Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t
|
|
- Gábor Boros
- 8 évvel ezelőtt
- Látták:
Átírás
1 Szilárdtestek elektronszerkezete
2 Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2
3 Szilárdtestek egyelektron-modellje a magok mozgásától eltekintünk sokelektron hullámfüggvény egyelektron hullámfüggvények antiszimmetrizált szorzata (Pauli elv) effektív lokális potenciál (lokális sűrűség-funkcionál elmélet) Az egyelektron hullámfüggvényeket,, meghatározó Schrödinger egyenlet: N elektron (valószínűség)sűrűsége: N legalacsonyabb energiájú állapotban betöltött állapotok (Pauli elv) Effektív potenciál: Elektron és magok közötti Coulomb vonzás: Elektronok közötti Coulomb taszítás: Az antiszimmetrikus sokelektron hullámfüggvény maradékaként fellépő kicserélődési-korrelációs potenciál: 3
4 Kristályos anyagok eltolási szimmetria és ahol rácsvektor felbontása: Born-Kármán határfeltétel: (M: elemi cellák száma a kristályban) Brillouin-zóna pontjai: Bloch-tétel (I.) 4
5 Bloch-tétel (II.) ahol Az függvényre vonatkozó Schrödinger egyenlet: 5
6 Bloch függvények a reciprokrácson: Könnyen belátható, hogy a fenti egyenlet megoldása: és az energia sajátérték periodikus a reciproktérben: ugyanígy a Bloch függvény is periodikus reciproktéren: 6
7 A Schrödinger egyenlet megoldása Közel szabad elektron közelítés (síkhullám módszer) az függvény periodikus a valós rácson Behelyettesítve az függvényre vonatkozó Schrödinger egyenletbe: ahol Hermitikus mátrix sajátértékegyenlete Gond: sok reciprokrácsvektor nagy mátrix (törzs-elektronok!) 7
8 Üres rács (az i indexet a reciprokrács vektoraival azonosítjuk) Ábrázolás egydimenzióban: rácsállandó a első Brilloiun zóna Ez valójában nem más, mint a szabad elektron energiaspektrumának egyfajta ábrázolása. Hogy lesznek ebből sávok? Figyelembe kell venni a potenciált: V(r) 0 8
9 A megoldandó sajátérték egyenlet: Nézzük meg a szabad megoldásokat a BZ közepén: és szélén: (1) k=0 pontban a szabad elektron spektrum i,-i (i=1,2, ) ágai találkoznak (2) k=π/a ill. -π/a pontokban az i,-i+1 ill. -i,i-1 (i=1,2, ) ágak találkoznak kétszeres elfajultság Oldjuk meg a sajátérték egyenletet úgy, hogy feltételezzük: (1) a Vi,-i mátrixelemek (2) a Vi,-i+1 vagy a V-i,i-1 mátrixelemek zérustól különböznek, a többi viszont zérus! az elfajultság megszűnik (felhasad) ugyanígy a (2) esetre: 9
10 A Schrödinger egyenlet megoldása Szoros kötésű közelítés Kiindulási pont: lokalizált (atomi kiterjedésű) atomi megoldások kvantumszámok atomi potenciál on-site energia Közelítő Bloch-függvény Átfedési integrálok Energia sajátérték (diszperziós reláció) Példa: Egyszerű köbös rács s-elektronsávja elsőszomszéd közelítésben Sávszélesség 12 γs(100) Diszperziós reláció a BZ közepén effektív tömeg 10
11 Példa: Tércentrált köbös (bcc) Na kristály számolt sávszerkezete Na: betöltött 1s, 2s és 2p héj törzselektronok 3s 1 1 vegyérték elektron energia Brillouin-zóna a nevezetes pontokkal k-pontok a Brillouin zónában legmagasabb betöltött energiaszint: Fermi energia 11
12 Fémek elektronszerkezetét jellemző néhány fontos mennyiség (1) Állapotsűrűség: adott energián található állapotok száma szabad elektronok: Állapotok száma: szabad elektronok: (2) Fermi energia: az állapotszám megegyezik az elektronok számával szabad elektronok: (3) Állandó energiájú felületek: i-ik sáv ε energiájú pontjai által meghatározott felület, S i (ε) i-ik sáv állapotsűrűsége: 12
13 Legfontosabb állandó energiájú felület: Fermi felület Nátrium Réz Azonban általában igen bonyolult: Kálcium Vanádium 13
14 Az állapotsűrűség kísérleti meghatározása: Fényelektromos spektroszkópia A. Einstein (1905) besugárzott foton energiája kilépő elektron kinetikus energiája kilépési munka az elektron kötési energiája A réz vegyértéksávjának mért (piros vonal) és számolt (beszúrt ábra) fényemissziós intenzitása 14
Szilárdtest-fizika gyakorlat, házi feladatok, ősz
Szilárdtest-fizika gyakorlat, házi feladatok, 2017. ősz A HF-ek után zárójelben az szerepel, hogy hány hallgatónak szánjuk kiadni, utána pedig a hallgatókat azonosító sorszám (1-21), így: (hallgató/feladat,
dinamikai tulajdonságai
Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak
Zárthelyi dolgozat I. /A.
Zárthelyi dolgozat I. /A. 1. Az FCC rács és reciprokrácsa (és tudjuk, hogy: V W.S. * V B.z. /() 3 = 1 / mindig!/) a 1 = ½ a (0,1,1) ; a = ½ a (1,0,1) ; a 3 = ½ a (1,1,0) b 1 = (/a) (-1,1,1); b = (/a) (1,-1,1);
Közös minimum kérdések és Vizsgatételek a Fizika III tárgyhoz
Közös minimum kérdések és Vizsgatételek a Fizika III tárgyhoz 2005. Fizika C3 KÖZÖS MINIMUM KÉRDÉSEK Kvantummechanika 1. Rajzolja fel a fekete test sugárzását jellemző kísérleti görbéket T 1 < T 2 hőmérsékletek
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek
Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)
Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján
Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra
ω mennyiségek nem túl gyorsan változnak
Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára
Vázlatos tartalom. Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok
Szilárdtestfizika Kondenzált Anyagok Fizikája Vázlatos tartalom Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok 2 Szerkezet
Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez
1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet
Thomson-modell (puding-modell)
Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61
Elektronok, atomok 2-1 Elektromágneses sugárzás 2-2 Atomi Spektrum 2-3 Kvantumelmélet 2-4 A Bohr Atom 2-5 Az új Kvantummechanika 2-6 Hullámmechanika 2-7 Kvantumszámok Dia 1/61 Tartalom 2-8 Elektronsűrűség
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
2015/16/1 Kvantummechanika B 2.ZH
2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges
AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.
AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
Atomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
A spin. November 28, 2006
A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,
A kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált
Elektronszínképek Ultraibolya- és látható spektroszkópia
Elektronszínképek Ultraibolya- és látható spektroszkópia Elektronátmenetek elektromos dipólus-átmenetek (a molekula változó dipólusmomentuma lép kölcsönhatásba az elektromágneses sugárzás elektromos terével)
Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek
Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati
Atomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61
, elektronok 2-1 Elektromágneses sugárzás 2-2 Atomi spektrum 2-3 Kvantumelmélet 2-4 Bohr-atom 2-5 Az új kvantummechanika 2-6 Hullámmechanika 2-7 A hidrogénatom hullámfüggvényei Dia 1/61 , elektronok 2-8
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
A kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált
Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben
Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60
Elektronok, atomok -1 Elektromágneses sugárzás - Atomi Spektrum -3 Kvantumelmélet -4 A Bohr Atom -5 Az új Kvantummechanika -6 Hullámmechanika -7 A hidrogénatom hullámfüggvényei Slide 1 of 60 Tartalom -8
Molekuláris dinamika. 10. előadás
Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60
Elektronok, atomok 10-1 Elektromágneses sugárzás 10- Atomi Spektrum 10-3 Kvantumelmélet 10-4 A Bohr Atom 10-5 Az új Kvantummechanika 10-6 Hullámmechanika 10-7 Kvantumszámok Slide 1 of 60 Tartalom 10-8
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe
2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje
Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....
Kondenzált anyagok fizikája
Kondenzált anyagok fizikája Rácsszerkezetek Groma István ELTE September 13, 2018 Groma István, ELTE Kondenzált anyagok fizikája, Rácsszerkezetek 1/22 Periódikus rendszerek Elemi rácsvektorok a 1, a 2,
A SZILÁRDTEST FOGALMA. Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. molekula klaszter szilárdtest > σ λ : rel.
A SZILÁRDTEST FOGALMA Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. a) Méret: b) Szilárdság: molekula klaszter szilárdtest > ~ 100 Å ideálisan rugalmas test: λ = 1 E σ λ : rel. megnyúlás
Az anyagszerkezet alapjai. Az atomok felépítése
Az anyagszerkezet alapjai Az atomok felépítése Kérdések Mik az építőelemek? Milyen elvek szerint épül fel az anyag? Milyen szintjei vannak a struktúrának? Van-e végső, legkisebb építőelem? A legkisebbeknél
Az anyagszerkezet alapjai. Az atomok felépítése
Az anyagszerkezet alapjai Az atomok felépítése Kérdések Mik az építőelemek? Milyen elvek szerint épül fel az anyag? Milyen szintjei vannak a struktúrának? Van-e végső, legkisebb építőelem? A legkisebbeknél
Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion
06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!
FELADATMEGOLDÁS Tesztfeladat: Válaszd ki a helyes megoldást! 1. Melyik sorozatban található jelölések fejeznek ki 4-4 g anyagot? a) 2 H 2 ; 0,25 C b) O; 4 H; 4 H 2 c) 0,25 O; 4 H; 2 H 2 ; 1/3 C d) 2 H;
Fizika II. segédlet táv és levelező
Fizika II. segédlet táv és levelező Horváth Árpád 2012. június 9. A 284/6. alakú feladatsorszámok a Lökös Mayer Sebestyén Tóthné féle Kandós Fizika példatárra, a 38C-28 típusúak a Hudson Nelson: Útban
Magszerkezet modellek. Folyadékcsepp modell
Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus
January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,
Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty
Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty Dr. Berta Miklós bertam@sze.hu 2017. október 26. 1 / 11 Tekintsünk egy olyan kristályrácsot, amelynek minden mérete sokkal
Szilárdtestfizika II. gyakorlat, 2. zh május 10. a. Rajzold fel a rézoxid síkot! Határozd meg a bázisát! Hány atomból áll?
Szilárdtestfizika II. gyakorlat, 2. zh 2004. május 10. 1.feladat Tekintsük a rézoxid (CuO 2 ) síkot az (xy) síkban és szűkítsük le az egyes atomok lehetséges elmozdulásait a z-irányra. Vizsgáljuk a q=(
Fizikai mennyiségek, állapotok
Fizikai mennyiségek, állapotok Atomok és molekulák zikai mennyiségeihez rendelt operátorok A kvantummechanika mint matematikai modell alapvet épít elemei a rendszer leírására szolgáló zikai mennyiségekhez
Modern Fizika Laboratórium Fizika és Matematika BSc 8. Alkáli spektrumok
Modern Fizika Laboratórium Fizika és Matematika BSc 8. Alkáli spektrumok Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 03/7/0 Beadás ideje: 04/0/0 Érdemjegy: . A mérés
A H + 2. molekulaion1. molekulaion, ami két azonos atommagból (protonok) és egyetlen elektronból. A legegyszer bb molekula a H + 2 áll.
W. Demtröder, Atoms Molecules and Photons és Cohen-Tannoudji C., Diu B., Laloe F. Quantum mechanics cím könyve alapján A H + molekulaion A legegyszer bb molekula a H + áll. molekulaion, ami két azonos
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK
Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?
ESR színképek értékelése és molekulaszerkezeti értelmezése
ESR színképek értékelése és molekulaszerkezeti értelmezése Elméleti alap: Atkins: Fizikai Kémia II, 187-188, 146, 1410, 152 158 fejezetek A gyakorlat során egy párosítatlan elektronnal rendelkező benzoszemikinon
A periódusos rendszer, periodikus tulajdonságok
A periódusos rendszer, periodikus tulajdonságok Szalai István ELTE Kémiai Intézet 1/45 Az előadás vázlata ˆ Ismétlés ˆ Történeti áttekintés ˆ Mengyelejev periódusos rendszere ˆ Atomsugár, ionsugár ˆ Ionizációs
Kondenzált anyagok csoportosítása
Szilárdtestfizika Kondenzált anyagok csoportosítása 1. Üvegek Nagy viszkozitású olvadék állapotú anyagok, amelyek nagyon lassan szilárd állapotba mennek át. Folyékony állapotból gyors hűtéssel állíthatók
Modern fizika laboratórium
Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos
Folyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
Szemcsehatárok geometriai jellemzése a TEM-ben. Lábár János
Szemcsehatárok geometriai jellemzése a TEM-ben Lábár János Szemcsehatárok geometriai jellemzése Rácsok relatív orientációja Coincidence Site Lattice (CSL) O-lattice Határ közelítése síkkal Határsík orientációja
1.1 Transzlációs szimmetriával bíró rendszerek Hamilton operatora. Egy egyszerű rács rácspontjaiban elhelyezkedő, Z rendszámú magok terében
1 Bevezetés 1.1 Transzlációs szimmetriával bíró rendszerek Hamilton operatora Egy egyszerű rács rácspontjaiban elhelyezkedő, Z rendszámú magok terében mozgó elektronok Hamilton operátora a Born-Openheimer
Fizikai kémia 2. ZH II. kérdések I. félévtől
Fizikai kémia 2. ZH II. kérdések 2018-19 I. félévtől Szükséges adatok, állandók és összefüggések: c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939
Elektronok, atomok. Tartalom
Elektronok, atomok 8-1 Elektromágneses sugárzás 8-2 Atomi Spektrum 8-3 Kvantumelmélet 8-4 ABohr Atom 8-5 Az új Kvantummechanika 8-6 Hullámmechanika 8-7 Kvantumszámok, elektronpályák Slide 1 of 60 Tartalom
Az anyagszerkezet alapjai
Kérdések Az anyagszerkezet alapjai Az atomok felépítése Mik az építőelemek? Milyen elvek szerint épül fel az anyag? Milyen szintjei vannak a struktúrának? Van-e végső, legkisebb építőelem? A legkisebbeknél
): olyan vektor, mely mentén ha eltoljuk a rácsot, önmagába megy át. (ez a transzlációs vektor is)
1 / 12 A TételWiki wikiből 1 Pontcsoportok, Bravais-rácsok, szimmetriák. 1.1 Szimmetriák 1.2 Bravais-rácsok 1.3 Fontosabb kristályszerkezetek [2] 1.4 Bloch tétel, adiabatikus szétcsatolás. 2 Röntgen- és
Stern Gerlach kísérlet. Készítette: Kiss Éva
Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet
A FÉMES KÖTÉS ÉRTELMEZÉSE A SZABADELEKTRON MODELL ALAPJÁN
A FÉMES KÖTÉS ÉRTELMEZÉSE A SZABADELEKTRON MODELL ALAPJÁN Energia (W) és erőhatás (F) az anyagi rácsban Rácstípusok: ionrács, atomrács, molekularács. A részecskék azokat a helyeket foglalják el a rácsban,
DR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET
MISKOLCI EGYETEM VILLAMOSMÉRNÖKI INTÉZET ELEKTROTECHNIKAI- ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET 2003. 2.0. Diszkrét félvezetők és alkalmazásaik
Feladatgyűjtemény a Topologikus Szigetelők 1. c. tárgyhoz.
Asbóth János, Oroszlány László, Pályi András Feladatgyűjtemény a Topologikus Szigetelők 1. c. tárgyhoz. A kutatás a TÁMOP 4.2.4.A/1-11-1-2012-0001 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói,
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35
Periódusosság 11-1 Az elemek csoportosítása: a periódusos táblázat 11-2 Fémek, nemfémek és ionjaik 11-3 Az atomok és ionok mérete 11-4 Ionizációs energia 11-5 Elektron affinitás 11-6 Mágneses 11-7 Az elemek
Érzékelők és beavatkozók
Érzékelők és beavatkozók A tárgy előadói: Dr. Bársony István akadémikus, egyetemi tanár, kutatóprofesszor MTA EK Műszaki Fizikai és Anyagtudományi Intézet Dr. Battistig Gábor MTA Dr.,tud. osztályvezető,
A TételWiki wikiből. c n Ψ n. Ψ = n
1 / 9 A TételWiki wikiből 1 Bevezetés, ideális gázok, Fermi- és Bose-eloszlás 1.1 A Bose-Einstein-eloszlás 1.2 A Fermi-Dirac-eloszlás 1.3 Ideális gázok 1.4 A klasszikus határeset 2 Bose-Einstein kondenzáció
Anyagtudomány: hagyományos szerkezeti anyagok és polimerek
Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Alapfogalmak Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium H ép. I. emelet Vázlat Kötések Ionos, kovalens és
Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.
Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból
A kémiai kötés eredete; viriál tétel 1
A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Zitterbewegung. általános elmélete. Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék
A Zitterbewegung általános elmélete Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék 1. Mi a Zitterbewegung? A Zitterbewegung általános elmélete 2. Kvantumdinamika Heisenberg-képben
Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35
Periódusosság 3-1 Az elemek csoportosítása: a periódusos táblázat 3-2 Fémek, nemfémek és ionjaik 3-3 Az atomok és ionok mérete 3-4 Ionizációs energia 3-5 Elektron affinitás 3-6 Mágneses 3-7 Az elemek periodikus
A karaktertáblákban nem beszéltünk az irreducibilis reprezentációk jelöléséről. Ha a T d -táblában látható jelzéseket megnézzük, nem nehéz rájönni,
1 A karaktertáblákban nem beszéltünk az irreducibilis reprezentációk jelöléséről. Ha a T d -táblában látható jelzéseket megnézzük, nem nehéz rájönni, hogy azonos fő betű esetén csak az identitás alatt
Elektronegativitás. Elektronegativitás
Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 3. Fényelhajlás (Diffrakció) Cserti József, jegyzet, ELTE, 2007. Akadályok között elhaladó hullámok továbbterjedése nem azonos a geometriai árnyékkal.
Az anyagok kettős (részecske és hullám) természete
Az anyagok kettős (részecske és hullám) természete de Broglie hipotézise (1924-25): Bármilyen fénysebességgel mozgó részecskére: mc = p E = mc 2 = hn p = hn/c = h/ = h/p - de Broglie-féle hullámhossz Nem
Anyagtudomány: hagyományos szerkezeti anyagok és polimerek
Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Anyagok termikus tulajdonságai és egyedi jellegzetességei Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium H ép.
A kvantummechanikai atommodell
A kvantummechanikai atommodell A kvantummechanika alapjai A Heinsenberg-féle határozatlansági reláció A kvantummechanikai atommodell A kvantumszámok értelmezése A Stern-Gerlach kísérlet Az Einstein-de
Átmenetifém-komplexek ESR-spektrumának jellemzıi
Átmenetifém-komplexek ESR-spektrumának jellemzıi A párosítatlan elektron d-pályán van. Kevéssé delokalizálódik a fémionról, a fém-donoratom kötések meglehetısen ionos jellegőek. A spin-pálya csatolás viszonylag
Oktatási tananyag. Cserti József. Komplex Rendszerek Fizikája Tanszék április
A grafén fizikájának alapjai Oktatási tananyag Cserti József Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék 2013. április Tartalomjegyzék Bevezető 2 1. A grafén sávszerkezete 6 2. Effektív-tömeg
Fizikai kémia 2. ZH I. kérdések I. félévtől
Fizikai kémia 2. ZH I. kérdések 2018-19 I. félévtől Szükséges adatok, állandók és összefüggések: c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939
AZ ATOM. Atom: atommag + elektronfelhő = proton, neutron, elektron. Elemi részecskék
AZ ATOM Atom: atommag + elektronfelhő = proton, neutron, elektron Elemi részecskék Atomok Dalton elmélete (1805): John DALTON 1766-1844 1. Az elemek apró részecskékből, atomokból állnak. Atom: görög szó
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
Diffúzió 2003 március 28
Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség
4. Fényelektromos jelenség
4. Fényelektromos jelenség Kovács György 2013. április Tartalomjegyzék 1. Bevezetés 2 2. Fotocella 3 3. Gyakorló kérdések 5 4. Mérési feladatok 5 1 1. Bevezetés Fémeket fénnyel megvilágítva, bizonyos körülmények
Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!
Beugró kérdések Elektrodinamika 2. vizsgához. Görbült koordináták Henger koordináták: r=(ρ cos φ, ρ sin φ, z) Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!
Magspektroszkópiai gyakorlatok
Magspektroszkópiai gyakorlatok jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Deák Ferenc Mérés dátuma: 010. április 8. Leadás dátuma: 010. április 13. I. γ-spekroszkópiai mérések A γ-spekroszkópiai
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
Kötések kialakítása - oktett elmélet
Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések
BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz
BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz Az anyag szerveződési formái Ebben a részben bemutatjuk az anyag elemi építőköveinek sokszerű kapcsolódási formáit, amelyek makroszkopikusan
Molekulák világa 2. kémiai szeminárium. Szilágyi András
Molekulák világa 2. kémiai szeminárium Szilágyi András Kvantummechanikai ismétlés Kvantummechanikai részecskéről csak valószínűségi állítást tehetünk A részecske leírója a hullámfüggvény, ez kódolja a
Bevezetés az anyagtudományba III. előadás
Bevezetés az anyagtudományba III. előadás 2010. február 18. Kristályos és s nem-krist kristályos anyagok A kristályos anyag atomjainak elrendeződése sok atomnyi távolságig, a tér mindhárom irányában periodikusan
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Molekulák világa 1. kémiai szeminárium
GoBack Molekulák világa 1. kémiai szeminárium Szilágyi András 2008. október 6. Molekulák világa 1. kémiai szeminárium Molekuláris bionika szak I. év 1 Kvantummechanika Klasszikus fizika eszközei tömegpont