Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek"

Átírás

1 Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek

2 2

3 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció) Spin-felbontott elektronszám Bohr magneton Paramágnesek Nem rendelkeznek makroszkopikus mágneses momentummal 1) Nem rendelkeznek permanens atomi mágneses momentummal Külső mágneses tér hatására mágneseződnek (Pauli paramágnesség) 2) Az atomi mágneses momentumok rendezetlen irányeloszlást mutatnak (pl. magas hőmérsékleten) Mágnesesen rendezett anyagok Az atomi mágneses momentumok valamely térbeli rendeződést mutatnak 1) Ferromágnesek 2) Antiferromágnesek 3) Mágneses csavarszerkezetek 4) Ferrimágnesek 3

4 Ferromágnesek Az atomi mágneses momentumok egy bizonyos hőmérséklet alatt azonos nagyságúak és irányúak (a) Egyszerű köbös rács (b) Tércentrált köbös rács (c) Lapcentrált köbös rács 3d átmeneti fémek közül: Fe, Co, Ni, ritkaföldfémek közül: Gd, Tb, Ho, ötvözetek: FeNi, FeCo, FePt, CoPt Curie hőmérséklet T C : efölött eltűnik a mágnes rendeződés, de az atomi momentumok megmaradnak Mágnesezési görbe (M-H) hiszterézist mutat Elem Ötvözet 4

5 Antiferromágnesek Az atomi mágneses momentumok egy bizonyos hőmérséklet alatt azonos nagyságúak, de alternáló irányúak az eredő mágneses momentum zérus Az elemi cella többszöröződik: mágneses elemi cella Az új reciprokrács neutrondiffrakcióval kimérhető A mágneses momentum eloszlás leírása: Antiferromágneses szerkezetek egyszerű köbös rácson: c a b a b b b b a Az anyag teljes mágneses momentuma zérus A mágneses rendeződés a Néel hőmérséklet T N fölött eltűnik 3d átmeneti fémek közül: Cr, Mn, sok ritkaföldfém (Sm, Eu, Dy, Ho), sok fémoxid (MnO, FeO, CoO, NiO, CuO) és ötvözet (FeS, MnPt) 5

6 Mágnesek csavarszerkezetek Az atomi mágneses momentumok azonos nagyságúak, de periodikus nem kollineáris rendeződést mutatnak Spin-spirál struktúra Holmium (Ho) Diszprózium (Dy) 6

7 Ferrimágnesek Több különböző nagyságú atomi mágneses momentum, melyek antiferromágneses iránybeállást mutatnak van mérhető mágneses momentum Vastartalmú oxidok (ferritek) Fe 3 O 4, CoFe 2 O 4 Ritkaföldfém-gránátok (Y,Eu,Sm,Gd) 3 Fe 5 O 12 Ferritek Gránátok nesezettség Mágn Hőmérséklet 7

8 Mágneses kölcsönhatások 1. Mágneses dipól-dipól kölcsönhatás Nagyságrendi becslés: ev 0.5 K Túl gyenge kölcsönhatás: nem magyarázhatja az atomi mágneses momentumok rendeződését az K Curie hőmérsékletig Mágneses domének kialakulásában játszik szerepet 8

9 2. Kicserélődési kölcsönhatás (kvantummechanikai effektus) vezetési elektron spin atomi spin-momentum S 1 S 2 J 12 >0 ferromágneses kh. J 12 <0 antiferromágneses kh. Rudermann-Kittel-Kasuya-Yoshida (RKKY) kh.: k F R 12 Fermi hullámszám a két atom távolsága A kölcsönhatás erőssége az atomok közötti távolság köbével fordított arányban csökken előjele alternál a távolsággal A legközelebbi atomok közötti kölcsönhatás meghatározó a mágneses rend szempontjából Gyakori közelítés: elsőszomszéd kölcsönhatás 9

10 Ferromágnesség egyszerű modellje Spin-modellek Ising modell külső tér nélkül: (egy atom szomszédjainak száma: z) Átlagtér (molekuláris tér) közelítés ahol a spin-momentum termikus átlagértéke és az effektív (átlagos) mágneses tér (Weiss-tér) Egy adott spin-konfiguráció statisztikai valószínűsége: átlagtér közelítésben 10

