Elektrotechnika. Prof. Dr. Vajda István BME Villamos Energetika Tanszék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Elektrotechnika. Prof. Dr. Vajda István BME Villamos Energetika Tanszék"

Átírás

1 Elektrotechnika Prof. Dr. Vajda István BME Villamos Energetika Tanszék TAMOP /2/A/KMR A Projekt az Európai Unió támogatásával, az Európai Regionális Fejlesztési Alap társfinanszírozásával valósult meg

2 2. fejezet Mágneses anyagok, terek, körök

3 1. rész Mágneses anyagok

4 Mágnesezési görbe Kereskedelmi forgalomban kapható M-19 Si-acél

5 Mágneses anyagok Néel-hőmérséklet

6 2. rész Mágnesezési görbe

7 Mágnesezési görbe Kis térerősség értékek esetén a mágneses fluxus (mágnesezési görbe) jó közelítéssel lineárisan változik Nagyobb térerősség értékek esetén a mágneses fluxus (mágnesezési görbe) változása nemlineáris telítődő. Si lemez Öntött acél Nagy reluktancia Telítés Öntött vas Kis reluktancia

8 Mágnesezési görbe Kereskedelmi forgalomban kapható M-19 Si-acél

9 Mágnesezési görbe

10 Mágnesezési görbe

11 A hiszterézis (#1) Eredetileg mágnesezetlen o i és H lassan változik oa i és H megszűnik c B r remanens indukció H csökken H c (koercitív erő) értékig d a mágneses indukció zérus Az első átmágnesezési periódus alatt a görbe az oacdefga görbén halad nem záródik Néhány periódus múltán a görbe záródik

12 A hiszterézis (#2) A B H reláció nemlineáris és többértékű B késik H-hoz képest hiszterézis A hiszterézis-hurok csúcspontjainak helygörbéjének neve: mágnesezési görbe Mágnesezési görbe

13 A hiszterézis (#3) Reverzibilis momentum beállás Irreverzibilis irányváltás Irreverzibilis dipol irányváltás Reverzibilis faleltolódás

14 A hiszterézis (#4) Váltakozó (lüktető) mező Forgőmező (koszorúban)

15 3. rész Vasveszteség

16 A hiszterézis-veszteség (#1) A hiszterézis jelensége miatt a vasmagban veszteség keletkezik: hiszterézis-veszteség A bevitt munkamennyiség u i = N dφ dt t 2 t 2 W = p dt = u i i dt = N dφ i dt = Ni dφ dt t 1 t 1 t 1 t 2 Φ 2 Φ 1 Toroidban Φ = BA, i = Hl N W = B 2 B 1 B 2 N Hl N AdB = la HdB = V vas HdB B 2 B 1 B 1

17 A hiszterézis-veszteség #2 A periódusonkénti energia-veszteség: W ciklus = V v H db = V v B H hurok terület Veszteség-sűrűség a vasmagban: W h = HdB, Ws/m 3 =J/m 3 A hiszterézis-veszteség: P h = V v W h f, W Kísérleti úton megállapítva:w ciklus = B H hurok terület P h = k h Bn max f n = 1,5 2,5

18 Az örvényáram-veszteség Időben változó mágneses tér vezető közegben áramokat hoz létre i ö ~u i,ö ~ db dt A keletkező veszteség arányos Ri ö 2 tel. 2 P ö = k ö B max f 2 Az örvényáram-veszteség csökkentése: A vasmag-anyag ellenállásának növelése A vasmag lemezelése

19 A vasveszteség A hiszterézis- és az örvényáram-veszteség együttesen keletkeznek: P v = P h + P ö Lassú változások esetén Az örvényáram-veszteség elhanyagolható Statikus görbe Gyors változások esetén Az örvényáramok hatására a fluxus igyekszik fennmaradni A görbe kiszélesedik Dinamikus görbe A veszteség melegíti a vasmagot P v = V vas HdB Statikus hurok Dinamikus hurok Dinamikus hurok

20 Lemezek tulajdonságai és alkalmazása Fe-alapú lágymágneses anyagok, H c tipikusan kisebb, mint 100 A/m. AC-alkalmazásokhoz vékony (0,5-0,35-0,27-0,23 mm), szigetelt lemezek formájában gyártják. 1,5 3% of szilicium adalék az ellenállás növelése és az örvényáramveszteség csökkentése érdekében. 50 Hz-en a veszteség domináns része hiszterézis-veszteség. Az orientált szerkezetű lemezek erősen anizotróp tulajdonságúak. Ezeket nagyrészt transzformátorokban használjuk. A nem-orientált szerkezetű lemezek izotrópok, forgógépekben használjuk.

21 Lemezek tulajdonságai és alkalmazása A vasmagot villamos gépek számára lemezekből sajtolják. A sajtolás megrongálja a szemcse-struktúrát a vágási él környezetében, ami többlet mechanikai feszültségeket okoz a lemezekben. Ez lerontja a mágneses tulajdonságokat. A mágneses tulajdonságokat részlegesen helyre lehet állítani hőkezeléssel. Ezt a módszert azonban ritkán használják tömeggyártás esetén. Nagy indukcióknál a mágnesezési görbe minden ferromágneses anyag esetén jó közelítéssel egyeneshez tart: B = B telítés + μ 0 H Villamos lemezanyagokra B telítés = 1,7 2,0 T.

