematikai modellben ennek megfelelő fogalom a következő Definíció. i) Skalár valószínűségi változónak (röviden v.v.) nevezzük a függvényt, ha x R esetén ξ : Ω R {ξ < x} = {ω Ω ξ(ω) < x} = ξ 1 (], x[) A ; ii) Vektor valószínűségi változónak (röviden v.v.v.) nevezzük a ξ = (ξ 1, ξ 2,..., ξ n ) : Ω R n függvényt, ha a ξ i : Ω R i = 1, 2,..., n komponensek skalár valószínűségi változók. A továbbiakban a skalár ill. vektor jelzőket csak akkor használjuk, ha azt hangsúlyozni kívánjuk, egyébként egyszerűen valószínűségi változóról, röviden (v.)v.v.-ról beszélünk Valószínűségi változóval kapcsolatos események Jelöljön a továbbiakban ξ egy skalár v.v.-t, ekkor a vele kapcsolatos események az alábbiak: 1. A definíció szerint x R esetén {ξ < x} = {ω Ω ξ(ω) < x} = ξ 1 (], x[) A ; 21

28 22 3. FEJEZET. VALÓSZÍNŰSÉGI VÁLTOZÓK 2. Az eseményalgebra tulajdonságaiból következnek x y R esetén {ξ x} = {ω Ω ξ(ω) x} = ξ 1 ([x, + [) = {ξ < x} A ; {x ξ < y} = {ω Ω x ξ(ω) < y} = ξ 1 ([x, y[) = {ξ < y} \ {ξ < x} A ; { {ξ = x} = {ω Ω ξ(ω) = x} = ξ 1 ({x}) = x ξ < x + 1 } A ; n n=1 {x ξ y} = {ω Ω x ξ(ω) y} = ξ 1 ([x, y]) = = {x ξ < y} {ξ = y} A ;. tehát általában I R intervallum esetén {ξ I} = {ω Ω ξ(ω) I} = ξ 1 (I) A. Hasonlóan ellenőrízhető, hogy egy ξ = (ξ 1, ξ 2,..., ξ n ) : Ω R n v.v.v. esetén például {x 1 ξ 1 < y 1, x 2 ξ 2 < y 2,..., x n ξ n < y n } = vagy általában n {x i ξ i < y i } A i=1 x i y i R i = 1, 2,..., n, {ξ I} = {ω Ω ξ(ω) I} = ξ 1 (I) A I R n intervallum. Mindezekből (lásd : A. függelék) következnek az alábbiak: 3.2. Következmény. i) Egy ξ : Ω R n függvény pontosan akkor (v.)v.v., ha mérhető az intervallumokat tartalmazó legszűkebb B n σ-algebrára, azaz {ξ B} = {ω Ω ξ(ω) B} = ξ 1 (B) A B B n. ii) A ξ = ξ 1 (B n ) = { ξ 1 (B) B B n } A egy eseményalgebra, amit a ξ (v.)v.v.-val kapcsolatos események rendszerének nevezünk. iii) A ξ (v.)v.v. egy P ξ : B n [0; 1] B P (ξ B) valószínűségi mértéket generál, amit ξ eloszlásának nevezünk. Ennek megfelelően, valószínűségi változókat akkor fogunk (páronként, teljesen) függetleneknek nevezni, ha a velük kapcsolatos eseményrendszerek (eseményalgebrák) függetlenek. Ezzel kapcsolatos a következő tétel.

29 3.2. VALÓSZÍNŰSÉGI VÁLTOZÓK STRUKTÚRÁJA Tétel. A ξ : Ω R p és η : Ω R q (v.)v.v.-k pontosan akkor függetlenek, ha P ({ξ I} {η J}) = P (ξ I) P (η J) I R p, J R q intervallumok. (3.1) Bizonyítás. Az egyik irány nyilvánvaló, tehát tegyük fel, hogy (3.1) teljesül. Ekkor a B p+q -n (ξ, η)-által generált P (ξ,η) mértékre P (ξ,η) (I J) = P ξ (I) P η (J) I I p, J I q, tehát megegyezik a szorzatmértékkel az I p+q félgyűrűn, de akkor az egyértelmű kiterjesztés miatt P (ξ,η) a szorzatmérték (lásd: A. függelék, A.3. tétel), vagyis P (ξ,η) (A B) = P ({ξ A} {η B}) = P (ξ A) P (η B) A B p, B B q, amit bizonyítani kellett Valószínűségi változók struktúrája Az alábbiakban összefoglaljuk a skalár v.v.-k (mérhető függvények, lásd: A függelék), könnyen ellenőrízhető tulajdonságait. 1. Egy A A esemény indikátora 1 A (ω) = { 1 ha ω A 0 ha ω Ā valószínűségi változó. Speciálisan az 1 Ω 1 iletve 1 0 konstans függvények v.v.-k. 2. A skalár v.v.-k L halmaza vektorháló, azaz ξ L, c R c ξ L ξ, η L ξ + η L max{ξ, η} min{ξ, η} L, amiből következik, hogy egy ξ v.v. pozitív és negatív része, és abszolút értéke is valószínűségi változó. ξ + = max{0, ξ} ξ = min{0, ξ} ξ = ξ + ξ 3. Egy véges értékkészletű ξ : Ω R függvény pontosan akkor v.v., ha és ekkor a {ξ = x} A x im(ξ), ξ = x im(ξ) valószínűségi változót egyszerűnek nevezzük. x 1 {ξ=x} Kézirat, módosítva: október 24.