11 Ferromágnesség (folyt.) Egy atomi spin különböző irányú beállásának valószínűsége Az atomi spin várhatóértéke Önkonzisztens egyenlet a mágnesezettségre: Milyen hőmérsékletre van ennek az egyenletnek megoldása? 1.0 y = A x (A>1) y = tanh(x) 0.5 y = A x (A<1) x = βjzs Feltétel: Curie hőmérséklet 11

12 Ferromágnesség (folyt.) Ni mágnesezettségének hőmérsékletfüggése háromszögek: kísérlet folytonos vonal: átlagtér elmélet Megjegyzések: Tömbi ferromágnesekre a Heisenberg modell (-1/2 Σ J ij S i S j ) átlagtér közelítésben is jól működik Mágneses vékonyrétegekre (kétdim. rács) és mágneses láncokra (egydim. rács) az átlagtér elmélet nem kielégítő közelítés, mert a spin-konfiguráció nagy valószínűséggel eltér az átlagos spin-állapottól (nagyok a fluktuációk). Ezenfelül anizotróp modellek (pl. Ising modell) használata szükséges. 12

Mágneses tér anyag kölcsönhatás leírása

Mágneses tér anyag kölcsönhatás leírása Anyagszerkezettan és anyagvizsgálat 2014/15 Mágneses anyagok Dr. Szabó Péter János szpj@eik.bme.hu Mágneses tér anyag kölcsönhatás leírása B H B H H M ) 0 1 M H V 1 r r 0 ( 1 Pi P V H : az anyagra ható

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

Mágneses tér anyag kölcsönhatás leírása

Mágneses tér anyag kölcsönhatás leírása Anyagszerkezettan és anyagvizsgálat 2012/13 Mágneses anyagok Dr. Szabó Péter János szpj@eik.bme.hu Mágneses tér anyag kölcsönhatás leírása B = µ H B = µ µ H = µ H + M ) 0 r 0 ( 1 1 M = κh = Pi = P V V

Részletesebben

XII. előadás április 29. tromos

XII. előadás április 29. tromos Bevezetés s az anyagtudományba nyba XII. előadás 2010. április 29. Ferroelektr tromos kerámi miák Ferroelektromosság: elektromos tér hiányában spontán polarizáltak (a ferromágneses viselkedés elektromos

Részletesebben

Miért vonzza a vegyészt a mágnes? Németh Zoltán, Magkémiai Laboratórium, ELTE Alkímia ma - 2011.03.31.

Miért vonzza a vegyészt a mágnes? Németh Zoltán, Magkémiai Laboratórium, ELTE Alkímia ma - 2011.03.31. Miért vonzza a vegyészt a mágnes? Németh Zoltán, Magkémiai Laboratórium, ELTE Alkímia ma - 2011.03.31. Mítosz Magnesz görög pásztor az Ida-hegyen sétálgatva odatapadt a földhöz vastalpú szandáljával /

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

Az anyagok mágneses tulajdonságai

Az anyagok mágneses tulajdonságai Az anyagok mágneses tulajdonságai Alkalmazási területek Jelentőségük (lágy: n*0 6 tonna/év, kemény: n*0 3 tonna/év) Ókori Kína ( II.sz.) Iránytű 880 Martenzites állandómágnes 900 Fe - Si ötvözet 93 Fe

Részletesebben

ÓRIÁS MÁGNESES ELLENÁLLÁS

ÓRIÁS MÁGNESES ELLENÁLLÁS ÓRIÁS MÁGNESES ELLENÁLLÁS Modern fizikai kísérletek szemináriúm Ariunbold Kherlenzaya Tartalomjegyzék Mágneses ellenállás Óriás mágneses ellenállás FM/NM multirétegek elektromos transzportja Kísérleti

Részletesebben

Az anyagok mágneses tulajdonságai

Az anyagok mágneses tulajdonságai BME, Anyagtudomány és Technológia Tanszék Dr. Mészáros István Mágneses tulajdonságok, mágneses anyagok Előadásvázlat 2013. 1 Az anyagok mágneses tulajdonságai Alkalmazási területek Jelentőségük (lágy:

Részletesebben

Optika Gröller BMF Kandó MTI. Optikai alapfogalmak. Fény: transzverzális elektromágneses hullám. n = c vákuum /c közeg. Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI. Optikai alapfogalmak. Fény: transzverzális elektromágneses hullám. n = c vákuum /c közeg. Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg 1 Az elektromágneses spektrum 2 Az anyag és s a fény f kölcsk lcsönhatása Visszaverődés, reflexió Törés, kettőstörés,

Részletesebben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben 06.08.. Fizikai kémia. 3. Részecskék mágneses térben, ESR spektroszkópia Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Részecskék mágneses térben A részecskék mágneses térben ugyanúgy

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 4 ELeKTROMOSSÁG, MÁGNeSeSSÉG IV. MÁGNeSeSSÉG AZ ANYAGbAN 1. AZ alapvető mágneses mennyiségek A mágneses polarizáció, a mágnesezettség vektora A nukleonok (proton,

Részletesebben

BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz

BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz Az anyag szerveződési formái Ebben a részben bemutatjuk az anyag elemi építőköveinek sokszerű kapcsolódási formáit, amelyek makroszkopikusan

Részletesebben

Optikai alapfogalmak. Az elektromágneses spektrum. n = c vákuum /c közeg. Fény: transzverzális elektromágneses hullám. (n 1 n 2 ) 2 R= (n 1 + n 2 ) 2

Optikai alapfogalmak. Az elektromágneses spektrum. n = c vákuum /c közeg. Fény: transzverzális elektromágneses hullám. (n 1 n 2 ) 2 R= (n 1 + n 2 ) 2 Optikai alapfogalmak Az anyag és s a fény f kölcsk lcsönhatása Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Visszaverődés, reflexió Törés, kettőstörés, polarizáció Elnyelés, abszorpció,

Részletesebben

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert:

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert: 1 / 12 A TételWiki wikiből 1 Ritka gázok állapotegyenlete 2 Viriál sorfejtés 3 Van der Waals gázok 4 Ising-modell 4.1 Az Ising-modell megoldása 1 dimenzióban(*) 4.2 Az Ising-modell átlagtérelmélete 2 dimenzióban(**)

Részletesebben

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra

Részletesebben

Szerzők: Előzmények: OTKA-6875: MÁGNESES FÁZISÁTALAKULÁS A FÖLDKÉREGBEN ÉS GEOFIZIKAI KÖVETKEZMÉNYEI

Szerzők: Előzmények: OTKA-6875: MÁGNESES FÁZISÁTALAKULÁS A FÖLDKÉREGBEN ÉS GEOFIZIKAI KÖVETKEZMÉNYEI Szerzők: 1. Szarka László, MTA, Geodéziai és Geofizikai Kutató Intézet, Sopron 2. Kiss János, Magyar Állami Eötvös Loránd Geofizikai Intézet, Budapest 3. Prácser Ernő, Magyar Állami Eötvös Loránd Geofizikai

Részletesebben

WOLFGANG PAULI ÉS AZ ANYAGTUDOMÁNY KROÓ NORBERT MAGYAR TUDOMÁNYOS AKADÉMIA ÓBUDAI EGYETEM,2010.04.23

WOLFGANG PAULI ÉS AZ ANYAGTUDOMÁNY KROÓ NORBERT MAGYAR TUDOMÁNYOS AKADÉMIA ÓBUDAI EGYETEM,2010.04.23 WOLFGANG PAULI ÉS AZ ANYAGTUDOMÁNY KROÓ NORBERT MAGYAR TUDOMÁNYOS AKADÉMIA ÓBUDAI EGYETEM,2010.04.23 Minden részecske rendelkezik egy furcsa tulajdonsággal, ez a spinje. Mivel ez úgy viselkedik, mint az

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

Hibrid mágneses szerkezetek

Hibrid mágneses szerkezetek Zárójelentés Hibrid mágneses szerkezetek OTKA T046267 Négy és fél év időtartamú pályázatunkban két fő témakörben végeztünk intenzív elméleti kutatásokat: (A) Mágneses nanostruktúrák ab initio szintű vizsgálata

Részletesebben

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( ) a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj

Részletesebben

Egzotikus elektromágneses jelenségek alacsony hőmérsékleten Mihály György BME Fizikai Intézet Hall effektus Edwin Hall és az összenyomhatatlan elektromosság Kvantum Hall effektus Mágneses áram anomális

Részletesebben

Az anyagok mágneses tulajdonságai

Az anyagok mágneses tulajdonságai Az anyagok mágneses tulajdonságai Mai ismereteink szerint az anyagok mágneses tulajdonságaik alapján három fő típusba sorolhatóak: dia-, para-, ferromágneses típusba, de ezen felül léteznek antiferromágneses

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 17 KRISTÁLYFIZIkA XVII. Hőtani, MÁGNEsEs, ELEKTROMOs, RADIOAKTÍV TULAJDONsÁGOK 1. Hőtani TULAJDONsÁGOK A hősugarak a színkép vörös színén túl lépnek fel (infravörös

Részletesebben

A kovalens kötés polaritása

A kovalens kötés polaritása Általános és szervetlen kémia 4. hét Kovalens kötés A kovalens kötés kialakulásakor szabad atomokból molekulák jönnek létre. A molekulák létrejötte mindig energia csökkenéssel jár. A kovalens kötés polaritása

Részletesebben

Magszerkezet modellek. Folyadékcsepp modell

Magszerkezet modellek. Folyadékcsepp modell Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus

Részletesebben

Vezetési jelenségek, vezetőanyagok

Vezetési jelenségek, vezetőanyagok Anyagszerkezettan és anyagvizsgálat 2015/16 Vezetési jelenségek, vezetőanyagok Dr. Szabó Péter János szpj@eik.bme.hu Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: Vezetők

Részletesebben

Szupravezetés. Mágneses tér mérő szenzorok (DC, AC) BME, Anyagtudomány és Technológia Tanszék. Dr. Mészáros István. Előadásvázlat 2013.

Szupravezetés. Mágneses tér mérő szenzorok (DC, AC) BME, Anyagtudomány és Technológia Tanszék. Dr. Mészáros István. Előadásvázlat 2013. BME, Anyagtudomány és Technológia Tanszék Dr. Mészáros István Szupravezetés Előadásvázlat 2013. Mágneses tér mérő szenzorok (DC, AC) Erő ill. nyomaték mérésen alapuló eszközök Tekercs (induktív) Magnetorezisztív

Részletesebben

Vezetési jelenségek, vezetőanyagok. Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék:

Vezetési jelenségek, vezetőanyagok. Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: nyagtudomány 2014/15 Vezetési jelenségek, vezetőanyagok Dr. Szabó Péter János szpj@eik.bme.hu Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: Vezetők fémek ötvözetek elektrolitok

Részletesebben

Elektrotechnika. Prof. Dr. Vajda István BME Villamos Energetika Tanszék

Elektrotechnika. Prof. Dr. Vajda István BME Villamos Energetika Tanszék Elektrotechnika Prof. Dr. Vajda István BME Villamos Energetika Tanszék TAMOP-4.1.2-08/2/A/KMR-2009-0048 A Projekt az Európai Unió támogatásával, az Európai Regionális Fejlesztési Alap társfinanszírozásával

Részletesebben

A kvantummechanikai atommodell

A kvantummechanikai atommodell A kvantummechanikai atommodell A kvantummechanika alapjai A Heinsenberg-féle határozatlansági reláció A kvantummechanikai atommodell A kvantumszámok értelmezése A Stern-Gerlach kísérlet Az Einstein-de

Részletesebben

Mágnesség mágnes ferromágneses ferrimágneses domé- nekben remanencia koercitív

Mágnesség mágnes ferromágneses ferrimágneses domé- nekben remanencia koercitív Mágnesség az elektromágnesség egyik megjelenése. A 19. században tárták fel, hogy az elektromos és a mágneses jelenségek szoros kapcsolatban állnak, egymástól elválaszthatatlanok. Mozgó elektromos töltések

Részletesebben

Mágnesség és elektromos vezetés kétdimenziós

Mágnesség és elektromos vezetés kétdimenziós Mágnesség és elektromos vezetés kétdimenziós molekulakristályokban Jánossy András Budapesti Műszaki és Gazdaságtudományi Egyetem Fizikai Intézet, Fizika Tanszék Kondenzált Anyagok MTA-BME Kutatócsoport

Részletesebben

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -

Részletesebben

Elektromos vezetési tulajdonságok

Elektromos vezetési tulajdonságok Elektromos vezetési tulajdonságok Vezetési jelenségek (transzportfolyamatok) fenomenologikus leírása Termodinamikai hajtóerő: kémiai potenciál különbség: Egyensúlyban lévő rendszer esetén: = U TS δ = δx

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Mágneses rend vékonyrétegekben

Mágneses rend vékonyrétegekben Erdélyi Tudományos Diákköri Konferencia 2010 Kolozsvár Mágneses rend vékonyrétegekben Tyukodi Botond Ioan-Augustin Chioar Babeș-Bolyai Tudományegyetem, Fizika kar, 3. év Témavezető: dr. Néda Zoltán egyetemi

Részletesebben

Mikrohullámú abszorbensek vizsgálata

Mikrohullámú abszorbensek vizsgálata Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Mikrohullámú abszorbensek vizsgálata Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán MTA Természettudományi Kutatóközpont

Részletesebben

Földmágneses kutatómódszer

Földmágneses kutatómódszer Földmágneses kutatómódszer Alkalmazott l földfizika ik gyakorlat BEVEZETÉS A felszíni mágneses mérések a felszín alatt elhelyezkedő különböző mágnesezettségű kőzeteket ill. azok által a földi mágneses

Részletesebben

A különböző anyagok mágneses térrel is kölcsönhatásba lépnek, ugyanúgy, ahogy az elektromos térrel. Ez a kölcsönhatás szintén kétféle lehet.

A különböző anyagok mágneses térrel is kölcsönhatásba lépnek, ugyanúgy, ahogy az elektromos térrel. Ez a kölcsönhatás szintén kétféle lehet. 1 A különböző anyagok mágneses térrel is kölcsönhatásba lépnek, ugyanúgy, ahogy az elektromos térrel. Ez a kölcsönhatás szintén kétféle lehet. A legjobban az ún. Gouy-mérlegben való viselkedés példázza

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Az elektronpályák feltöltődési sorrendje

Az elektronpályák feltöltődési sorrendje 3. előadás 12-09-17 2 12-09-17 Az elektronpályák feltöltődési sorrendje 3 Az elemek rendszerezése, a periódusos rendszer Elsőként Dimitrij Ivanovics Mengyelejev és Lothar Meyer vette észre az elemek halmazában

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

( Monte-Carlo-módszer)

( Monte-Carlo-módszer) A munkára fogott véletlen ( Monte-Carlo-módszer) Cserti József Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék, H-1117 Budapest, Pázmány Péter sétány 1/A. (23. szeptember 7.) A pécsi

Részletesebben

Mikrohullámú abszorbensek vizsgálata 4. félév

Mikrohullámú abszorbensek vizsgálata 4. félév Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Mikrohullámú abszorbensek vizsgálata 4. félév Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán MTA Természettudományi Kutatóközpont

Részletesebben

Normális, szimmetriasértő és szimmetriát nem sértő, mégsem normális elektronrendszerek szilárd testekben Sólyom Jenő MTA Wigner FK és ELTE

Normális, szimmetriasértő és szimmetriát nem sértő, mégsem normális elektronrendszerek szilárd testekben Sólyom Jenő MTA Wigner FK és ELTE Normális, szimmetriasértő és szimmetriát nem sértő, mégsem normális elektronrendszerek szilárd testekben Sólyom Jenő MTA Wigner FK és ELTE Ortvay-kollokvium, Budapest, 2011. szeptember 22. SZFKI szeminárium,

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés MÁGNESESSÉG A mágneses sajátságok, az elektromossághoz hasonlóan, régóta megfigyelt tapasztalatok voltak, a két jelenségkör szoros kapcsolatának felismerése azonban csak mintegy két évszázaddal ezelőtt

Részletesebben

Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT

Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT A Mathematikai és Természettudományi Értesítõt az Akadémia 1882-ben indította A Mathematikai és Physikai Lapokat Eötvös Loránd 1891-ben alapította LVIII. évfolyam

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

Kontakt- vagy érintkezési feszültségek

Kontakt- vagy érintkezési feszültségek Kontakt- vagy érintkezési feszültségek A jelenség: Két különböző A felület mentén összeérintett 1. és 2. fém A és B pontjai között U k nagyságú ún. kontakt- vagy érintkezési feszültség lép fel. A kvalitatív

Részletesebben

MÁGNESES ELLENÁLLÁS FERROMÁGNESES FÉMEKBEN ÉS MÁGNESES NANOSZERKEZETEKBEN

MÁGNESES ELLENÁLLÁS FERROMÁGNESES FÉMEKBEN ÉS MÁGNESES NANOSZERKEZETEKBEN MÁGNESES ELLENÁLLÁS FERROMÁGNESES FÉMEKBEN ÉS MÁGNESES NANOSZERKEZETEKBEN Bakonyi Imre, Simon Eszter, Péter László MTA Szilárdtestfizikai és Optikai Kutatóintézet Ferromágneses (FM) fémek elektromos ellenállásának

Részletesebben

41. ábra A NaCl rács elemi cellája

41. ábra A NaCl rács elemi cellája 41. ábra A NaCl rács elemi cellája Mindkét rácsra jellemző, hogy egy tetszés szerint kiválasztott pozitív vagy negatív töltésű iont ellentétes töltésű ionok vesznek körül. Különbség a közvetlen szomszédok

Részletesebben

Szalai István. ELTE Kémiai Intézet 1/74

Szalai István. ELTE Kémiai Intézet 1/74 Elsőrendű kötések Szalai István ELTE Kémiai Intézet 1/74 Az előadás vázlata ˆ Ismétlés ˆ Ionos vegyületek képződése ˆ Ionok típusai ˆ Kovalens kötés ˆ Fémes kötés ˆ VSEPR elmélet ˆ VB elmélet 2/74 Periodikus

Részletesebben

ω mennyiségek nem túl gyorsan változnak

ω mennyiségek nem túl gyorsan változnak Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára

Részletesebben

KÉMIA. Kémia a gimnáziumok 9 10. évfolyama számára

KÉMIA. Kémia a gimnáziumok 9 10. évfolyama számára KÉMIA Kémia a gimnáziumok 9 10. évfolyama számára A kémia tanításának célja és feladatai Az iskolai tanulmányok célja a gyakorlatban hasznosítható ismeretek megszerzése, valamint az általános képességek

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Az anyagok kettős (részecske és hullám) természete

Az anyagok kettős (részecske és hullám) természete Az anyagok kettős (részecske és hullám) természete de Broglie hipotézise (1924-25): Bármilyen fénysebességgel mozgó részecskére: mc = p E = mc 2 = hn p = hn/c = h/ = h/p - de Broglie-féle hullámhossz Nem

Részletesebben

Javítókulcs (Kémia emelt szintű feladatsor)

Javítókulcs (Kémia emelt szintű feladatsor) Javítókulcs (Kémia emelt szintű feladatsor) I. feladat 1. A katalizátorok a kémiai reakciót gyorsítják azáltal, hogy az aktiválási energiát csökkentik, a reakció végén változatlanul megmaradnak. 2. Biológiai

Részletesebben

Reál osztály. Kémia a gimnáziumok 9 11. évfolyama számára. B változat

Reál osztály. Kémia a gimnáziumok 9 11. évfolyama számára. B változat Reál osztály Kémia a gimnáziumok 9 11. évfolyama számára B változat A kémia tanításának célja és feladatai Az iskolai tanulmányok célja a gyakorlatban hasznosítható ismeretek megszerzése, valamint az általános

Részletesebben

Kémia a gimnáziumok 9 10. évfolyama számára. B változat

Kémia a gimnáziumok 9 10. évfolyama számára. B változat Kémia a gimnáziumok 9 10. évfolyama számára B változat A kémia tanításának célja és feladatai Az iskolai tanulmányok célja a gyakorlatban hasznosítható ismeretek megszerzése, valamint az általános képességek

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Villamos tulajdonságok

Villamos tulajdonságok Villamos tulajdonságok A vezetés s magyarázata Elektron függıleges falú potenciálgödörben: állóhullámok alap és gerjesztett állapotok Több elektron: Pauli-elv Sok elektron: Energia sávok Sávelméletlet

Részletesebben

Kifejtendő kérdések június 13. Gyakorló feladatok

Kifejtendő kérdések június 13. Gyakorló feladatok Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)

Részletesebben

A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR)

A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR) 4. előadás A kovalens kötés elmélete Vegyértékelektronpár taszítási elmélet (VSEPR) az atomok kötő és nemkötő elektronpárjai úgy helyezkednek el a térben, hogy egymástól minél távolabb legyenek A központi

Részletesebben

Anyagos rész: Lásd: állapotábrás pdf. Ha többet akarsz tudni a metallográfiai vizsgálatok csodáiról, akkor: http://testorg.eu/editor_up/up/egyeb/2012_01/16/132671554730168934/metallografia.pdf

Részletesebben

Az elemek rendszerezése, a periódusos rendszer

Az elemek rendszerezése, a periódusos rendszer Az elemek rendszerezése, a periódusos rendszer 12-09-16 1 A rendszerezés alapja, az elektronszerkezet kiépülése 12-09-16 2 Csoport 1 2 3 II III IA A B 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 IV V VI VII

Részletesebben

Mágneses körök. Fizikai alapok. Mágneses tér

Mágneses körök. Fizikai alapok. Mágneses tér Fizikai alapok Mágneses tér Mágneses körök Az elektromosan töltött részecskék között az elektrosztatikus kölcsönhatás mellett mágneses kölcsönhatás is létezik. Ez a kölcsönhatás kapcsolatban áll a töltött

Részletesebben

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.19. A mérés száma és címe: 7. Az optikai pumpálás Értékelés: A beadás dátuma: 2005.10.28. A mérést végezte: Orosz Katalin Tóth Bence Optikai pumpálás segítségével

Részletesebben

ACTA CAROLUS ROBERTUS

ACTA CAROLUS ROBERTUS ACTA CAROLUS ROBERTUS Károly Róbert Főiskola tudományos közleményei Alapítva: 2011 3 (1) ACTA CAROLUS ROBERTUS 3 (1) Fizika szekció CSODÁLATOS MÁGNESGOLYÓK HUDOBA GYÖRGY Összefoglalás Ritkaföldfém (elsősorban

Részletesebben

A kvantumszámok jelentése: A szokásos tárgyalás a pályák alakját vizsgálja, ld. majd azt is; de a lényeg: fizikai mennyiségeket határoznak meg.

A kvantumszámok jelentése: A szokásos tárgyalás a pályák alakját vizsgálja, ld. majd azt is; de a lényeg: fizikai mennyiségeket határoznak meg. I.6. A H-atom kvantummechanikai leírása I.6.1. Schrödinger-egyenlet, kvantumszámok Szimbolikusan tehát: Ĥψ i = E iψ i A Schrödinger-egyenletben a rendszert specifikálja: a V = e /r a potenciális energia

Részletesebben

Kondenzált anyagok csoportosítása

Kondenzált anyagok csoportosítása Szilárdtestfizika Kondenzált anyagok csoportosítása 1. Üvegek Nagy viszkozitású olvadék állapotú anyagok, amelyek nagyon lassan szilárd állapotba mennek át. Folyékony állapotból gyors hűtéssel állíthatók

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, mozgások, stb.)

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

Optikai alapfogalmak. Az elektromágneses spektrum. n = c vákuum /c közeg. Fény: transzverzális elektromágneses hullám. (n 1 n 2 ) 2 R= (n 1 + n 2 ) 2

Optikai alapfogalmak. Az elektromágneses spektrum. n = c vákuum /c közeg. Fény: transzverzális elektromágneses hullám. (n 1 n 2 ) 2 R= (n 1 + n 2 ) 2 Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Az elektromágneses spektrum Az anyag és s a fény f kölcsk lcsönhatása Visszaverıdés Visszaverıdés, reflexió Törés,

Részletesebben

Kémia kerettanterve a Német Nemzetiségi Gimnázium és Kollégium 9 10. évfolyama számára

Kémia kerettanterve a Német Nemzetiségi Gimnázium és Kollégium 9 10. évfolyama számára Kémia kerettanterve a Német Nemzetiségi Gimnázium és Kollégium 9 10. évfolyama számára (az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.09.2 (B) változata alapján) A kémia tanításának

Részletesebben

Bevezetés az anyagtudományba III. előadás

Bevezetés az anyagtudományba III. előadás Bevezetés az anyagtudományba III. előadás 2010. február 18. Kristályos és s nem-krist kristályos anyagok A kristályos anyag atomjainak elrendeződése sok atomnyi távolságig, a tér mindhárom irányában periodikusan

Részletesebben

Mágneses hűtés szobahőmérsékleten

Mágneses hűtés szobahőmérsékleten BME OMIKK ENERGIAELLÁTÁS, ENERGIATAKARÉKOSSÁG VILÁGSZERTE 45. k. 6. sz. 2006. p. 64 70. Korszerű energetikai berendezések Mágneses hűtés szobahőmérsékleten Már 1881-ben kimutatta E. Warburg német fizikus,

Részletesebben

Doktori értekezés. Simon Ferenc 2001.

Doktori értekezés. Simon Ferenc 2001. Doktori értekezés Simon Ferenc 001. BUDAPESTI MUSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM TERMÉSZETTUDOMÁNYI KAR Simon Ferenc Erosen korrelált elektronrendszerek vizsgálata mágneses rezonancia módszerrel Doktori

Részletesebben

KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003

KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban

Részletesebben

Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat

Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat Periódusosság 9-1 Az elemek csoportosítása: aperiódusos táblázat 9-2 Fémek, nemfémek és ionjaik 9-3 Az atomok és ionok mérete 9-4 Ionizációs energia 9-5 Elektron affinitás 9-6 Mágneses 9-7 Az elemek periódikus

Részletesebben

Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata

Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata Lutz András Gábor Kutatási beszámoló 2015, Budapest Feladat A mikrohullámú non reciprok eszközök paramétereit döntően meghatározzák a bennük

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR VIANYSZEREŐ KÉPZÉS 2 0 5 MÁGNESES TÉR ÖSSZEÁÍTOTTA NAGY ÁSZÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Mágneses tér fogalma, jellemzői...3 A mágneses tér hatása az anyagokra...4 Elektromágneses indukció...6 Mozgási

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

ORVOSI BIOFIZIKA. Damjanovich Sándor Mátyus László QT Szerkesztette

ORVOSI BIOFIZIKA. Damjanovich Sándor Mátyus László QT Szerkesztette ORVOSI BIOFIZIKA Szerkesztette Damjanovich Sándor Mátyus László QT34 078 Medicina Könyvkiadó Rt. Budapest, 2000 Készült az Oktatási Minisztérium támogatásával írta Damjanovich Sándor Gáspár Rezső Krasznai

Részletesebben

Ultrahideg atomok topológiai fázisai

Ultrahideg atomok topológiai fázisai Ultrahideg atomok topológiai fázisai Szirmai Gergely MTA SZFKI 2011. június 14. Szirmai Gergely (MTA SZFKI) Ultrahideg atomok topológiai fázisai 2011. június 14. 1 / 1 Kvantum fázisátalakulások I (spontán

Részletesebben

KRISTÁLYOK GEOMETRIAI LEÍRÁSA

KRISTÁLYOK GEOMETRIAI LEÍRÁSA KRISTÁLYOK GEOMETRIAI LEÍRÁSA Kristály Bázis Pontrács Ideális Kristály: hosszútávúan rendezett hibamentes, végtelen szilárd test Kristály Bázis: a kristály legkisebb, ismétlœdœ atomcsoportja Rácspont:

Részletesebben

Önszervezően kritikus rendszerek: Bevezetés, alapfogalmak. Self-organized criticality. Homokdomb Biológiai evolúció. Példák és modellek

Önszervezően kritikus rendszerek: Bevezetés, alapfogalmak. Self-organized criticality. Homokdomb Biológiai evolúció. Példák és modellek : Példák és modellek Bevezetés Alapfogalmak ismétlése Mi a fázisátalakulás? Alapfogalmak ismétlése Mi a fázisátalakulás? A statisztikus fizikában (termodinamikában): Az anyag átalakulása két különböző

Részletesebben

Elektronspinrezonancia (ESR) - spektroszkópia

Elektronspinrezonancia (ESR) - spektroszkópia E m S Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben = µ

Részletesebben

Általános és szervetlen kémia Laborelıkészítı elıadás VI

Általános és szervetlen kémia Laborelıkészítı elıadás VI Általános és szervetlen kémia Laborelıkészítı elıadás VI Redoxiegyenletek rendezésének általános lépései Példák fémoldódási egyenletek rendezésére Halogénvegyületek reakciói A gyakorlaton vizsgált redoxireakciók

Részletesebben

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer A kémiai kötés Kémiai

Részletesebben

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz 1. A vízmolekula szerkezete Elektronegativitás, polaritás, másodlagos kötések 2. Fizikai tulajdonságok a) Szerkezetből adódó különleges

Részletesebben

KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK

KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban meghatározott módon, az alábbi kompetenciák meglétét kell bizonyítania: - a természettudományos

Részletesebben

Koherens lézerspektroszkópia adalékolt optikai egykristályokban

Koherens lézerspektroszkópia adalékolt optikai egykristályokban Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes

Részletesebben

RÖNTGEN-FLUORESZCENCIA ANALÍZIS

RÖNTGEN-FLUORESZCENCIA ANALÍZIS RÖNTGEN-FLUORESZCENCIA ANALÍZIS 1. Mire jó a röntgen-fluoreszcencia analízis? A röntgen-fluoreszcencia analízis (RFA vagy angolul XRF) roncsolás-mentes atomfizikai anyagvizsgálati módszer. Rövid idõ alatt

Részletesebben