A kémiai kötés eredete; viriál tétel 1
|
|
- Zsófia Borbély
- 6 évvel ezelőtt
- Látták:
Átírás
1 A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra is. A mag-elektron vonzás energiája csökken, ha az elektronok közelebb kerülnek a magokhoz. A molekula teljes energiájához hozzájárul még a kinetikai energia is, aminek változását nem ismerjük. A teljes energiáról ugyanakkor tujuk, hogy mélyebb lesz miközben egy molekula kialakul. A következ kben azt vizsgáljuk meg, hogy ez az energia mélyülés hogyan tev ik össze a kinetiai és potenciális energia változásából. Néhány hasznos tétel A homogén függvényekre vonatkozó Euler tétel Egy n-változós f(x 1, x 2,.., x n ) függvény homogén és homogenitásának foka s, ha teljesül rá, hogy f(λx 1, λx 2,.., λx n ) = λ s f(x 1, x 2,.., x n ). (1) Péla: A 3D harmonikus oszcillátor potenciálja V (x, y, z) = 1 ( 2 mω2 x 2 + y 2 + z 2) homogén, a homogenitás foka 2. A két töltött részecske elektrosztatikus kölcsönhatását leíró Coulomb potenciál -1-e fokú homogén függvény. q a q b q a q = b r ab (xa x b ) 2 + (y a y b ) 2 + (z a z b ) 2 Tétel: Az f(x 1, x 2,.., x n ) s-e fokú homogén függvény kielégíti az alábbi összefüggést Bizonyítás: n x i f x i = sf(x 1, x 2,.., x n ). A homogén függvény (1) eníciójának minkét olalát ierenciáljuk λ szerint. A bal olal a jobb olal λ f(λx 1, λx 2,.., λx n ) = n f(λx 1, λx 2,.., λx n ) λx i λx i λ = n λ λs f(x 1, x 2,.., x n ) = sλ s 1 f(x 1, x 2,.., x n ). λ = 1-et helyettesítve az utolsó két kifejezésb l kapjuk a tételt. Hellman-Feynman tétel x i f(λx 1, λx 2,.., λx n ) λx i, Legyen H(λ) a valós λ paramétert l függ Hamilton operátor, amelynek normált sajátállapota ψ(λ), a hozzá tartozó sajátérték peig E(λ): H(λ) ψ(λ) = E(λ) ψ(λ) (2) ψ(λ) ψ(λ) = 1 1 Ez a fejezet Cohen-Tannouji C., Diu B., Laloe F. Quantum mechanics, cím könyve alapján készült 1
2 Tétel: Bizonyítás: H(λ) sajétérték egyenletéb l λ E(λ) = ψ(λ) H(λ) λ ψ(λ) E(λ) = ψ(λ) H(λ) ψ(λ ), amit λ szerint eriválva λ E(λ) = ψ(λ) H(λ) λ ψ(λ) + [ ] λ ψ(λ) H(λ) ψ(λ) E(λ) ψ(λ) [ ] + ψ(λ) H(λ) λ ψ(λ). E(λ)ψ(λ) Ahol felhasználtuk a Hamilton operátor (2) sajátérték egyenletét. [ ] [ ] λ E(λ) = ψ(λ) H(λ) λ ψ(λ) + E(λ) λ ψ(λ) ψ(λ) + ψ(λ) λ ψ(λ). A kapcsos zárójelben lév mennyiség éppen a tétel állítását. A [H, A] kommutátor várhatóértéke a H sajátállapotán λ ψ(λ) ψ(λ), ami a ψ(λ) normáltsága miatt zéró, így kapjuk Legyen ψ az önajungált H operátor E sajátértékhez tartozó, normált sajátállapota. Ekkor tetsz leges A operátorra: ψ [H, A] ψ = 0. (3) A bizonyítás egyszer en: ahol kihasználtuk a H ψ = E ψ összefüggést. A viriál tétel molekulákra Molekula potenciális energia operátora ψ HA AH ψ = E ψ A ψ E ψ A ψ = 0, Tekintsünk egy molekulát, ami N elektront és M atommagot tartalmaz. Az elektronok koorinátáit jelölje r i, i = 1,.., N (összefoglaló jelölésként inex nélküli r -t fogunk használni az összes elektron koorináta jelölésére). Az atommagok koorinátáit jelölje R a, a = 1,..M (rövien R). A molekula elektron Hamilton operátorának sajátérték egyenlete, amint azt a Born-Oppenheimer közelítésnél láttuk H (R) ψ (R) = E (R) ψ (R). (4) Az itt szerepl H (R) és ψ (R) az elektronkoorináták függvénye (amit explicit móon nem jeleztünk az egyenletben) e paraméterként tartalmazza az R magkoorinátákat (ezt explicit móon is feltüntettük). Az elektron Hamilton operátor alakja H (R) = T e + V (R), ahol T e = N p 2 i 2m az elektronok kinetikai energiájának operátora, V (R) = V ee + V ne (R) + V nn (R) peig a molekula részecskéi közötti Coulomb kölcsönhatás potenciális energia operátora, aminek tagjai az elektron-elektron (V ee ), mag-elektron (V ne ) és a mag-mag kölcsönhatás. A V (r, R) Coulomb potenciál lévén, -1 -e fokú homogén függvény, így alkalmazhatjuk rá az Euler tételt: ahol i az elektron, a a magkoorinátákra ható graiens operátor. N M r i i V + R a a V = V, (5) 2