30 24 3. FEJEZET. VALÓSZÍNŰSÉGI VÁLTOZÓK 4. A skalár v.v.-k L halmaza zárt a pontonkénti limeszre, azaz ha ξ n L n = 1, 2,... és lim n ξ n = ξ : Ω R, akkor ξ valószínűségi változó. 5. Ha 0 ξ v.v., akkor megadható egyszerű v.v.-k (ξ n ) n=1 sorozata, hogy A ξn A ξ n = 1, 2,... és monoton nem csökkenő lim ξ n = ξ. (3.2) n 6. Valószínűségi változó mérhető függvénye is valószínűségi változó, tehát ha ξ : Ω R n (v.)v.v. és h : R n R mérhető, akkor h ξ : Ω R valószínűségi változó. Speciálisan, ha h folytonos függvény, akkor h ξ valószínűségi változó Valószínűségi változók eloszlása Egy ξ : Ω R n (v.)v.v. mindíg generál egy (R n, B n, P ξ ) valószínűségi mezőt, ahol a P ξ (B) = P ( ξ 1 (B) ) B B n valószínűségi mértéket (vagy a generált valószínűségi mezőt), amely az egységnyi valószínűséget szétosztja R n mérhető halmazain, a ξ v.v. eloszlásának nevezzük. A ξ-t diszkrét eloszlásúnak nevezzük, ha ez a mérték egy diszkrét valószínűségeloszlással adott, vagyis P ξ (B) = x B P (ξ = x) B B n, ahol a P (ξ = x) x R n valószínűségek közül csak véges, vagy megszámlálhatóan végtelen sok különbözik nullától, és azok összege x R n P (ξ = x) = 1. A ξ-t folytonos eloszlásúnak nevezzük, ha ez a mérték egy valószínűségi sűrűségfüggvénnyel adott, vagyis P ξ (B) = f B B n, ahol f : R n R + 0 valószínűségi sűrűségfüggvény, azaz R n f = 1. B

31 3.3. VALÓSZÍNŰSÉGI VÁLTOZÓK ELOSZLÁSA 25 Ilyenkor f nulla mértékű halmazon történő megváltoztatása azonos eloszlást eredményez, tehát f megadása nulla mértékű halmaztól eltekintve egyértelmű. Eloszlások e két típusa azonban közel sem meríti ki az összes lehetőséget (lásd pl. a 3. feladatban (ξ 1, η) eloszlása), csupán ezek a legegyszerűbben kezelhetők, és az alkalmazásokban is ilyenek fordulnak elő leggyakrabban. Mint később látni fogjuk, a P ξ mértéket, vagyis ξ eloszlását egyértelműen meghatározza a következő fogalom Definíció. A ξ = (ξ 1, ξ 2,..., ξ n ) : Ω R n (v.)v.v. eloszlásfüggvényének nevezzük az F (x 1, x 2,..., x n ) = P (ξ 1 < x 1, ξ 2 < x 2,..., ξ n < x n ) (x 1, x 2,..., x n ) R n függvényt. A definícióból és a valószínűségi mérték tulajdonságaiból egyszerűen következnek az alábbiak. Az eloszlásfüggvény tulajdonságai: 1. A ξ (v.)v.v. F eloszlásfüggvénye korlátos, im (F ) [0; 1]. 2. Legyen a ξ v.v.v. eloszlásfüggvénye F, akkor rögzített (x 1,..., x k 1, x k+1,..., x n ) R n 1 esetén az F (k) = F (x 1,..., x k 1,, x k+1,..., x n ) : R [0; 1] parciális függvény (a) monoton nem csökkenő, balról mindenütt folytonos; (b) határértéke a végtelenben: és F (k) ( ) = x F (x 1,..., x k 1, x, x k+1,..., x n ) lim F (k)(x) = 0 x F (k) (+ ) = lim F (k)(x) = x + = P ( ) ξ 1 < x 1, ξ 2 < x 2,..., ξ k 1 < x k 1, ξ k+1 < x k+1,... ξ n < x n vagyis F (k) (+ ) a ( ξ 1, ξ 2,..., ξ k 1, ξ k+1,... ξ n ) n 1 dimenziós un. perem eloszlásfüggvénye az (x 1,..., x k 1, x k+1,..., x n ) R n 1 helyen. Speciálisan, ha ξ skalár v.v., F monoton nem csökkenő, balról folytonos, és lim F (x) = 0 x lim F (x) = 1. x + Kézirat, módosítva: október 24.

32 26 3. FEJEZET. VALÓSZÍNŰSÉGI VÁLTOZÓK 3. Legyen ξ skalár v.v., akkor a ξ-vel kapcsolatos események valószínűségei x y R esetén: P (ξ < x) = F (x) P (ξ x) = 1 F (x) P (x ξ < y) = F (y) F (x) P (ξ = x) = F (x + 0) F (x) P (x ξ y) = F (y + 0) F (x) P (x < ξ y) = F (y + 0) F (x + 0) P (x < ξ < y) = F (y) F (x + 0) ahol F (x + 0) = lim t x+ F (t), vagy általában jelöljük mindezt az alábbi módon: P (ξ I) = [F ] I I R intervallum. Ha ξ vektor valószínűségi változó, hasonlóan kaphatjuk P (ξ I) = [F ] I I R n intervallum. Megjegyzés: Tehát P ξ értéke az intervallumokon kifejezhető az eloszlásfüggvénnyel, azaz ξ eloszlását meghatározza eloszlásfüggvénye (lásd: A. függelék, A.3. tétel). Ennek következménye az, hogy egy v.v. értékét 0 valószínűségű eseményen tetszőlegesen módosítva (vagy akár meg sem adva), az eloszlásfüggvény változatlan marad. A továbbiakban felsorolunk néhány egyszerűen ellenőrízhető, (feladatokban, alkalmazásokban) gyakran használt következményt. Következmények: 1. Legyen a ξ : Ω R skalár v.v. (a) diszkrét eloszlású, akkor a diszkrét eloszlás valószínűségei és az eloszlásfüggvény P (ξ = x) = F (x + 0) F (x) x R, F (x) = t<x P (ξ = t) x R. Egy I R intervallum esetén P (ξ I) = x I P (ξ = x).

33 3.3. VALÓSZÍNŰSÉGI VÁLTOZÓK ELOSZLÁSA 27 (b) folytonos eloszlású, akkor valószínűségi sűrűségfüggvénye f(x) = F (x) x R ahol f folytonos, és az eloszlásfüggvény F (x) = x f(t)dt x R. Egy I R intervallum esetén, ha belseje ]a; b[ P (ξ I) = I f(t)dt = [F ] I = F (b) F (a). Mindez ξ : Ω R n v.v.v. esetén az alábbi összefüggéseket jelenti: illetve f(x 1, x 2,..., x n ) = n x1 x2... xn F (x 1, x 2,..., x n ) (x 1, x 2,..., x n ) R n ahol f folytonos, F (x 1, x 2,..., x n ) = x 1 x2... x n f(t 1, t 2,..., t n )dt 1 dt 2... dt n (x 1, x 2,..., x n ) R n, és egy I R n intervallum esetén, P (ξ I) = I f = [F ] I. Megjegyzés. Egy ξ skalár v.v. eloszlásának folytonosága egyszerűen következik, ha teljesül az alábbi két feltétel: F folytonos függvény; F folytonosan differenciálható az ]a n ; b n [ n = 1, 2,..., N nyílt intervallumokon, ahol a 1 =, a 2 = b 1, a 3 = b 2,, a N = b N 1, b N = Legyen a (ξ, η) : Ω R p+q v.v.v. (a) diszkrét eloszlású, akkor ξ illetve η diszkrét eloszlásúak, és P (ξ = x) = y P (η = y) = x P (ξ = x, η = y) x R p ; P (ξ = x, η = y) y R q ; Kézirat, módosítva: október 24.

34 28 3. FEJEZET. VALÓSZÍNŰSÉGI VÁLTOZÓK (b) folytonos eloszlású f : R p+q R + 0 sűrűségfüggvénnyel, akkor ξ illetve η folytonos eloszlásúak, és sűrűségfüggvényeik f ξ (x) = f(x, y)dy x R p ; R q f η (y) = f(x, y)dx y R q ; R p Megjegyzés: Kaptuk tehát, hogy diszkrét illetve folytonos eloszlású v.v.v. peremeinek eloszlása ugyancsak diszkrét illetve folytonos. A megfordítás az első esetben igaz, hiszen a peremek diszkrét eloszlása miatt az együttes eloszlás már legfeljebb megszámlálhatóan végtelen sok érték-pár felvételéhez összesen 1 valószínűséget rendel. A peremek folytonos eloszlásából azonban nem következik az együttes eloszlás folytonossága (lásd 3. feladat). 3. A (ξ, η) : Ω R p+q v.v.v. ξ : Ω R p és η : Ω R q peremei pontosan akkor függetlenek, ha a megfelelő eloszlásfüggvényekre teljesül F (ξ,η) (x, y) = F ξ (x) F η (y) x R p y R q. Ha (ξ, η) diszkrét eloszlású, ez a feltétel ekvivalens a P (ξ = x, η = y) = P (ξ = x) P (η = y) x R p y R q teljesülésével, és ha (ξ, η) folytonos eloszlású, a feltétel f(x, y) = f ξ (x) f η (y) x R p y R q alakban írható a megfelelő sűrűségfüggvények alkalmas választásával. 4. Valószínűségi változó konstruálása adott eloszlással: (a) Legyen (p n ) n=1,2,... egy diszkrét valószínűségeloszlás, és {x 1, x 2,...} R p, akkor az Ω = R p A = B p P (B) = x n B p n B A valószínűségi mezőn értelmezett ξ = id R p v.v. diszkrét eloszlású, és eloszlása: P (ξ = x) = { pn ha x = x n n = 1, 2,... 0 egyébként.

35 3.3. VALÓSZÍNŰSÉGI VÁLTOZÓK ELOSZLÁSA 29 (b) Legyen f : R p R egy valószínűségi sűrűségfüggvény, akkor az Ω = R p A = B p P (B) = f B B A valószínűségi mezőn értelmezett ξ = id R p v.v. folytonos eloszlású, és sűrűségfüggvénye: f : R p R. (c) Legyen a ξ : Ω R v.v. F eloszlásfüggvénye folytonos, akkor az η = F (ξ) v.v. eloszlásfüggvénye 0 ha x 0 F η (x) = x ha 0 < x 1. (3.3) 1 ha 1 < x Megjegyzés: Az ilyen eloszlású η v.v.-t (pontosabban megfigyelt értékét) véletlen számnak nevezzük, a megfigyelt értéket szolgáltató kísérlet illetve eljárás pedig az un.véletlen szám generátor. A véletlen szám generátorok nélkülözhetetlenek véletlen jelenségek szimulációjához, segítségükkel kaphatunk kívánt eloszlású véletlen mennyiségeket: i. Ha F folytonos és invertálható eloszlásfüggvény, akkor az η véletlen szám segítségével kaphatunk F eloszlásfüggvényű ξ = F 1 (η) valószínűségi változót. Ez a módszer esetenként időigényes lehet az inverz függvény megadása miatt, ezért ilyenkor hatékonyabb (gyorsabb) eljárásokat használnak (lásd: 10. feladat). ii. Ha p 1, p 2, p 3, egy diszkrét valószínűségeloszlás és {x 1, x 2, x 3, } R, akkor a ξ = x 1 1 {η p1 } + x 2 1 {p1 <η p 1 +p 2 } + x 3 1 {p1 +p 2 <η p 1 +p 2 +p 3 } + v.v. eloszlása P (ξ = x k ) = p k k = 1, 2,. 5. Valószínűségi változó függvényének eloszlása: Legyen ξ : Ω R p v.v.v. (a) diszkrét eloszlású, és h : R p R q, akkor η = h ξ : Ω R q diszkrét eloszlású v.v., és P (η = y) = P (ξ = x) y R q. (3.4) {x R p h(x)=y} Kézirat, módosítva: október 24.