22 4. rész A gerjesztőáram

23 A gerjesztőáram Szinuszos feszültség-forrás Kis tekercs-ellenállás Szinuszos fluxus A tekercsben folyó áram: gerjesztőáram hozza létre a mágneses fluxust Ha a B-H görbe nemlineáris, akkor a gerjesztőáram időbeli változása is nemlineáris Toroid esetén: Φ = BA i = Hl N A B-H görbe átskálázható -i görbévé Általában: Φ~B i~h

24 A gerjesztőáram nemlineáris + hiszterézismentes anyag Szinuszos fluxus Nemszinuszos gerjesztőáram a -i görbe alapján Fázisban a fluxussal Szimmetrikus a feszültséghez viszonyítva Az alapharmonikus 90º-kal késik a feszültséghez viszonyítva Veszteség nem keletkezik A gerjesztőtekercs tiszta induktivitással képezhető le (az alapharmonikusra vonatkoztatva)

25 A gerjesztőáram nemlineáris + hiszterézises anyag Szinuszos fluxus Nemszinuszos gerjesztőáram a többértékű -i görbe alapján Nemszinuszos és aszimmetrikus a feszültséghez viszonyítva A gerjesztőáram két komponensre bontható: i c komponens, mely fázisban van az e-vel jelölt indukált feszültséggel, és a vasveszteség okozója i m komponens, mely fázisban van a fluxussal: mágnesező áram A gerjesztőtekercs helyettesítése: A vasveszteséget leképező ellenállás Mágnesező induktivitás (reaktancia)

26 A gerjesztőáram hiszterézis-mentes vs hiszterézises anyag

27 5. rész Mágneses körök

28 Villamos és mágneses kör analógia

29 Gerjesztési törvény 1. Ampere törvény (gerjesztési törvény) H dl = j da = i k k A Zárt út 1. Permeabilitás fogalma: kapcsolat B és H mezők között, B = μh = μ r μ 0 H 2. Ferromágneses anyagok relatív permeabilitása μ r A vákuum permeabilitása: μ 0 = 4π10 7 henry/méter

30 Az elektromágnesség alapjai Ellenállás R = l σa = ρ l A Kapacitás C = ε A d

31 Mágneses körök s H dl = U m,i = I b i U m,i = H dl i a i U m,1 + U m,2 + U m,3 + U m,4 = I s B ds = Φ i = 0 i Φ i = B ds S 1 Φ 1 + Φ 2 + Φ 3 = 0

32 Villamos és mágneses körök analógiája Rezisztencia = Villamos Ellenállás Reluktancia = Mágneses Ellenállás

33 Reluktancia és permeancia toroid szórásokat elhanyagoljuk H dl = Ni Hl = Ni H2πr = Ni A gerjesztés (mmf) Θ = Ni = Hl A mágneses fluxus Φ = BdA Φ = B A = μ H A = μ Ni l = Λ Θ A = Θ R m A mágneses ellenállás (reluktancia) R m = l μa = 1 Λ A mágneses vezetőképesség (permeancia), Λ

34 Mágneses kör légréssel A légrés gerjesztés-igénye sokkal nagyobb, mint a vasmagé Szórást elhanyagoljuk Pólusok Rotor Sztátor A g =A c B c = Φ c A c R v = l v μ v A v R δ = l δ μ δ A δ B δ = Φ δ A δ Ni = H c l c + H δ l δ Kihajlással Kihajlás nélkül B δ = B v = Φ A v Φ = Ni R v + R δ

35 Induktivitás A tekercset ideális áramköri elem képezi le (reprezentálja) A fluxuskapcsolódás (tekercsfluxus) Az induktivitás Ψ = NΦ L = Φ i L = NΦ i = NBA i = NμHA i = NμHA HI/N = N2 l/μa = N2 R m = N 2 Λ

36 Mágneses testek reluktanciája (olvasmány)

37 Reluktancia és permeancia toroid szórásokat elhanyagoljuk H dl = Ni Hl = Ni H2πr = Ni A gerjesztés (mmf) Θ = Ni = Hl A mágneses fluxus Φ = BdA Φ = B A = μ H A = μ Ni l = Λ Θ A = Θ R m A mágneses ellenállás (reluktancia) R m = l μa = 1 Λ A mágneses vezetőképesség (permeancia), Λ

38 1D mágneses kör alapeleme

39 Reluktancia-modellek 1D modell 2D modell 3D modell R m = l φ μa φ R mx = l φ μa φx R mx = l φx μa φx R my = l φy μa φy R my = l φy μa φy R mz = l φz μa φz

40 Alapesetek: a r k r b a R m,r = 1 1 μ l R m,φ = 1 μ l α ln α r k r b ln r k rb

41 Alapesetek: b b R m,r = 1 2 μ l arc sin h 2 r R m,φ = 1 μ l + arc sin h 1 h 2 r 2 arc sin h 2 + arc sin h 1 h 2 r r

42 Alapesetek: c c R m,r = 1 h μ l b R m,φ = 1 μ l b h

43 Alapesetek: d d R m,r = 1 h ln b 1 μ l b 1 b 2 b 2 R m,φ = 1 b 1 b 2 1 b 1 μ l h ln b 2

44 Bonyolult terek mágneses körei

45 Mágneses tér egyenes vezető körül

46 Mágneses tér egyenes vezető körül + szimmetria

47 Általánosabb fluxuseloszlás reluktancia-modellje (-hálózat)

48 Véghatások figyelembe vétele

49 Állandó mágnesek villamos gépekben

50 7. rész Állandó mágneses anyagok

51 Példák állandó mágneses gépekre Nagyfordulatszámú motor (veszteségsűrűség) Kisfordulatszámú generátor (mágneses indukció)

52 Állandó mágneses anyagok A magnetit Fe 3 O 4 (és a vasferrit: FeO Fe 2 O 3 ) természetes állandó mágneses anyagok, amelyeket kb 3500 évvel fedeztek fel Magnéziában. A nagy-széntartalmú acélok (kb 1 % C), valamint később a W, Cr és Cotartalmú acélok. A tipikus koercitív erő: 20 ka/m. Alnico ötvözetek (Fe, Co, Ni, Al) koercitív erő tartomány: ka/m. Kemény és törékeny anyagok. Ba és Sr (bárium és stroncium) ferritek koercitív ereje ka/m, de viszonylag kis energiaszorzat. A szamarium-kobalt (SmCo 5, Sm 2 Co 17 ) koercitív ereje 750 ka/m, és termikus stabilitása jobb, mint a NdFeB mágnesé, de mind a Sm mind a Co drága anyagok. A NdFeB ötvözetek rendelkeznek a legnagyobb koercitív erővel: kb ka/m és legnagyobb energiaszorzattal: kb 370 kj/m 3 szobahőmérsékleten. Ezeknek a mágneseknek a mágneses karakterisztikája azonban erősen függ a hőmérséklettől.

53 Állandó mágneses anyagok AlNiCo ötvözetek Nagy remanens indukció Viszonylag kis koercitiv erő Ferrit ötvözetek Kisebb remanens indukció Nagy koercitiv erő Ritkaföldfémek Nagy remanens indukció Igen nagy koercitiv erő

54 Állandó mágneses anyagok Más fontos jellemzők: Mágnesező tér Termikus stabilitás Mechanikai jellemzők Korrózió ellenállás Gyárthatóság Ár Év

55 Ritkaföldfém ÁM lemágnesezési görbéi Térerősség

56 Sm 2 Co 17 (Recoma 26) lemágnesezési görbék (Rear-earth-Co-Magnet)

57 Ferrit (Arnox AC-8) lemágnesezési görbék (Arnold Magnetic Technolgies Corp)

58

59 Mennyire ÁLLANDÓ az ÁM A korrózió részleges anyagveszteséget okoz A lemágneseződés a mágnesezettség részleges elvesztését okozza Mágneses viszkozitás A mágnesezettség nagyon lassan DE az időben csökken

60 NdFeB #1 Sinterelt Nd-mágnes tartalma 30-32% súly% Re (ritkaföldfém) 1% B 0 3% Co Kiegyenlítő Fe Különböző tulajdonságok technológiával Különböző ötvözetek = kb Nd és Dy tartalom Különböző sajtolási technikák (orientáció)

61 NdFeB #2 Nd tartalom növeli a remanens indukciót, Dy tartalom növeli a belső koercitív erőt. Dy jóval drágább, mint Nd, ezért azok a mágnesek, amelyeknek nagyobb a belső koercitív erejük, drágábbak azoknál, amelyeknek nagyobb a remanens indukciójuk. A Co jóval drágább, mint a Fe, ezért a korrózió-tűrő mágnesek jóval drágábbak. A mágnesek ára egy év alatt jó ötszörösére nőtt változó tervezési koncepció = energiasűrűség vs légrésindukció

62 Állandó mágnesek mágnesezése Dugó Lágyvas ÁM Igen nagy gerjesztés megszűnése után visszamaradó (remanens) indukció Ellentétes irányú mágneses tér munkapont a második negyedben b A mágneses tér megszüntetése/visszatérése minor hurok reverzibilis hurok bc Reverzibilis permeabilitás: r, rev = 1,0n 5 Ha a tér kisebb lesz, mint -H 1 új munkapont d reverzibilis munkaegyenes: de

63 Példa állandó mágnesek karakterisztikáira

64 NdBFe karakterisztikája J Major hiszterézis hurok

65 8. rész Állandó mágneses villamos gépek tervezési alapjai

66 Analitikus (közelítő) méretezés

67 Állandó mágnesek közelítő méretezése Az állandó mágnest az a munkapontig mágnesezzük fel a lágyvas betétet eltávolítjuk A szórást és a kihajlást elhanyagoljuk Feltételezzük, hogy a lágyvas felmágnesezéséhez nem szükséges gerjesztés H m l m + H δ l δ = 0 Munkaegyenes Munkaegyenes Lágyvas ÁM H m = l δ l m H δ Φ = N m A m = B δ A δ B m = μ 0 A δ A m l m l δ H m Szórással: (1+ ) Eltolódás többlet hosszirányú gerjesztés hatására

68 Állandó mágnesek közelítő méretezése Lágyvas A szükséges mágnes-mennyiség (térfogat) minimumát akkor kapjuk, ha max B m H m ÁM (B m H m ) = energiaszorzat = Munkaegyenes V m = A m l m = B δa δ B m H δl δ = B δ 2 V δ H m μ 0 B m H m Ma már nem olyan drága a ritkaföldfém állandó mágnes sem, ezért általában nem ez a méretezés elve, hanem az elérhető légrésindukció.

69 VÉGE

Villamos gépek működése

Villamos gépek működése Villamos gépek működése Mágneses körök alapjai, többfázisú rendszerek Marcsa Dániel egyetemi tanársegéd E-mail: marcsad@sze.hu Széchenyi István Egyetem http://uni.sze.hu Automatizálási Tanszék http://automatizalas.sze.hu

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

Mágneses tér anyag kölcsönhatás leírása

Mágneses tér anyag kölcsönhatás leírása Anyagszerkezettan és anyagvizsgálat 2012/13 Mágneses anyagok Dr. Szabó Péter János szpj@eik.bme.hu Mágneses tér anyag kölcsönhatás leírása B = µ H B = µ µ H = µ H + M ) 0 r 0 ( 1 1 M = κh = Pi = P V V

Részletesebben

Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet

Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet A hallgatói útmutatóban vázolt program a csoport felkészültsége

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

VILLAMOS FORGÓGÉPEK. Forgó mozgás létesítése

VILLAMOS FORGÓGÉPEK. Forgó mozgás létesítése SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU VILLAMOS FORGÓGÉPEK Forgó mozgás létesítése Marcsa Dániel Villamos gépek és energetika 203/204 - őszi szemeszter Elektromechanikai átalakítás Villamos rendszer

Részletesebben

ELEKTROTECHNIKA II. ZH (2013-2014. 1. félév) A tanszék által a második zárthelyire kiadott adott ellenőrző kérdések

ELEKTROTECHNIKA II. ZH (2013-2014. 1. félév) A tanszék által a második zárthelyire kiadott adott ellenőrző kérdések ELEKTROTECHNIKA II. ZH (2013-2014. 1. félév) A tanszék által a második zárthelyire kiadott adott ellenőrző kérdések Szigetelések Igénybevételek: névleges feszültség, üzemi feszültség, tartós túlfeszültségek,

Részletesebben

Mágneses tér anyag kölcsönhatás leírása

Mágneses tér anyag kölcsönhatás leírása Anyagszerkezettan és anyagvizsgálat 2014/15 Mágneses anyagok Dr. Szabó Péter János szpj@eik.bme.hu Mágneses tér anyag kölcsönhatás leírása B H B H H M ) 0 1 M H V 1 r r 0 ( 1 Pi P V H : az anyagra ható

Részletesebben

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen: Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása

Részletesebben

Anyagtudomány MÁGNESES ANYAGOK GERZSON MIKLÓS

Anyagtudomány MÁGNESES ANYAGOK GERZSON MIKLÓS Anyagtudomány MÁGNESES ANYAGOK GERZSON MIKLÓS 1 mágneses pólusok (Föld, állandó mágnesek) pólusok nem szétválaszthatók történetük: Magnetosz Kréta Ókori Kína iránytű Gilbert: On the Magnet (1600) Oersted:

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket)

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket) Mágnesség Schay G. Magnesia Μαγνησία Itt találtak már az ókorban mágneses köveket (valószínű villámok áramának a tere mágnesezi fel őket) maghemit Köbös Fe 2 O 3 magnetit Fe 2 +Fe 3 +2O 4 mágnesvasérc

Részletesebben

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR VIANYSZEREŐ KÉPZÉS 2 0 5 MÁGNESES TÉR ÖSSZEÁÍTOTTA NAGY ÁSZÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Mágneses tér fogalma, jellemzői...3 A mágneses tér hatása az anyagokra...4 Elektromágneses indukció...6 Mozgási

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Vasmagok jellemzőinek mérése

Vasmagok jellemzőinek mérése Vasmagok jellemzőinek mérése 017.0.11. Összeállította: Mészáros András Műszerek és kellékek: Mérődoboz, Mérendő transzformátorok, Kondenzátorok 3 db, 0-4V toroid transzformátor, Hameg HM801 digitális multiméter

Részletesebben

2.Előadás ( ) Munkapont és kivezérelhetőség

2.Előadás ( ) Munkapont és kivezérelhetőség 2.lőadás (207.09.2.) Munkapont és kivezérelhetőség A tranzisztorokat (BJT) lineáris áramkörbe ágyazva "működtetjük" és a továbbiakban mindig követelmény, hogy a tranzisztor normál aktív tartományban működjön

Részletesebben

Vasmagok jellemzőinek mérése

Vasmagok jellemzőinek mérése Vasmagok jellemzőinek mérése 08.0.0. Összeállította: Mészáros András Műszerek és kellékek: Mérődoboz, Mérendő transzformátorok 3db, 0-4V toroid autótranszformátor, Hameg HM80 digitális multiméter, Hameg

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér Bevezetés az analóg és digitális elektronikába III. Villamos és mágneses tér Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos

Részletesebben

Elektrotechnika 9. évfolyam

Elektrotechnika 9. évfolyam Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

Időben állandó mágneses mező jellemzése

Időben állandó mágneses mező jellemzése Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű

Részletesebben

Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok

Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok Elektrotechnika 11/C Villamos áramkör A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

LI 2 W = Induktív tekercsek és transzformátorok

LI 2 W = Induktív tekercsek és transzformátorok Induktív tekercsek és transzformátorok A tekercsek olyan elektronikai alkatrészek, amelyek mágneses terükben jelentős elektromos energiát képesek felhalmozni. A mágneses tér a tekercset alkotó vezetéken

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? .. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.

Részletesebben

SUPERTECH LABORATÓRIUM VILLAMOS ENERGETIKA TANSZÉK BUDA PESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGY ETEM

SUPERTECH LABORATÓRIUM VILLAMOS ENERGETIKA TANSZÉK BUDA PESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGY ETEM Különleges felépítésű, nagyfordulatszámú, állandómágneses generátor tervezése és tesztelése Kohári Zalán BME Villamos Energetika Tanszék SUPERTECH LABORATÓRIUM VILLAMOS ENERGETIKA TANSZÉK BUDA PESTI MŰSZAKI

Részletesebben

Négypólusok helyettesítő kapcsolásai

Négypólusok helyettesítő kapcsolásai Transzformátorok Magyar találmány: Bláthy Ottó Titusz (1860-1939), Déry Miksa (1854-1938), Zipernovszky Károly (1853-1942), Ganz Villamossági Gyár, 1885. Felépítés, működés Transzformátor: négypólus. Működési

Részletesebben

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)

Részletesebben

XII. előadás április 29. tromos

XII. előadás április 29. tromos Bevezetés s az anyagtudományba nyba XII. előadás 2010. április 29. Ferroelektr tromos kerámi miák Ferroelektromosság: elektromos tér hiányában spontán polarizáltak (a ferromágneses viselkedés elektromos

Részletesebben

Mágneses tulajdonságok

Mágneses tulajdonságok Anyagismeret 2018/19 Mágneses tulajdonságok Lágy- és keménymágneses anyagok Dr. Mészáros István meszaros@eik.bme.hu Alkalmazási területek Jelentőségük (lágy: 7-8. 10 6 tonna/év) Ókori Kína ( II.sz.) Iránytű

Részletesebben

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható:

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható: 1. Értelmezze az áramokkal kifejezett erőtörvényt. Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. Az I 2 áramot vivő vezetőre ható F 2 erő fellépését

Részletesebben

MIB02 Elektronika 1. Passzív áramköri elemek

MIB02 Elektronika 1. Passzív áramköri elemek MIB02 Elektronika 1. Passzív áramköri elemek ELLENÁLLÁSOK -állandóértékű ellenállások - változtatható ellenállások - speciális ellenállások (PTK, NTK, VDR) Állandó értékű ellenállás Felépítés: szigetelő

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! 1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Mérési útmutató Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika c. tárgy 7. sz. laboratóriumi gyakorlatához

Mérési útmutató Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika c. tárgy 7. sz. laboratóriumi gyakorlatához BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Mérési útutató Az önindukciós és kölcsönös indukciós tényező eghatározása Az Elektrotechnika

Részletesebben

Mágnesség mágnes ferromágneses ferrimágneses domé- nekben remanencia koercitív

Mágnesség mágnes ferromágneses ferrimágneses domé- nekben remanencia koercitív Mágnesség az elektromágnesség egyik megjelenése. A 19. században tárták fel, hogy az elektromos és a mágneses jelenségek szoros kapcsolatban állnak, egymástól elválaszthatatlanok. Mozgó elektromos töltések

Részletesebben

Az anyagok mágneses tulajdonságai

Az anyagok mágneses tulajdonságai BME, Anyagtudomány és Technológia Tanszék Dr. Mészáros István Mágneses tulajdonságok, mágneses anyagok Előadásvázlat 2013. 1 Az anyagok mágneses tulajdonságai Alkalmazási területek Jelentőségük (lágy:

Részletesebben

Zárt mágneskörű induktív átalakítók

Zárt mágneskörű induktív átalakítók árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre

Részletesebben

Anyagszerkezettan és anyagvizsgálat 2015/16. Mágneses anyagok. Dr. Szabó Péter János

Anyagszerkezettan és anyagvizsgálat 2015/16. Mágneses anyagok. Dr. Szabó Péter János Anyagszerkezettan és anyagvizsgálat 2015/16 Mágneses anyagok Dr. Szabó Péter János szpj@eik.bme.hu Mágneses tér anyag kölcsönhatás leírása B H B M r 0 H r H 1 1 V 0 ( P H i M ) 1 P V H : az anyagra ható

Részletesebben

Nanokristályos lágymágneses vasmagok minősitése

Nanokristályos lágymágneses vasmagok minősitése Nanokristályos lágymágneses vasmagok minősitése 1. Kvázi DC hiszterézis görbe felvétele A berendezést főleg extrém lágymágneses anyagokból (Hc < 1 A/m) készült toroid minták tesztelésére fejlesztettük

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

Váltakozó áramú rendszerek

Váltakozó áramú rendszerek Váltakozó áramú rendszerek BMEVIVEM111 Berta, István Kádár, István Szabó, László Váltakozó áramú rendszerek írta Berta, István, Kádár, István, és Szabó, László Publication date 2012 Szerzői jog 2011 Tartalom

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

MÁGNESESSÉG. Türmer Kata

MÁGNESESSÉG. Türmer Kata MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak

Részletesebben

Mágneses telítődésen alapuló impulzus kompresszió vizsgálata.

Mágneses telítődésen alapuló impulzus kompresszió vizsgálata. Mágneses telítődésen alapuló impulzus kompresszió vizsgálata. I. Excimer lézerek gázkisüléssel történő gerjesztése mágneses impulzus kompresszió elvén működő gerjesztő körökkel Az excimer (excited dimer)

Részletesebben

Az anyagok mágneses tulajdonságai

Az anyagok mágneses tulajdonságai Az anyagok mágneses tulajdonságai Alkalmazási területek Jelentőségük (lágy: n*0 6 tonna/év, kemény: n*0 3 tonna/év) Ókori Kína ( II.sz.) Iránytű 880 Martenzites állandómágnes 900 Fe - Si ötvözet 93 Fe

Részletesebben

László István, Fizika A2 (Budapest, 2013) Előadás

László István, Fizika A2 (Budapest, 2013) Előadás László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben

Részletesebben

Mágneses körök. Fizikai alapok. Mágneses tér

Mágneses körök. Fizikai alapok. Mágneses tér Fizikai alapok Mágneses tér Mágneses körök Az elektromosan töltött részecskék között az elektrosztatikus kölcsönhatás mellett mágneses kölcsönhatás is létezik. Ez a kölcsönhatás kapcsolatban áll a töltött

Részletesebben

Villamos gépek I. Egyfázisú transzformátor 3 1. A vasmag funkciói 3 2. Növekedési törvények 4 3. Felépítés: vasmag kialakítása (lemezelés,

Villamos gépek I. Egyfázisú transzformátor 3 1. A vasmag funkciói 3 2. Növekedési törvények 4 3. Felépítés: vasmag kialakítása (lemezelés, Villamos gépek I. Egyfázisú transzformátor 3 1. A vasmag funkciói 3 2. Növekedési törvények 4 3. Felépítés: vasmag kialakítása (lemezelés, lépcsőzés), tekercselések (hengeres, tárcsás) 9 4. Fő- és szórt

Részletesebben

TRIM-3. Transzformátor bekapcsolási. BUDAPEST, 2001. november

TRIM-3. Transzformátor bekapcsolási. BUDAPEST, 2001. november TRIM-3 T Í P U S Ú Transzformátor bekapcsolási áramlökés csökkentő készülék Elvi működési leírás BUDPEST, 2001. november 1 Tartalomjegyzék 1 HÁROMFÁZISÚ TRNSZFORMÁTOROK BEKPCSOLÁSI ÁRMLÖKÉSÉNEK CSÖKKENTÉSE...

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek: 3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója

Részletesebben

ELEKTROTECHNIKA I. ZH (2013-2014. 1. félév) A tanszék által az első zárthelyire kiadott adott ellenőrző kérdések

ELEKTROTECHNIKA I. ZH (2013-2014. 1. félév) A tanszék által az első zárthelyire kiadott adott ellenőrző kérdések ELEKTROTECHNIKA I. ZH (2013-2014. 1. félév) A tanszék által az első zárthelyire kiadott adott ellenőrző kérdések Az elektrotechnika alapjai 1. Történeti áttekintés. A villamosság, mint jel- és energiahordozó.

Részletesebben

Nagyon sokféle berendezés van, ami villamos energiát alakít mechanikai energiává és

Nagyon sokféle berendezés van, ami villamos energiát alakít mechanikai energiává és 1. fejezet Az elektromechanikai energiaátalakítás Nagyon sokféle berendezés van, ami villamos energiát alakít mechanikai energiává és fordítva. Ezeknek a berendezéseknek a felépítése különböző lehet, a

Részletesebben

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás

Részletesebben

Vajda István: Forgó mozgás létesítése. Elektrotechnika, BME VIK, 2010 ősz. Vajda István: Forgó mozgás létesítése. Elektrotechnika, BME VIK, 2010 ősz

Vajda István: Forgó mozgás létesítése. Elektrotechnika, BME VIK, 2010 ősz. Vajda István: Forgó mozgás létesítése. Elektrotechnika, BME VIK, 2010 ősz 2 A NYOMATÉKKÉPZÉS Reluktancia és hiszterézis Reluktancia- és hiszterézisnyomaték keletkezése és számítása Olvasmány Ha az egyik oldal, pl. a forgórész kiálló pólusos (a ábra), akkor forgás közben az állórésztekercs

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

EHA kód:...2009-2010-1f. As,

EHA kód:...2009-2010-1f. As, MŰSZAKI FIZIKA I. RMINB135/22/v/4 1. ZH A csoport Név:... Mérnök Informatikus EHA kód:...29-21-1f ε 1 As = 9 4π 9 Vm µ = 4π1 7 Vs Am 1) Két ± Q = 3µC nagyságú töltés közti távolság d = 2 cm. Határozza

Részletesebben

Elektrotechnika. 11. előadás. Összeállította: Dr. Hodossy László

Elektrotechnika. 11. előadás. Összeállította: Dr. Hodossy László 11. előadás Összeállította: Dr. Hodossy László 1. Szerkezeti felépítés 2. Működés 3. Működés 4. Armatúra reakció 5. Armatúra reakció 6. Egyenáramú gépek osztályozása 7. Külső 8. Külső. 9. Soros. 10. Soros

Részletesebben

Mérési útmutató. A transzformátor működésének vizsgálata Az Elektrotechnika tárgy laboratóriumi gyakorlatok 3. sz. méréséhez

Mérési útmutató. A transzformátor működésének vizsgálata Az Elektrotechnika tárgy laboratóriumi gyakorlatok 3. sz. méréséhez BDPESTI MŰSZKI ÉS GZDSÁGTDOMÁNYI EGYETEM VILLMOSMÉRNÖKI ÉS INFORMTIKI KR VILLMOS ENERGETIK TNSZÉK Mérési útmutató transzformátor működésének vizsgálata z Elektrotechnika tárgy laboratóriumi gyakorlatok

Részletesebben

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben

ÁRLISTA. Euromagnet Hungary Kft Budapest, Halom u. 20. Telefon: ,

ÁRLISTA. Euromagnet Hungary Kft Budapest, Halom u. 20. Telefon: , ÁRLISTA 2016 Euromagnet Hungary Kft. 1102 Budapest, Halom u. 20. Telefon: 260-0799, 257-7119 E-mail: info@euromagnet.hu SKYPE: eurobarbi www.euromagnet.hu Az árváltoztatás jogát fenntartjuk! MÁGNESEZÉSI

Részletesebben

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

Hall-szondák alkalmazásai

Hall-szondák alkalmazásai Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet Mikro- és nanotechnika (KMENT14TND, KMENT14TLD) Laboratóriumi gyakorlatok Mérési útmutató Hall-szondák alkalmazásai

Részletesebben

Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel

Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel Gyakorlat anyag Veszely February 13, 2012 1 Koaxiális kábel d b a Figure 1: Koaxiális kábel A 1 ábrán látható koaxiális kábel adatai: a = 7,2 mm, b = 4a = 8,28 mm, d = 0,6 mm, ε r = 3,5; 10 4 tanδ = 80,

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók DC motorok 1. rész egyetemi docens - 1 - Főbb típusok: Elektromos motorok Egyenáramú motor DC motor. Kefenélküli egyenáramú motor BLDC motor. Indukciós motor AC motor aszinkron

Részletesebben

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -

Részletesebben

Optikai alapfogalmak. Az elektromágneses spektrum. n = c vákuum /c közeg. Fény: transzverzális elektromágneses hullám. (n 1 n 2 ) 2 R= (n 1 + n 2 ) 2

Optikai alapfogalmak. Az elektromágneses spektrum. n = c vákuum /c közeg. Fény: transzverzális elektromágneses hullám. (n 1 n 2 ) 2 R= (n 1 + n 2 ) 2 Optikai alapfogalmak Az anyag és s a fény f kölcsk lcsönhatása Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Visszaverődés, reflexió Törés, kettőstörés, polarizáció Elnyelés, abszorpció,

Részletesebben

Hidak Darupályatartók Tornyok, kémények (szélhatás) Tengeri építmények (hullámzás)

Hidak Darupályatartók Tornyok, kémények (szélhatás) Tengeri építmények (hullámzás) Dr. Németh György Szerkezetépítés II. 1 A fáradt törés ismétlődő terhek hatására a statikus törőszilárdság feszültségszintje alatt feszültségcsúcsoknál lokális képlékeny alakváltozásból indul ki általában

Részletesebben

Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító.

Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. 1. Értelmezze az áramokkal kifejezett erőtörvényt. F=mű0 I1I2 l/(2pi a) Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. Az I2 áramot vivő vezetőre

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

Mérésadatgyűjtés, jelfeldolgozás.

Mérésadatgyűjtés, jelfeldolgozás. Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások

Részletesebben

Elektromechanika. 4. mérés. Háromfázisú aszinkron motor vizsgálata. 1. Rajzolja fel és értelmezze az aszinkron gép helyettesítő kapcsolási vázlatát.

Elektromechanika. 4. mérés. Háromfázisú aszinkron motor vizsgálata. 1. Rajzolja fel és értelmezze az aszinkron gép helyettesítő kapcsolási vázlatát. Elektromechanika 4. mérés Háromfázisú aszinkron motor vizsgálata 1. Rajzolja fel és értelmezze az aszinkron gép helyettesítő kapcsolási vázlatát. U 1 az állórész fázisfeszültségének vektora; I 1 az állórész

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása

Részletesebben

Ötvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával

Ötvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával AGY 4, Kecskemét Ötvözetek mágneses tulajdonságú fázsanak vzsgálata a hperbolkus modell alkalmazásával Dr. Mészáros István egyetem docens Budapest Műszak és Gazdaságtudomány Egyetem Anyagtudomány és Technológa

Részletesebben

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.)

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.) Elektotechnikai alapismeetek Mágneses té 14 Mintapéldák 1 feladat: Az ába szeinti homogén anyagú zát állandó keesztmetszetű köben hatáozzuk meg a Φ B és étékét! Ismet adatok: a = 11 cm A = 4 cm μ = 8 I

Részletesebben

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind

Részletesebben

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz Villamos mérések Analóg (mutatós) műszerek Készítette: Füvesi Viktor doktorandusz rodalom UrayVilmos Dr. Szabó Szilárd: Elektrotechnika o.61-79 1 Alapfogalmak Mutatós műszerek Legegyszerűbbek Közvetlenül

Részletesebben

Nagyállattenyésztési és Termeléstechnológiai Tanszék VILLAMOSÍTÁS. Gépjármű-villamosság. Készítette: Dr.Desztics Gyula

Nagyállattenyésztési és Termeléstechnológiai Tanszék VILLAMOSÍTÁS. Gépjármű-villamosság. Készítette: Dr.Desztics Gyula Nagyállattenyésztési és Termeléstechnológiai Tanszék VILLAMOSÍTÁS Gépjármű-villamosság Készítette: Dr.Desztics Gyula Járművek elektromos berendezései A traktorok és közúti járművek villamos berendezései

Részletesebben

HISZTERÉZISMOTOR ELLENŐRZŐ ÉS TERVEZŐ SZÁMÍTÁSA

HISZTERÉZISMOTOR ELLENŐRZŐ ÉS TERVEZŐ SZÁMÍTÁSA Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Villamos Energetika Tanszék Szalay Dániel HISZTERÉZISMOTOR ELLENŐRZŐ ÉS TERVEZŐ SZÁMÍTÁSA KONZULENS Dr. Vajda István Összefoglaló

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő

Részletesebben

Az intenzív naptevékenység hatása a villamosenergiarendszerre. A napviharok és a geomágneses indukció

Az intenzív naptevékenység hatása a villamosenergiarendszerre. A napviharok és a geomágneses indukció Az intenzív naptevékenység hatása a villamosenergiarendszerre 2012. október 25-én rendezte meg az Energetikai Szakkollégium őszi, Jubileumi félévének harmadik előadását. Az előadás két részből állt: az

Részletesebben

Az elektromos töltések eloszlása atomokban, molekulákban, ionokon belül és a vegyületekben. Vezetők, félvezetők és szigetelők molekuláris szerkezete.

Az elektromos töltések eloszlása atomokban, molekulákban, ionokon belül és a vegyületekben. Vezetők, félvezetők és szigetelők molekuláris szerkezete. Szakképesítés: Log Autószerelő - 54 525 02 iszti Tantárgy: Elektrotechnikaelektronika Modul: 10416-12 Közlekedéstechnikai alapok Osztály: 11.a Évfolyam: 11. 36 hét, heti 2 óra, évi 72 óra Ok Dátum: 2013.09.21

Részletesebben

Mágnesség. 1. Stacionárius áramok mágneses mezeje. Oersted (1820): áramvezet drót közelében a mágnest az áram irányára

Mágnesség. 1. Stacionárius áramok mágneses mezeje. Oersted (1820): áramvezet drót közelében a mágnest az áram irányára 1 STACIONÁRIUS ÁRAMOK MÁGNESES MEZEJE Mágnesség 1. Stacionárius áramok mágneses mezeje Oersted (1820): áramvezet drót közelében a mágnest az áram irányára mer legesen áll be elektromos töltések áramlása

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

Villamos gépek. Villamos forgógépek. Forgógépek elvi felépítése

Villamos gépek. Villamos forgógépek. Forgógépek elvi felépítése Villamos forgógépek Forgógépek elvi felépítése A villamos forgógépek két fő része: az álló- és a forgórész. Az állórészen elhelyezett tekercsek árama mágneses teret létesít. Ez a mágneses tér a mozgási

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

6. fejezet: Transzformátorok

6. fejezet: Transzformátorok 6. Fejezet Transzformátorok Transzformátorok/1 TARTALOMJEGYZÉK 6. FEJEZET TRANSZFORMÁTOROK 1 6.1. Egyfázisú transzformátorok 4 6.1.1. Működési elv és helyettesítő kapcsolás 4 6.1.. Fázorábra. Feszültségkényszer.

Részletesebben