3 A viriál tétel Alkalmazzuk a (3) összefüggést a molekula Hamilton operátorára és az elektronkoorináták és impulzusok (p i ) szorzatából felépített N A = r i p i operátorra. Ehhez számoljuk ki a [H, A] kommutátort. [ ] N N [H, A] = H, r i p i = = i N α=x,y,z p2 i m + r i i V [H, r iα ] p iα + r iα [H, p iα ] A másoik egyenl ségnél az operátorszorzat kommutátorának kiszámítására vonatkozó szabályt használtuk. Az utolsó kifejezés levezetéséhez peig az alábbiakat: A [H, r iα ] kommutátor A [H, p iα ] kommutátor [H, r iα ] = [T ee, r iα ] = = N p A (6)-ban szerepl 2 i m N j=1 β=x,y,z N j=1 β=x,y,z 1 2m [ ] p 2 jβ 2m, r iα = N β=x,y,z p jβ[r iα, p jβ ] + [r iα, p jβ] i δ αβ δ ij i δ αβ δ ij [H, p iα ] = [V, p iα ] = i V r iα. p jβ 1 [ riα, p 2 2m jβ] N = i tag éppen az elektron kinetikai energia operátor 2-szerese, így [H, A] = i 2T ee + N r i i V A (5) összefüggés alapján a [H, A] kommutátor kifejtésének utolsó tagja amit az el z egyenletbe helyettesítve N M r i i V = V R a a V, [H, A] = i 2T ee V M R a a V. (3) szerint ennek a kommutátornak zéró a H tetsz leges sajátállapotán számolt várhatóértéke, amib l 2 T ee + V = M R a a V. Kihasználva, hogy H-ban csak a V függ a magkoorinátáktól, a jobb olalon V -t H-ra cserélhetjük 2 T ee + V = M R a a H, p iα m (6) 3
4 amib l a Hellman-Feynman tétel alkalmazásával kapjuk a molekulákra vonatkozó viriál tételt 2 T ee + V = M R a a E(R). Felhasználva, hogy T ee + V = E(R) kaphatjuk a tétel más alakjait T ee = E(R) V = 2E(R) + M R a a E(R), M R a a E(R). (7) Azaz kiszámolhatjuk egy molekula kinetiai vagy potenciális energiájának várhatóértékét, ha ismerjük a molekula teljes energiáját egy aott elektron állapotban, mint a magkoorináták függvényét. A kémiai kötés kialakulását kísér energiaváltozások A viriál tétel segítségével vizsgáljuk meg, hogyan változik a kinetikai és potenciális energia miközben végtelen távoli atomokból összeáll egy molekula. Ehhez számoljuk ki (7) felhasználásával a T ee és V energia várhatóértékeket a nemkölcsönható atomjaira bontott molekulára. Használjuk fel, hogy ebben az esetben az energia nem függ a magok távolságától, így a magkoorináták szerinti erivált nulla lesz. T ee = E( ) V = 2E( ) Számoljuk ki ezeket a várhatóértékeket a molekula egyensúlyi állapotában (R 0 ) is. energia minimum, így az enegia graiens itt is el nik, azaz Az egyensúlyi állapot T ee 0 = E(R 0 ) V 0 = 2E(R 0 ). Ebb l a molekula kialakulását kísér energia változások T = T ee 0 T ee = E( ) E(R 0 ) > 0 V = V 0 V = 2(E( ) E(R 0 )) < 0. Azaz a molekula kialakulásakor a kinetikai energia n, ugyanakkor a potencialis energia kétszer ennyivel csökken V = 2 T. Ez összenergia csökkenéshez, azaz stabil molekulaszerkezet kialakulásához vezet. Egyszer péla: hirogén molekula A H 2 molekula geometriája jellemezhet egyetlen változóval, a két atommag R távolságával. Így az E(R) egyváltozós függvény lesz, az energia graiens peig egyszer R-szerinti erivált. A viriál tétel alakja így leegyszer söik T ee = E(R) R E(R) R, V = 2E(R) + R E(R) R. Az energia görbe ebben az esetben kiszámolható (lás gyakorlat). 4
5 A hirogén molekula kinetikai, potenciális és teljes energiája a magtávolság (R) függvényében (F. Rioux, Chem. Eucator 2003, 8, 13) 5
Atomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
A s r ségfunkcionál elmélet (Density Functional Theory)
A s r ségfunkcionál elmélet (Density Functional Theory) Tekintsünk egy szabad, N elektronos molekulát N m maggal. A Hamilton operátor rögzített magok esetében ^H = ^T + ^V + ^W ; ahol ^T a kinetikai energia,