36 30 3. FEJEZET. VALÓSZÍNŰSÉGI VÁLTOZÓK (b) folytonos eloszlású f : R p R sűrűségfüggvénnyel, h : R p R p invertálható, és h 1 folytonosan differenciálható függvény, akkor η = h ξ : Ω R p v.v.v. eloszlása folytonos, és sűrűségfüggvénye ( ) f η (y) = det y h 1 (y) f ( h 1 (y) ) y R p. (3.5) Következmény: Ha a (ξ, η) : Ω R valószínűségi változó (a) diszkrét eloszlású, akkor ξ + η eloszlása is diszkrét, és P (ξ + η = x) = z P (ξ = x z, η = z) = z és ha még függetlenek is, akkor P (ξ + η = x) = z P (ξ = x z) P (η = z) = z P (ξ = z, η = x z) x R, P (ξ = z) P (η = x z) x R. (b) folytonos eloszlású f : R 2 R sűrűségfüggvénnyel, akkor ξ + η eloszlása is folytonos, és sűrűségfüggvénye f ξ+η (x) = + és ha még függetlenek is, akkor f ξ+η (x) = + f(x z, z)dz = f ξ (x z) f η (z)dz = + + ahol f ξ és f η a megfelelő peremek sűrűségfüggvényei. f(z, x z)dz x R, f ξ (z) f η (x z)dz x R, 3.4. Nevezetes eloszlású valószínűségi változók A továbbiakban röviden összefoglaljuk a már korábban (azonos sorszámmal) felsorolt, nevezetes véletlen kísérletek kapcsán megfogalmazható valószínűségi változó jellemzőit, és néhány könnyen ellenőrízhető tulajdonságát. Az egyszerűbb jelölés érdekében, diszkrét eloszlások esetén csak a pozitív valószínűségeket soroljuk fel a megfelelő értékekkel, és folytonos eloszlás sűrűségfüggvényét csak ott adjuk meg, ahol pozitív értéket vesz fel. Tehetjük mindezt azért is, mert 0 vallószínűségű eseményen egy v.v. tetszőlegesen megváltoztatható az eloszlás változatlansága mellett. (1) Visszatevés nélküli mintavétel Egy N N + elemszámú halmaz elemei között 0 < M < N számú megjelölt van. Véletlenszerűen kiválasztva n N számút, jelölje ξ a megjelöltek számát a mintában.

37 3.4. NEVEZETES ELOSZLÁSÚ VALÓSZÍNŰSÉGI VÁLTOZÓK 31 Ekkor ξ diszkrét eloszlású, és (1.1) szerint eloszlása hipergeometrikus : ( M ) ( k N M ) n k P (ξ = k) = ( N k = 0, 1, 2,... n, n) jelölése ξ Hyp(N, M, n). Vezessük be továbbá a következő eseményeket A k a k-adik kiválasztott a megjelöltek közül való k = 1, 2,..., n; akkor ahol P (A k ) = M N = p P (A k A l ) = ξ = 1 A1 + 1 A An (3.6) M(M 1) N(N 1) k l = 1, 2,..., n. Tulajdonságok: (a) A legvalószínűbb érték, un. módusz, az a legnagyobb k egész, melyre teljesül (n + 1) M + 1 N + 2 k, és ha itt egyenlőség teljesül, akkor P (ξ = k) = P (ξ = k 1). (b) Ha ξ N Hyp(N, M, n) és p = M állandó, akkor N ( ) n lim P (ξ N N = k) = p k (1 p) n k k = 0, 1, 2,... n. k p= M N (2,3) Visszatevéses mintavétel, Bernoulli kísérlet Egy 0 < p < 1 valószínűségű esemény n-ismételt megfigyelése esetén jelölje a ξ v.v. a bekövetkezések számát. Ekkor ξ diszkrét eloszlású, és (1.2) szerint eloszlása n-edrendű p-paraméterű binomiális eloszlás : ( ) n P (ξ = k) = p k (1 p) n k k = 0, 1, 2,... n, k jelölése ξ Bin(n; p). Vezessük be továbbá a következő (teljesen) független eseményeket A k a k-adik megfigyelésben bekövetkezik a figyelt esemény k = 1, 2,..., n; akkor ahol Tulajdonságok: ξ = 1 A1 + 1 A An (3.7) P (A k ) = p k = 1, 2,..., n. Kézirat, módosítva: október 24.

38 32 3. FEJEZET. VALÓSZÍNŰSÉGI VÁLTOZÓK (a) Az eloszlás módusza az a legnagyobb k egész, melyre teljesül (n + 1) p k, és ha itt egyenlőség teljesül, akkor P (ξ = k) = P (ξ = k 1). (b) Ha ξ 1 Bin(n 1 ; p) és ξ 2 Bin(n 2 ; p) függetlenek, akkor ξ 1 + ξ 2 Bin(n 1 + n 2 ; p). (c) Ha ξ n Bin(n; p) és np = λ állandó, akkor (4) Véletlen eseményszám lim P (ξ n n = k) = λk k! e λ k = 0, 1, 2,.... np=λ Egy átlagosan 0 < λ-szor bekövetkező esemény bekövetkezéseinek számát jelölje a ξ v.v. Ekkor ξ diszkrét eloszlású, és (1.3) szerint eloszlása λ-paraméterű Poisson eloszlás: jelölése ξ Po(λ). Tulajdonságok: P (ξ = k) = λk k! e λ k N, (a) Az eloszlás módusza az a legnagyobb k egész, melyre λ k, és ha itt egyenlőség teljesül, akkor P (ξ = k) = P (ξ = k 1). (b) Ha ξ 1 Po(λ) és ξ 2 Po(µ) függetlenek, akkor (5) Véletlen időtartam Egy átlagosan T = 1 λ változó. ξ 1 + ξ 2 Po(λ + µ) idejű véletlen időtartam értéke legyen a ξ valószínűségi Ekkor ξ folytonos eloszlású, és (1.4) szerint eloszlása λ-paraméterű exponenciális eloszlás, sűrűségfüggvénye f(t) = λ e λt t > 0, eloszlásfüggvénye jelölése ξ Exp(λ). Tulajdonságok: { F (t) = 0 ha t 0 1 e λt ha 0 < t,

39 3.4. NEVEZETES ELOSZLÁSÚ VALÓSZÍNŰSÉGI VÁLTOZÓK 33 (a) Az eloszlás un. mediánja, az F (t) = 1 2 egyenlet megoldása T 1 2 = ln(2) λ ami olyan időtartamként értelmezhető, mely alatt, sok ilyen véletlen időtartamnak átlagosan a fele ér véget (felezési idő). (b) Egy folytonos eloszlásfüggvényű ξ : Ω R + 0 v.v. akkor és csak akkor exponenciális eloszlású, ha minden x, y > 0 esetén teljesül: P (ξ > x + y ξ > y) = P (ξ > x). (c) Ha ξ Exp(λ), és c R +, akkor c ξ Exp( λ c ). (6) Mérési eredmény Sok (kis) eltérés összegeként nyerhető véletlen értéket jelölje a ξ valószínűségi változó. Ekkor ξ folytonos eloszlású, és (1.7) szerint eloszlása m R és σ > 0 paraméterű normális (vagy Gauss) eloszlás, sűrűségfüggvénye f(x) = 1 2π σ e (x m)2 2σ 2 x R,, eloszlásfüggvénye jelölése ξ N (m; σ). Tulajdonságok: F (x) = x f(t)dt x R, (a) Ha m = 0 és σ = 1, standard normális eloszlásról beszélünk, aminek sűrűségfüggvénye ϕ(x) = 1 e x2 2 x R, 2π eloszlásfüggvénye pedig Φ(x) = x ϕ(t)dt x R, amit táblázat segítségével használhatunk (lásd: B. függelék). Mivel ϕ páros függvény, teljesül Φ( x) = x ϕ(t)dt = x ϕ(t)dt = 1 Φ(x) x R, ezért a táblázatok általában csak 0 x helyen adják meg a Φ(x) függvényértéket. Ebből következik, hogy a N (0; 1) eloszlás mediánja 0. Kézirat, módosítva: október 24.

40 34 3. FEJEZET. VALÓSZÍNŰSÉGI VÁLTOZÓK (b) Ha ξ N (m; σ), és a 0, b R, akkor a ξ + b N (a m + b; a σ), tehát a lineáris transzformáció nem változtat az eloszlás normális voltán. Speciálisan a ξ u.n. standardizáltja ξ m σ N (0; 1). (c) Ha ξ N (m; σ), akkor sürűségfüggvénye f(x) = 1 σ ϕ ( x m σ ) x R, eloszlásfüggvénye mediánja m. ( ) x m F (x) = Φ σ x R, (d) Ha ξ 1 N (m 1 ; σ 1 ) és ξ 2 N (m 2 ; σ 2 ) függetlenek, akkor ( ) ξ 1 + ξ 2 N m 1 + m 2 ; σ σ 2 2 (7) Véletlen pont választása Egy [a; b] R intervallumban válasszunk találomra egy számot, jelölje ezt a ξ valószínűségi változó. Ekkor ξ folytonos eloszlású, és (1.8) szerint az eloszálsú v.v., sűrűségfüggvénye eloszlásfüggvénye jelölése ξ U(a; b). Tulajdonságok: f(x) = 1 b a F (x) = a < x < b, 0 ha x a ha a < x b 1 ha b < x x a b a (a) Az eloszlás mediánja a+b. 2 (b) Ha ξ U(a; b) és 0 α, β R akkor [a; b] intervallumon egyenletes, α ξ + β { U (αa + β; αb + β) ha α > 0 U (αb + β; αa + β) ha α < 0.

Valószín ségelmélet házi feladatok

Valószín ségelmélet házi feladatok Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott

Részletesebben

Valószínűségszámítás

Valószínűségszámítás Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Valószínűségszámítás programtervező informatikusok részére Eger, 010. szeptember 0. Tartalomjegyzék 1. Véletlen események...............................

Részletesebben

Tómács Tibor. Matematikai statisztika

Tómács Tibor. Matematikai statisztika Tómács Tibor Matematikai statisztika Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika Eger, 01 Szerző: Dr. Tómács Tibor főiskolai docens Eszterházy Károly

Részletesebben

Ferenczi Dóra. Sorbanállási problémák

Ferenczi Dóra. Sorbanállási problémák Eötvös Loránd Tudományegyetem Természettudományi Kar Ferenczi Dóra Sorbanállási problémák BSc Szakdolgozat Témavezet : Arató Miklós egyetemi docens Valószín ségelméleti és Statisztika Tanszék Budapest,

Részletesebben

MITISZK Miskolc-Térségi Integrált Szakképző Központ

MITISZK Miskolc-Térségi Integrált Szakképző Központ MITISZK Miskolc-Térségi Integrált Szakképző Központ VALÓSZÍNŰSÉG-SZÁMÍTÁS ÉS MATEMATIKAI STATISZTIKA FEGYVERNEKI SÁNDOR Miskolci Egyetem Gépészmérnöki és Informatikai Kar Készült a HEFOP-3.2.2-P.-2004-10-0011-/1.0

Részletesebben

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

Bevezetés a valószínűségszámításba és alkalmazásaiba: példákkal, szimulációkkal

Bevezetés a valószínűségszámításba és alkalmazásaiba: példákkal, szimulációkkal Bevezetés a valószínűségszámításba és alkalmazásaiba: példákkal, szimulációkkal Arató Miklós, Prokaj Vilmos és Zempléni András 2013.05.07 Tartalom Tartalom 1 1. Bevezetés, véletlen kísérletek 4 1.1 Bevezetés...................................

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Összefoglaló valószínűségszámításból a Gépészmérnök Msc szak hallgatói számára

Összefoglaló valószínűségszámításból a Gépészmérnök Msc szak hallgatói számára Összefoglaló valószínűségszámításból a Gépészmérnök Msc szak hallgatói számára Matematikai alapszöveg: Bálint Péter, BME Differenciálegyenletek Tanszék Konzultáció, kiegészítések gépészmérnöki szempontok

Részletesebben

Matematikai és matematikai statisztikai alapismeretek

Matematikai és matematikai statisztikai alapismeretek Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok

Részletesebben

Valószínűségszámítás és statisztika. István Fazekas

Valószínűségszámítás és statisztika. István Fazekas Valószínűségszámítás és statisztika István Fazekas Tartalomjegyzék 1. fejezet. A valószínűségszámítás alapfogalmai 5 1.1. A valószínűség 5 1.2. Halmazalgebrák és σ-algebrák 11 1.3. A feltételes valószínűség

Részletesebben

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Z UNIVERSITAS-GYŐR Kht. Győr, 25 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR TÁVKÖZLÉSI TANSZÉK Egyetemi jegyzet Írta:

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:

Részletesebben

Pénzügyi matematika. Medvegyev Péter. 2013. szeptember 8.

Pénzügyi matematika. Medvegyev Péter. 2013. szeptember 8. Pénzügyi matematika Medvegyev Péter 13. szeptember 8. Az alábbi jegyzet a korábbi ötéves gazdaságmatematikai képzés keretében a Corvinus egyetemen tartott matematikai el adásaim kib vített verziója. A

Részletesebben

Kockázati folyamatok. Sz cs Gábor. Szeged, 2012. szi félév. Szegedi Tudományegyetem, Bolyai Intézet

Kockázati folyamatok. Sz cs Gábor. Szeged, 2012. szi félév. Szegedi Tudományegyetem, Bolyai Intézet Kockázati folyamatok Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet Szeged, 2012. szi félév Sz cs Gábor (SZTE, Bolyai Intézet) Kockázati folyamatok 2012. szi félév 1 / 48 Bevezetés A kurzus céljai

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

Kaotikus vagy csak összetett? Labdák pattogása lépcs n Gruiz Márton, Meszéna Tamás, Tél Tamás. 1. Bevezetés. 2. A modell

Kaotikus vagy csak összetett? Labdák pattogása lépcs n Gruiz Márton, Meszéna Tamás, Tél Tamás. 1. Bevezetés. 2. A modell . Bevezetés Kaotikus vagy csak összetett? Labdák pattogása lépcs n Gruiz Márton, Meszéna Tamás, Tél Tamás Egy osztrák gimnáziumi tankönyvben több, közismerten kaotikus mozgással járó jelenség bemutatása

Részletesebben

1.4 Hányféleképpen rakhatunk sorba 12 könyvet, ha 3 bizonyos könyvet egymás mellé akarunk rakni és

1.4 Hányféleképpen rakhatunk sorba 12 könyvet, ha 3 bizonyos könyvet egymás mellé akarunk rakni és Valószínűségszámítás és statisztika feladatok 1 Kombinatorika 2011/12. tanév, I. félév 1.1 Hányféleképpen lehet a sakktáblán 8 bástyát elhelyezni úgy, hogy egyik se üsse a másikat? Mennyi lesz az eredmény,

Részletesebben

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Matematika emelt szintû érettségi témakörök 013 Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Tájékoztató vizsgázóknak Tisztelt Vizsgázó! A szóbeli vizsgán a tétel címében megjelölt téma kifejtését

Részletesebben

Komputer statisztika gyakorlatok

Komputer statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes

Részletesebben

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Dátum Téma beadandó Feb 12Cs Konvolúció (normális, Cauchy,

Részletesebben

Vektorszámítás Fizika tanárszak I. évfolyam

Vektorszámítás Fizika tanárszak I. évfolyam Vektorszámítás Fizika tanárszak I. évfolyam Lengyel Krisztián TARTALOMJEGYZÉK Tartalomjegyzék. Deriválás.. Elmélet........................................... Deriválási szabályok..................................

Részletesebben

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication

Részletesebben

Bemenet modellezése II.

Bemenet modellezése II. Bemenet modellezése II. Vidács Attila 2005. november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási

Részletesebben

TARTALOM. Ismétlő tesztek...248 ÚTMUTATÁSOK ÉS EREDMÉNYEK...255

TARTALOM. Ismétlő tesztek...248 ÚTMUTATÁSOK ÉS EREDMÉNYEK...255 TARTALOM. SZÁMHALMAZOK...5.. Természetes kitevőjű hatványok...5.. Negatív egész kitevőjű hatványok...6.. Racionális kitevőjű hatványok...7.4. Irracionális kitevőjű hatványok...0.5. Négyzetgyök és köbgyök...

Részletesebben

Feladatok és megoldások a 6. heti eladshoz

Feladatok és megoldások a 6. heti eladshoz Feladatok és megoldások a 6. heti eladshoz Építőkari Matematika A3 1. Ha E(X = 1 és D 2 (X = 5, határozzuk meg (a E[(2 + X 2 ], (b D 2 (4 + 3X értékét. 2. Legyenek X 1, X 2,... független azonos eloszlású

Részletesebben

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2005 Bevezetés A logika a gondolkodás általános törvényszerűségeit, szabályait vizsgálja. A matematikai logika a

Részletesebben

10. Valószínűségszámítás

10. Valószínűségszámítás . Valószínűségszámítás.. Események A valószínűségszámítás nagyon leegyszerűsítve események bekövetkezésének valószínűségével foglalkozik. Példák: Ha egy játékban egy dobókockával dobunk, akkor a kockadobás

Részletesebben

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

Matematika Tanszék MOE (PE MIK) MMAM143VB 1 / 34

Matematika Tanszék MOE (PE MIK) MMAM143VB 1 / 34 Valószín½uségszámítás és matematikai statisztika Mihálykóné Orbán Éva Matematika Tanszék MOE (PE MIK) MMAM143VB 1 / 34 Valószín½uségi változók számérték½u jellemz½oi 1 várható érték 2 szórásnégyzet/szórás

Részletesebben

Feladatok és megoldások a 4. hétre

Feladatok és megoldások a 4. hétre Feladatok és megoldások a. hétre Építőkari Matematika A3. Pisti nem tanult semmit a vizsgára, ahol 0 darab eldöntendő kérdésre kell válaszolnia. Az anyagból valami kicsi dereng, ezért kicsit több, mint

Részletesebben

Az indukció. Azáltal, hogy ezt az összefüggést felírtuk, ezúttal nem bizonyítottuk, ez csak sejtés!

Az indukció. Azáltal, hogy ezt az összefüggést felírtuk, ezúttal nem bizonyítottuk, ez csak sejtés! Az indukció A logikában indukciónak nevezzük azt a következtetési módot, amelyek segítségével valamely osztályon belül az egyes esetekb l az általánosra következtetünk. Például: 0,, 804, 76, 48 mind oszthatóak

Részletesebben

Tantárgyi útmutató. Gazdasági matematika II.

Tantárgyi útmutató. Gazdasági matematika II. Módszertani Intézeti Tanszék Tantárgyi útmutató Gazdasági matematika II. Nappali Tagozat 2015/16 tanév II. félév 1/5 Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa: Gazdasági matematika

Részletesebben

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja. 9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok

Részletesebben

Lineáris algebra - jegyzet. Kupán Pál

Lineáris algebra - jegyzet. Kupán Pál Lineáris algebra - jegyzet Kupán Pál Tartalomjegyzék fejezet Vektorgeometria 5 Vektorok normája Vektorok skaláris szorzata 4 3 Vektorok vektoriális szorzata 5 fejezet Vektorterek, alterek, bázis Vektorterek

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. ***************

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. *************** JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS II. Folytonosság, differenciálhatóság *************** Pécs, 1996 Lektorok: DR. SZÉKELYHIDI LÁSZLÓ egyetemi tanár, a mat. tud. doktora DR. SZILI LÁSZLÓ

Részletesebben

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június MIKROÖKONÓMIA I Készült a TÁMOP-412-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

TMDK-DOLGOZAT. Stacionárius és rádiófrekvenciás elektromágneses terek vizsgálata a momentumok módszerének segítségével

TMDK-DOLGOZAT. Stacionárius és rádiófrekvenciás elektromágneses terek vizsgálata a momentumok módszerének segítségével TMDK-DOLGOZAT Stacionárius és rádiófrekvenciás elektromágneses terek vizsgálata a momentumok módszerének segítségével Írta: M.Sc. szakos villamosmérnök hallgató Konzulens: Friedl Gergely doktorandusz hallgató,

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc Dr. Kersner Róbert 007 Tartalomjegyzék Előszó ii. Determináns. Mátrixok 6 3. Az inverz mátrix 9 4. Lineáris egyenletrendszerek 5. Lineáris

Részletesebben

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 4 2.1. A függvény

Részletesebben

86 MAM112M előadásjegyzet, 2008/2009

86 MAM112M előadásjegyzet, 2008/2009 86 MAM11M előadásjegyzet, 8/9 5. Fourier-elmélet 5.1. Komplex trigonometrikus Fourier-sorok Tekintsük az [,], C Hilbert-teret, azaz azoknak a komplex értékű f : [,] C függvényeknek a halmazát, amelyek

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

Halmazelmélet. 2. fejezet 2-1

Halmazelmélet. 2. fejezet 2-1 2. fejezet Halmazelmélet D 2.1 Két halmazt akkor és csak akkor tekintünk egyenl nek, ha elemeik ugyanazok. A halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele:. D 2.2 Az A halmazt a B halmaz

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

2. előadás: További gömbi fogalmak

2. előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással

Részletesebben

Halmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai.

Halmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. Halmazok Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. 1. lapfogalmak halmaz és az eleme fogalmakat alapfogalmaknak tekintjük, nem deniáljuk ket. Jelölés: x H,

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten ANALÍZIS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Nevezetes halmazok

Részletesebben

MATEMATIKA. 5 8. évfolyam

MATEMATIKA. 5 8. évfolyam MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

Valószínűségszámítás feladatgyűjtemény

Valószínűségszámítás feladatgyűjtemény Valószínűségszámítás feladatgyűjtemény Összeállította: Kucsinka Katalin Tartalomjegyzék Előszó 4 1. Kombinatorika 5 2. Eseményalgebra 14 3. Valószínűségszámítás 21 3.1. Klasszikus valószínűség.....................

Részletesebben

Áttekintés a felhasznált lineáris algebrai ismeretekről.

Áttekintés a felhasznált lineáris algebrai ismeretekről. Kiegészítés az előadássorozathoz. Áttekintés a felhasznált lineáris algebrai ismeretekről. A valószínűségszámítás (és a matematika) bizonyos kérdéseiben fontos szerepet játszik a lineáris algebra néhány

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris

Részletesebben

4. sz. Füzet. A hibafa számszerű kiértékelése 2002.

4. sz. Füzet. A hibafa számszerű kiértékelése 2002. M Ű S Z A K I B I Z O N S Á G I F Ő F E L Ü G Y E L E 4. sz. Füzet A hibafa számszerű kiértékelése 00. Sem a Műszaki Biztonsági Főfelügyelet, sem annak nevében, képviseletében vagy részéről eljáró személy

Részletesebben

Fókuszált fénynyalábok keresztpolarizációs jelenségei

Fókuszált fénynyalábok keresztpolarizációs jelenségei Fókuszált fénynyalábok keresztpolarizációs jelenségei K házi-kis Ambrus, Klebniczki József Kecskeméti F iskola GAMF Kar Matematika és Fizika Tanszék, 6000 Kecskemét, Izsáki út 10. Véges transzverzális

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot

Részletesebben

Játékelmélet és pénzügyek

Játékelmélet és pénzügyek Játékelmélet és pénzügyek Czigány Gábor 2013. május 30. Eötvös Lóránd Tudományegyetem - Budapesti Corvinus Egyetem Biztosítási és pénzügyi matematika mesterszak Témavezet : Dr. Csóka Péter Tartalomjegyzék

Részletesebben

MATEMATIKA 1-12. ÉVFOLYAM

MATEMATIKA 1-12. ÉVFOLYAM MATEMATIKA 1-12. ÉVFOLYAM SZERZŐK: Veppert Károlyné, Ádám Imréné, Heibl Sándorné, Rimainé Sz. Julianna, Kelemen Ildikó, Antalfiné Kutyifa Zsuzsanna, Grószné Havasi Rózsa 1 1-2. ÉVFOLYAM Gondolkodási, megismerési

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

2. Halmazelmélet (megoldások)

2. Halmazelmélet (megoldások) (megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek

Részletesebben

Tantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1.

Tantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1. Tantárgyi útmutató 1. A tantárgy helye a szaki hálóban Gazdálkodási és menedzsment szakirány áttekintő tanterv Nagyításhoz kattintson a képre! Turizmus - vendéglátás szakirány áttekintő tanterv Nagyításhoz

Részletesebben

GAZDASÁGI STATISZTIKA

GAZDASÁGI STATISZTIKA GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK

Részletesebben

A kvantummechanika általános formalizmusa

A kvantummechanika általános formalizmusa A kvantummechanika általános formalizmusa October 4, 2006 Jelen fejezetünk célja bevezetni egy általános matematikai formalizmust amelynek segítségével a végtelen dimenziós vektorterek elegánsan tárgyalhatók.

Részletesebben

FÖLDMÉRÉS ÉS TÉRKÉPEZÉS

FÖLDMÉRÉS ÉS TÉRKÉPEZÉS NYUGAT-MAGYARORSZÁGI EGYETEM ERDŐMÉRNÖKI KAR Környezetmérnöki Szak Dr. Bácsatyai László FÖLDMÉRÉS ÉS TÉRKÉPEZÉS Kézirat Sopron, 2002. Lektor: Dr. Bányai László tudományos osztályvezető a műszaki tudomány

Részletesebben

Elektromágneses hullámok - Hullámoptika

Elektromágneses hullámok - Hullámoptika Bevezetés a modern fizika fejezeteibe 2. (c) Elektromágneses hullámok - Hullámoptika Utolsó módosítás: 2015. január 17. 1 Az elektromágneses hullámok visszaverődési és törési törvényei (1) Kérdés: Mi történik

Részletesebben

Szeminárium-Rekurziók

Szeminárium-Rekurziók 1 Szeminárium-Rekurziók 1.1. A sorozat fogalma Számsorozatot kapunk, ha pozitív egész számok mindegyikéhez egyértelműen hozzárendelünk egy valós számot. Tehát a számsorozat olyan függvény, amelynek az

Részletesebben

ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ

ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ Szolnoki Főiskola Üzleti Fakultás, 5000 Szolnok, Tiszaligeti sétány ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ A 4/1996. (I. 18.) Korm. rendelet a közgazdasági felsőoktatás alapképzési szakjainak képesítési

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 6. MA3-6 modul A statisztika alapfogalmai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999.

Részletesebben

Függvény deriváltja FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS. lim határértékkel egyenlő, amennyiben az létezik ( lásd Fig. 16).

Függvény deriváltja FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS. lim határértékkel egyenlő, amennyiben az létezik ( lásd Fig. 16). FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS Definíció Definíció Az f ( ) függvény pontban értelmezett deriváltja a f ( + ) f ( ) lim határértékkel egyenlő amennyiben az létezik ( lásd Fig 6) df A deriváltat

Részletesebben

4. előadás. Vektorok

4. előadás. Vektorok 4. előadás Vektorok Vektorok bevezetése Ha adottak a térben az A és a B pontok, akkor pontosan egy olyan eltolás létezik, amely A-t B- be viszi. Ha φ egy tetszőleges eltolás, akkor ez a tér minden P pontjához

Részletesebben

Nevezetes függvények

Nevezetes függvények Nevezetes függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt

Részletesebben

Mikrohullámok vizsgálata. x o

Mikrohullámok vizsgálata. x o Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14.

5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14. Tartalomjegyzék 1 A matematikai logika elemei 1 11 Az ítéletkalkulus elemei 1 12 A predikátum-kalkulus elemei 7 13 Halmazok 10 14 A matematikai indukció elve 14 2 Valós számok 19 21 Valós számhalmazok

Részletesebben

GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert)

GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert) GYAKORLAT. Elemi logika, matematikai állítások és következtetések, halmazok lásd EA-ban is; iskolából ismert I. Halmazok.. Alapfogalmak: "halmaz" és "eleme". Halmaz kritériuma: egyértelm en eldönthet,

Részletesebben

Nemzeti versenyek 11 12. évfolyam

Nemzeti versenyek 11 12. évfolyam Nemzeti versenyek 11 12. évfolyam Szerkesztette: I. N. Szergejeva 2015. február 2. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó

Részletesebben

Statisztikai alapismeretek (folytatás)

Statisztikai alapismeretek (folytatás) Statisztikai alapismeretek (folytatás) 3. elıadás (5-6. lecke) Az alapsokaság fıbb jellemzıi () 5. lecke Folytonos változó megoszlásának jellemzése A sokasági átlag és szórás Átlag és szórás tulajdonságai

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR

VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR védőeryő az ismeretleek záporába VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR www.matektaitas.hu www.matektaitas.hu ifo@matektaitas.hu 1 védőeryő az ismeretleek záporába Kombiatorika Permutáció Ismétlés élküli permutáció

Részletesebben

HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam

HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam Készült az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet alapján. Érvényesség kezdete: 2013.09.01. Utoljára indítható:.. Dunaújváros,

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Alfa tanár úr 5 tanulót vizsgáztatott matematikából. Az elért pontszámokat véletlen sorrendben írta

Részletesebben

Statisztikai módszerek

Statisztikai módszerek Statisztikai módszerek A hibaelemzı módszereknél azt néztük, vannak-e kiugró, kritikus hibák, amelyek a szabályozás kivételei. Ezekkel foglalkozni kell; minıségavító szabályozásra van szükség. A statisztikai

Részletesebben

1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba?

1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? Matematikai statisztika példák Matematikai statisztika példák Normális eloszlás 1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? 2. Majmok ébredését

Részletesebben

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002.

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002. INFORMÁCIÓELMÉLET Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2002. i TARTALOMJEGYZÉK. Bevezetés 2. Az információmennyiség 6 3. Az I-divergencia 3 3. Információ és bizonytalanság

Részletesebben

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1

Részletesebben

Sztochasztikus folyamatok 1. házi feladat

Sztochasztikus folyamatok 1. házi feladat Sztochasztikus folyamatok 1. házi feladat 1. Egy borfajta alkoholtartalmának meghatározására méréseket végzünk. Az egyes mérések eredményei egymástól független valószínûségi változók, melyek normális eloszlásúak,

Részletesebben

Tartalom. Descartes-koordináták. Geometriai értelmezés. Pont. Egyenes. Klár Gergely tremere@elte.hu. 2010/2011. tavaszi félév

Tartalom. Descartes-koordináták. Geometriai értelmezés. Pont. Egyenes. Klár Gergely tremere@elte.hu. 2010/2011. tavaszi félév Tartalom Pont Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar Egyenes Sík Háromszög Gömb 2010/2011. tavaszi félév Descartes-koordináták Geometriai értelmezés

Részletesebben

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A

Részletesebben

Matematikai statisztikai elemzések 6.

Matematikai statisztikai elemzések 6. Matematikai statisztikai elemzések 6. Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós regresszió Prof. Dr. Závoti, József Matematikai statisztikai elemzések 6.: Regressziószámítás:

Részletesebben

Matematikai programozás gyakorlatok

Matematikai programozás gyakorlatok VÁRTERÉSZ MAGDA Matematikai programozás gyakorlatok 2003/04-es tanév 1. félév Tartalomjegyzék 1. Számrendszerek 3 1.1. Javasolt órai feladat.............................. 3 1.2. Javasolt házi feladatok.............................

Részletesebben