January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,
Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,
Fizikai mennyiségek, állapotok
Fizikai mennyiségek, állapotok Atomok és molekulák zikai mennyiségeihez rendelt operátorok A kvantummechanika mint matematikai modell alapvet épít elemei a rendszer leírására szolgáló zikai mennyiségekhez
Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje
Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....
2015/16/1 Kvantummechanika B 2.ZH
2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges
A H + 2. molekulaion1. molekulaion, ami két azonos atommagból (protonok) és egyetlen elektronból. A legegyszer bb molekula a H + 2 áll.
W. Demtröder, Atoms Molecules and Photons és Cohen-Tannoudji C., Diu B., Laloe F. Quantum mechanics cím könyve alapján A H + molekulaion A legegyszer bb molekula a H + áll. molekulaion, ami két azonos
Az egydimenziós harmonikus oszcillátor
Az egydimenziós harmonikus oszcillátor tárgyalása az általános formalizmus keretében November 7, 006 Példaképpen itt megmutatjuk, hogyan lehet a kvantumos egydimenziós harmonikus oszcillátort tárgyalni
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek
10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix
Elektronegativitás. Elektronegativitás
Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:
Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet)
Optika gyakorlat 3. Sugáregyenlet, fényterjeés parabolikus szálban, polarizáció, Jones-vektor Hamilton-elv t2 t2 δ Lq k, q k, t) t δ T V ) t 0 t 1 t 1 t L L 0 q k q k Euler-Lagrange egyenlet) De mi az
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion
06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as
A kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált
Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31
Márkus László Véletlen bolyongás 2015. március 17. 1 / 31 Véletlen bolyongás Márkus László 2015. március 17. Modell Deníció Márkus László Véletlen bolyongás 2015. március 17. 2 / 31 Modell: Egy egyenesen
A spin. November 28, 2006
A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
Kötések kialakítása - oktett elmélet
Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések
Problémás regressziók
Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )
Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor
dinamikai tulajdonságai
Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak
Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39
Kémiai kötés 4-1 Lewis-elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,
Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ
Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016.
Bell-kísérlet Máté Mihály, Fizikus MSc I. ELTE Eötvös Loránd Tudományegyetem Modern zikai kísérletek szemináriuma, 2016. Máté Mihály (ELTE) Bell-kísérlet 1 / 15 Tartalom 1 Elmélet Összefonódás EPR Bell
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39
Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)
Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses
Kvantummechanika gyakorlo feladatok 1 - Megoldások. 1. feladat: Az eltolás operátorának megtalálásával teljesen analóg módon fejtsük Taylor-sorba
Kvatummechaika gyakorlo felaatok - Megolások felaat: z eltolás operátoráak megtalálásával teljese aalóg móo fejtsük Taylor-sorba a hullámfüggvéyt a változójába: ψr θ ϕ + ϕ ψr θ ϕ + ψr θ ϕ ϕ + ψr θ ϕ ϕ
Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!
Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el
9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában
9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!
. Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x
8. AZ ATOMMAG FIZIKÁJA
8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának
Runge-Kutta módszerek
Runge-Kutta módszerek A Runge-Kutta módszerek az Euler módszer továbbfejlesztésének, javításának tekinthetők, kezdeti értékkel definiált differenciál egyenletek megoldására. Előnye hogy a megoldás során
Határozatlansági relációk származtatása az
az állapottér BME TTK Matematikus MSc. 1. évf. 2012. november 14. Vázlat: Történeti áttekintés Nemkommutatív (kvantum) valószín ségelmélet Az állapottér geometriája: Az állapottér mint Riemann-sokaság
Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol
Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
A kovalens kötés polaritása
Általános és szervetlen kémia 4. hét Kovalens kötés A kovalens kötés kialakulásakor szabad atomokból molekulák jönnek létre. A molekulák létrejötte mindig energia csökkenéssel jár. A kovalens kötés polaritása
Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22
Mátrixfüggvények Wettl Ferenc 2016. április 28. Wettl Ferenc Mátrixfüggvények 2016. április 28. 1 / 22 Tartalom 1 Diagonalizálható mátrixok függvényei 2 Mátrixfüggvény a Jordan-alakból 3 Mátrixfüggvény
Differenciálegyenletek. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:
A testek részecskéinek szerkezete
A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok
1. Parciális függvény, parciális derivált (ismétlés)
Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását
Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
Idegen atomok hatása a grafén vezet képességére
hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség
ω mennyiségek nem túl gyorsan változnak
Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára
Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A
Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t
Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok
A kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált
differenciálegyenletek
Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y
Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
Molekuláris dinamika. 10. előadás
Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus
Boros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
12. előadás - Markov-láncok I.
12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
Lin.Alg.Zh.1 feladatok
Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?
LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév
LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I éves nappali programtervező informatikus hallgatóknak 2010-2011 évi tanév I félév Vektoriális szorzat és tulajdonságai bizonyítás nélkül: Vegyes szorzat és tulajdonságai
Bevezetés az algebrába 2
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc
FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK
FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz
3. A kémiai kötés. Kémiai kölcsönhatás
3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes
Lagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
Modern fizika laboratórium
Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos
Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok
. fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális
Fizikaverseny, Döntő, Elméleti forduló 2013. február 8.
Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. 1. feladat: Az elszökő hélium Több helyen hallhattuk, olvashattuk az alábbit: A hélium kis móltömege miatt elszökik a Föld gravitációs teréből. Ennek
7. gyakorlat megoldásai
7. gyakorlat megoldásai Komple számok, sajátértékek, sajátvektorok F1. Legyen z 1 = + i és z = 1 i. Számoljuk ki az alábbiakat: z 1 z 1 + z, z 1 z, z 1 z,, z 1, z 1. z M1. A szorzásnál használjuk, hogy
Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek
Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk
Katalízis. Tungler Antal Emeritus professzor 2017
Katalízis Tungler Antal Emeritus professzor 2017 Fontosabb időpontok: sósav oxidáció, Deacon process 1860 kéndioxid oxidáció 1875 ammónia oxidáció 1902 ammónia szintézis 1905-1912 metanol szintézis 1923
First Prev Next Last Go Back Full Screen Close Quit
Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
1.1. Vektorok és operátorok mátrix formában
1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix
1 A kvantummechanika posztulátumai
A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!
nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési
f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben
Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
Diszkrét idej rendszerek analízise az id tartományban
Diszkrét idej rendszerek analízise az id tartományban Dr. Horváth Péter, BME HVT 06. október 4.. feladat Számítuk ki a DI rendszer válaszát, ha adott a gerjesztés és az impulzusválasz! u[k = 0,6 k ε[k;
A molekulák szerkezetének leírásához a kémiai kötés elméletének a kidolgozása a szükséges feltétel, nem véletlen tehát, hogy ez az, ami a kémikust
A molekulák szerkezetének leírásához a kémiai kötés elméletének a kidolgozása a szükséges feltétel, nem véletlen tehát, hogy ez az, ami a kémikust legjobban izgatja és tanulmányaik során Önök is a legtöbbet
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
2. gyakorlat. A polárkoordináta-rendszer
. gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
Függvényhatárérték és folytonosság
8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak
Parciális dierenciálegyenletek
Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek
AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.
AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus
Matematika III. harmadik előadás
Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)
Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)
Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás