Méret: px
Mutatás kezdődik a ... oldaltól:

Download ""

Átírás

1 Egzotikus elektromágneses jelenségek alacsony hőmérsékleten Mihály György BME Fizikai Intézet Hall effektus Edwin Hall és az összenyomhatatlan elektromosság Kvantum Hall effektus Mágneses áram anomális Hall effektus spin forgatónyomaték Spin-polarizáció mérése Andrejev reflexió Mágneses mikroszkópia nanométeres tartományban

2 Hall effektus Hall jelenség Edwin Hall ( ) American Journal of Mathematics, vol 2 (1879) Hall-állandó R H j E x y B z 1 ne

3 Hall effektus Hall jelenség: Lorentz erő Edwin Hall ( ) American Journal of Mathematics, vol 2 (1879) B Lorentz erő: r F e r r r [ E+ v B] Prof. Rowland hipotézise

4 Hall effektus Hall jelenség: Lorentz erő Edwin Hall ( ) American Journal of Mathematics, vol 2 (1879) B E y Edwin Hall elképzelése Lorentz erő: Hall-állandó r r r [ E+ v B] r r r F e j nev R H j E x y B z 1 ne Prof. Rowland hipotézise

5 Összenyomhatatlan elektromosság - kvantummechanika Shcrödinger egyenlet 2 h 2 ψ εψ 2m síkhullám 1 ψ( r) V e ikr energia impulzus ε( k) 2 k 2 h 2m p hk A hullámszám lehetséges értékei ε k k 2π n L 2π k L

6 Összenyomhatatlan elektromosság - kvantummechanika Shcrödinger egyenlet 2 h 2 ψ εψ 2m síkhullám 1 ψ( r) V e ikr energia impulzus ε( k) 2 k 2 h 2m p hk Sok elektron Pauli elv Alapállapot ε k ε F εf 5 8eV 2π L k F k

7 Összenyomhatatlan elektromosság - kvantummechanika Shcrödinger egyenlet 2 h 2 ψ εψ 2m síkhullám 1 ψ( r) V e ikr energia impulzus ε( k) 2 k 2 h 2m p hk Alapállapot Ugyanannyi elektron kisebb helyen: sokkal nagyobb kinetikus energia Edwin Hall elképzelése ε k ε F ε F ε F Prof. Rowland hipotézise 2π L k F k

8 Kvantum Hall effektus Klaus von Klitzing Nobel-díj, 1985 T8 mk K. von Klitzing, Rev. Mod. Phys 58, 519 (1986)

9 Kvantum Hall effektus Henry Augustus Rowland ( ) Prof. Rowland hipotézise B K. von Klitzing, Rev. Mod. Phys 58, 519 (1986)

10 Kvantum Hall effektus V bal V jobb V bal V jobb B Az áramot ellentétes irányban szállító elektronok nem találkoznak K. von Klitzing, Rev. Mod. Phys 58, 519 (1986)

11 Kvantum Hall effektus M. Büttiker, PRB 38, 9375 (1988) N. B. Zhitenev et al. Nature 404, 473 (2000) B

12 Paul Dirac 1928 relativisztikus kvantummechanika Nobel-díj 1933 Elektron spin spin Hall effektus kísérleti kimutatása, 2004

13 Spin Hall effektus spin Hall effektus spin állapot szerint kétféle elektron, : eltérő terjedés a kristályban Mágneses minta Bordács Sándor, BME M A mágnesezettség meghatározása optikai Kerr-forgatás mérésével Nincs mérhető feszültség, de a mágneses jel kimutatható (In,Mn)As Y.K. Kato et al., Scienceexpress 11 Nov.(2004)

14 Spin Hall effektus Bordács Sándor, BME Mágneses minta M MOKE kísérleti berendezés Kézsmárki István Bordács Sándor A mágnesezettség meghatározása optikai Kerr-forgatás mérésével Szupravezető mágnes B max 14 T Mágnesezettség felbontás 5x10-9 emu (In,Mn)As

15 Anomális Hall effektus spin Hall effektus spin állapot szerint kétféle elektron, : eltérő terjedés a kristályban Csontos Miklós, BME Mágneses minta nem egyforma spin-betöltés: keresztirányú feszültség mérhető M (In,Mn)As Nincs mérhető feszültség, de a mágneses jel kimutatható Y.K. Kato et al., Scienceexpress 11 Nov.(2004)

16 Elektromos térrel kontrollált mágnesség 1. a mágneses csatolást a lyukak közvetítik 2. a lyukak száma FET szerkezetben változtatható Elektromosan vezérelt mágneses memória Kontroll -- kapufeszültség Detektálás -- anomális Hall H. Ohno et al., Nature 408, 944(2000) D. Chiba et al., Science 301, 943 (2003)

17 Spintronika Nobel díj 2007 A.Fert, P. Grünberg MRAM (Magnetic Random Acces Memory) non-volatile 1000-szer gyorsabb írás, mint a flash memory-ban adatok elérése 1/10000 része, mint a HDD-ben bit line y x word line A bit line áramszintje alacsonyabb, mint ami szabad réteg mágnesezettségének átfordításához szükséges kivéve, ha a word line -ra kapcsolt áram tere

18 Spin fogatónyomaték Mágneses áram!!! CoFeB MnO CoFeB Yousa et al., Nature Materials 3, 868 (2004)

19

20 Andrejev spektroszkópia az elektronok spin polarizációjának mérése Normal elektron Cooper pár konverzió Energia paramágneses fém szupravezető szupravezető polarizált elektronok egyrészecske állapotok E F Cooper-pár

21 Andrejev spektroszkópia az elektronok spin polarizációjának mérése Normal elektron Cooper pár konverzió G Energia paramágneses fém szupravezető szupravezető polarizált elektronok egyrészecske állapotok V/e E F Cooper-pár

22 Andrejev reflexió A.F. Andrejev: JETP (1964) Néhány nanométeres kontaktus Nb tű Halbritter András Geresdi Attila Mágneses félvezető

23 Spin-polarizáció (In,Mn)Sb mágneses félvezetőben In Sb Mn carrier mediated magnetic coupling M. Csontos et al., Nature Materials 4, 447 (2005) M. Csontos et al., Phys. Rev. Lett. 95, (2005) A. Geresdi et al., Nano Letters (2008) G. Mihály et al., Phys. Rev. Lett, March (2008)

24 Mágneses mikroszkópia Spin diffúziós hossz fém Mágneses fém P exp Po Dτs l Geresdi Attila, BME Mágneses szerkezetek meghatározása nanométeres méretskálán

25 Konklúzió A klasszikus gondolatment alapján megértettnek hitt jelenség (pl. Hall effektus) igazi magyarázata már kvantumfizikai szemléletet feltételez. Az alacsony hőmérsékleteken tapasztalt meglepő jelenségek (szupravezetés, kvantum Hall effektus) megértése sokszor egyszerűbb, mint a megszokott tulajdonságok korrekt leírása. Az újonnan megfigyelt spin-függő jelenségek (pl. az anomális Hall-effektus mágneses félvezetőkben), igen gyorsan a spintronikai eszközök működési elvévé válnak. Az Andrejev kísérletek felfedik az áram mágnességét. Ez a mennyiség meghatározó a nanoméretű mágneses memóriák írásánál spin-forgatónyomaték.

26 Munkatársak Kézsmárki István Halbritter András Csonka Szabolcs Csontos Miklós Demkó László Bordács Sándor Makk Péter Geresdi Attila

27 Ideális vezetés Shcrödinger egyenlet 2 h 2 ψ εψ 2m síkhullám 1 ψ( r) V e ikr energia impulzus ε( k) 2 k 2 h 2m p hk Áram Sebesség Elektronok sűrűsége j nev v p m 1 n 2 L k h 1 m h ev ε 2 k ε k L π ev ε k ε F 2π L k F k

28 Ideális vezetés Shcrödinger egyenlet 2 h 2 ψ εψ 2m síkhullám 1 ψ( r) V e ikr energia impulzus ε( k) 2 k 2 h 2m p hk Áram j nev Sebesség Elektronok sűrűsége v p m 1 n 2 L k h 1 m h ev ε 2 k ε k L π 2 2e j V G0 h kΩ

29 Ideális vezetés Shcrödinger egyenlet 2 h 2 ψ εψ 2m síkhullám 1 ψ( r) V e ikr energia impulzus ε( k) 2 k 2 h 2m p hk 2 2e j V G0 h kΩ B.J. van Wees et al., PRL 60, 848 (1988) A vezetési csatornák száma lépésekben vátozik a keresztmetszet növelésével

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

ÓRIÁS MÁGNESES ELLENÁLLÁS

ÓRIÁS MÁGNESES ELLENÁLLÁS ÓRIÁS MÁGNESES ELLENÁLLÁS Modern fizikai kísérletek szemináriúm Ariunbold Kherlenzaya Tartalomjegyzék Mágneses ellenállás Óriás mágneses ellenállás FM/NM multirétegek elektromos transzportja Kísérleti

Részletesebben

Spin polarizáció nanoszerkezetekben

Spin polarizáció nanoszerkezetekben Spin polarizáció nanoszerkezetekben OTKA nyilvántartási szám: NK72916, futamidő: 2008. április 1 2012. március 31. A projekt keretében összesen 15 publikáció készült. Nívós nemzetközi folyóiratokban jelent

Részletesebben

Mágnesség és elektromos vezetés kétdimenziós

Mágnesség és elektromos vezetés kétdimenziós Mágnesség és elektromos vezetés kétdimenziós molekulakristályokban Jánossy András Budapesti Műszaki és Gazdaságtudományi Egyetem Fizikai Intézet, Fizika Tanszék Kondenzált Anyagok MTA-BME Kutatócsoport

Részletesebben

A grafén fizikája. Cserti József. ELTE, TTK Komplex Rendszerek Fizikája Tanszék

A grafén fizikája. Cserti József. ELTE, TTK Komplex Rendszerek Fizikája Tanszék Cserti József ELTE, TTK Komplex Rendszerek Fizikája Tanszék A grafén fizikája Az előadásról cikk jelent meg a Természet Világa 2009. januári számában Atomcsill, 2009. január 29, ELTE, TTK, Fizikai Intézet,

Részletesebben

Szupravezetés. Mágneses tér mérő szenzorok (DC, AC) BME, Anyagtudomány és Technológia Tanszék. Dr. Mészáros István. Előadásvázlat 2013.

Szupravezetés. Mágneses tér mérő szenzorok (DC, AC) BME, Anyagtudomány és Technológia Tanszék. Dr. Mészáros István. Előadásvázlat 2013. BME, Anyagtudomány és Technológia Tanszék Dr. Mészáros István Szupravezetés Előadásvázlat 2013. Mágneses tér mérő szenzorok (DC, AC) Erő ill. nyomaték mérésen alapuló eszközök Tekercs (induktív) Magnetorezisztív

Részletesebben

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Bordács Sándor doktorjelölt Túl l a távoli t infrán: THz spektroszkópia pia az anyagtudományban nyban Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Terahertz sugárz rzás THz tartomány: frekvencia:

Részletesebben

A nanotechnológia mikroszkópja

A nanotechnológia mikroszkópja 1 Havancsák Károly, ELTE Fizikai Intézet A nanotechnológia mikroszkópja EGIS 2011. június 1. FEI Quanta 3D SEM/FIB 2 Havancsák Károly, ELTE Fizikai Intézet A nanotechnológia mikroszkópja EGIS 2011. június

Részletesebben

Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ

Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ 20/3. sz. mérés Villamos mennyiségek mérése Mágneses mennyiségek Hall

Részletesebben

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)

Részletesebben

Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél

Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél Fémgőz és plazma Buza Gábor, Bauer Attila Messer Innovation Forum 2016. december

Részletesebben

Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata

Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata Ph. D. házi védés Rácz Péter Témavezető: Dombi Péter Felületi plazmonok Propagáló felületi plazmon Lokalizált felületi plazmon

Részletesebben

Jahn Teller-effektus Cs 3 C 60 -ban. Pergerné Klupp Gyöngyi. Matus Péter, Kamarás Katalin MTA SZFKI

Jahn Teller-effektus Cs 3 C 60 -ban. Pergerné Klupp Gyöngyi. Matus Péter, Kamarás Katalin MTA SZFKI Jahn Teller-effektus Cs 3 C 60 -ban Pergerné Klupp Gyöngyi Matus Péter, Kamarás Katalin MTA SZFKI Jahn Teller-effektus Cs 3 C 60 -ban Tartalom 2 Bevezetés az A 3 C 60 (A = K, Rb, Cs) alkálifém-fulleridekről

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Magnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben

Magnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben Magnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben Jól ismert, hogy az elektronok az elektromos töltés mellett spinnel is rendelkeznek, mely számos érdekes jelenséget, többek között bizonyos

Részletesebben

Hibrid mágneses szerkezetek

Hibrid mágneses szerkezetek Zárójelentés Hibrid mágneses szerkezetek OTKA T046267 Négy és fél év időtartamú pályázatunkban két fő témakörben végeztünk intenzív elméleti kutatásokat: (A) Mágneses nanostruktúrák ab initio szintű vizsgálata

Részletesebben

A hőterjedés dinamikája vékony szilikon rétegekben. Gambár Katalin, Márkus Ferenc. Tudomány Napja 2012 Gábor Dénes Főiskola

A hőterjedés dinamikája vékony szilikon rétegekben. Gambár Katalin, Márkus Ferenc. Tudomány Napja 2012 Gábor Dénes Főiskola A hőterjedés dinamikája vékony szilikon rétegekben Gambár Katalin, Márkus Ferenc Tudomány Napja 2012 Gábor Dénes Főiskola Miről szeretnék beszélni: A kutatás motivációi A fizikai egyenletek (elméleti modellek)

Részletesebben

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor Mi az áramerősség fogalma? (1 helyes válasz) 1. 1:56 Normál Egységnyi idő alatt áthaladó töltések száma. Egységnyi idő alatt áthaladó feszültségek száma. Egységnyi idő alatt áthaladó áramerősségek száma.

Részletesebben

Ponthibák azonosítása félvezető szerkezetekben hiperfinom tenzor számításával

Ponthibák azonosítása félvezető szerkezetekben hiperfinom tenzor számításával Ponthibák azonosítása félvezető szerkezetekben hiperfinom tenzor számításával (munkabeszámoló) Szász Krisztián MTA Wigner SZFI, PhD hallgató 2013.05.07. Szász Krisztián Ponthibák azonosítása 1/ 13 Vázlat

Részletesebben

Aktuátorok korszerű anyagai. Készítette: Tomozi György

Aktuátorok korszerű anyagai. Készítette: Tomozi György Aktuátorok korszerű anyagai Készítette: Tomozi György Technológiai fejlődés iránya Mikro nanotechnológia egyre kisebb aktuátorok egyre gyorsabb aktuátorok nem feltétlenül villamos, hanem egyéb csatolás

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán

Részletesebben

Vezetési jelenségek, vezetőanyagok

Vezetési jelenségek, vezetőanyagok Anyagszerkezettan és anyagvizsgálat 2015/16 Vezetési jelenségek, vezetőanyagok Dr. Szabó Péter János szpj@eik.bme.hu Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: Vezetők

Részletesebben

Vezetési jelenségek, vezetőanyagok. Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék:

Vezetési jelenségek, vezetőanyagok. Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: nyagtudomány 2014/15 Vezetési jelenségek, vezetőanyagok Dr. Szabó Péter János szpj@eik.bme.hu Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: Vezetők fémek ötvözetek elektrolitok

Részletesebben

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója?

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója? 1. Prefix jelentések. 10 1 deka 10-1 deci 10 2 hektó 10-2 centi 10 3 kiló 10-3 milli 10 6 mega 10-6 mikró 10 9 giga 10-9 nano 10 12 tera 10-12 piko 10 15 peta 10-15 fento 10 18 exa 10-18 atto 2. Mi alapján

Részletesebben

vizsgálata többszintű modellezéssel

vizsgálata többszintű modellezéssel Mágneses nanoszerkezetek elméleti vizsgálata többszintű modellezéssel Szunyogh László BME TTK Fizikai Intézet Elméleti Fizika Tanszék ELFT Anyagtudományi és Diffrakciós Szakcsoportjának Őszi Iskolája,

Részletesebben

Zitterbewegung. általános elmélete. Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék

Zitterbewegung. általános elmélete. Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék A Zitterbewegung általános elmélete Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék 1. Mi a Zitterbewegung? A Zitterbewegung általános elmélete 2. Kvantumdinamika Heisenberg-képben

Részletesebben

Miért vonzza a vegyészt a mágnes? Németh Zoltán, Magkémiai Laboratórium, ELTE Alkímia ma - 2011.03.31.

Miért vonzza a vegyészt a mágnes? Németh Zoltán, Magkémiai Laboratórium, ELTE Alkímia ma - 2011.03.31. Miért vonzza a vegyészt a mágnes? Németh Zoltán, Magkémiai Laboratórium, ELTE Alkímia ma - 2011.03.31. Mítosz Magnesz görög pásztor az Ida-hegyen sétálgatva odatapadt a földhöz vastalpú szandáljával /

Részletesebben

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( ) a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

Koherens lézerspektroszkópia adalékolt optikai egykristályokban

Koherens lézerspektroszkópia adalékolt optikai egykristályokban Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes

Részletesebben

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós Alapjai, tulajdonságai, mérése Kellermayer Miklós Fotolumineszcencia Radiolumineszcencia Fotolumineszcencia Radiolumineszcencia Aurora borrealis (sarki fény) Biolumineszcencia GFP-egér Biolumineszcencia

Részletesebben

BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz

BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz Az anyag szerveződési formái Ebben a részben bemutatjuk az anyag elemi építőköveinek sokszerű kapcsolódási formáit, amelyek makroszkopikusan

Részletesebben

XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN

XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN 2007. február 6. 1 Pálinkás József: Fizika 2. XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN Bevezetés: Az előző fejezetekben megismertük, hogy a kvantumelmélet milyen jól leírja az atomok és a molekulák felépítését.

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

Villamosipari anyagismeret. Program, követelmények ősz

Villamosipari anyagismeret. Program, követelmények ősz Villamosipari anyagismeret Program, követelmények 2015. ősz I. félév: 2 óra előadás, vizsga II. félév: 1 óra labor, évközi jegy* Követelmények: Előadás látogatása kötelező; ellenőrzése (katalógus) minimum

Részletesebben

WOLFGANG PAULI ÉS AZ ANYAGTUDOMÁNY KROÓ NORBERT MAGYAR TUDOMÁNYOS AKADÉMIA ÓBUDAI EGYETEM,2010.04.23

WOLFGANG PAULI ÉS AZ ANYAGTUDOMÁNY KROÓ NORBERT MAGYAR TUDOMÁNYOS AKADÉMIA ÓBUDAI EGYETEM,2010.04.23 WOLFGANG PAULI ÉS AZ ANYAGTUDOMÁNY KROÓ NORBERT MAGYAR TUDOMÁNYOS AKADÉMIA ÓBUDAI EGYETEM,2010.04.23 Minden részecske rendelkezik egy furcsa tulajdonsággal, ez a spinje. Mivel ez úgy viselkedik, mint az

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 10. Elektrooptika, nemlineáris optika, kvantumoptika, lézerek Cserti József, jegyzet, ELTE, 2007. Az elektrooptika, a nemlineáris optikai és az

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra

Részletesebben

Anyagos rész: Lásd: állapotábrás pdf. Ha többet akarsz tudni a metallográfiai vizsgálatok csodáiról, akkor: http://testorg.eu/editor_up/up/egyeb/2012_01/16/132671554730168934/metallografia.pdf

Részletesebben

SZENZOROK ÉS MIKROÁRAMKÖRÖK

SZENZOROK ÉS MIKROÁRAMKÖRÖK SZENZOROK ÉS MIKROÁRAMKÖRÖK 12. ELŐADÁS: MÁGNESES ÉRZÉKELŐK II 2014/2015 tanév 2. félév 1 1. Hall érzékelő alkalmazások. 2. Félvezető magnetorezisztor-érzékelők. 3. Ferromágneses alapú érzékelők: aniztróp

Részletesebben

Nanoskálájú határfelületi elmozdulások és alakváltozások vizsgálata szinkrotron- és neutronsugárzással. Erdélyi Zoltán

Nanoskálájú határfelületi elmozdulások és alakváltozások vizsgálata szinkrotron- és neutronsugárzással. Erdélyi Zoltán Nanoskálájú határfelületi elmozdulások és alakváltozások vizsgálata szinkrotron- és neutronsugárzással Erdélyi Zoltán Debreceni Egyetem, Szilárdtest Fizika Tanszék Erdélyi Zoltán ESS minikonferencia 1

Részletesebben

MIKROELEKTRONIKAI ÉRZÉKELŐK I

MIKROELEKTRONIKAI ÉRZÉKELŐK I MIKROELEKTRONIKAI ÉRZÉKELŐK I Dr. Pődör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Műszaki Fizikai és Anyagtudományi Kutató Intézet 2. ELŐADÁS: LABORMÉRÉSEK 2008/2009 tanév 1. félév

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

MAGYAR TUDOMÁNYOS AKADÉMIA SZILÁRDTESTFIZIKAI ÉS OPTIKAI KUTATÓINTÉZET (MTA SZFKI)

MAGYAR TUDOMÁNYOS AKADÉMIA SZILÁRDTESTFIZIKAI ÉS OPTIKAI KUTATÓINTÉZET (MTA SZFKI) MTA SZFKI Fémkutatási Osztály (1972: Fémfizikai O.) Tudományos osztályvezető (1995 óta): BAKONYI Imre (MTA Doktora) Fő tevékenység: szilárdtestfizikai és anyagtudományi kísérleti alapkutatás fémek, fémhidridek,

Részletesebben

Az anyagok kettős (részecske és hullám) természete

Az anyagok kettős (részecske és hullám) természete Az anyagok kettős (részecske és hullám) természete de Broglie hipotézise (1924-25): Bármilyen fénysebességgel mozgó részecskére: mc = p E = mc 2 = hn p = hn/c = h/ = h/p - de Broglie-féle hullámhossz Nem

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Az elektron hullámtermészete. Készítette Kiss László

Az elektron hullámtermészete. Készítette Kiss László Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses

Részletesebben

Speciális passzív eszközök

Speciális passzív eszközök Varisztorok Voltage Dependent Resistor VDR Variable resistor - varistor Speciális passzív eszközök Feszültségfüggő ellenállás, az áram erősen függ a feszültségtől: I=CU α ahol C konstans, α értéke 3 és

Részletesebben

Lehet-e tökéletes nanotechnológiai eszközöket készíteni tökéletlen grafénból?

Lehet-e tökéletes nanotechnológiai eszközöket készíteni tökéletlen grafénból? Lehet-e tökéletes nanotechnológiai eszközöket készíteni tökéletlen grafénból? Márk Géza, Vancsó Péter, Nemes-Incze Péter, Tapasztó Levente, Dobrik Gergely, Osváth Zoltán, Philippe Lamin, Chanyong Hwang,

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

Fényérzékeny amorf nanokompozitok: technológia és alkalmazásuk a fotonikában. Csarnovics István

Fényérzékeny amorf nanokompozitok: technológia és alkalmazásuk a fotonikában. Csarnovics István Új irányok és eredményak A mikro- és nanotechnológiák területén 2013.05.15. Budapest Fényérzékeny amorf nanokompozitok: technológia és alkalmazásuk a fotonikában Csarnovics István Debreceni Egyetem, Fizika

Részletesebben

Utazások alagúteffektussal

Utazások alagúteffektussal Utazások alagúteffektussal Márk Géza István MTA Műszaki Fizikai és Anyagtudományi Kutatóintézet, Budapest http://www.nanotechnology.hu www.nanotechnology.hu Click into image to start animation www.nanotechnology.hu

Részletesebben

Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT

Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT A Mathematikai és Természettudományi Értesítõt az Akadémia 1882-ben indította A Mathematikai és Physikai Lapokat Eötvös Loránd 1891-ben alapította LVIII. évfolyam

Részletesebben

Részecskék hullámtermészete

Részecskék hullámtermészete Részecskék ullámtermészete Bevezetés A sugárzás és az anyag egyaránt mutat részecskejellegű és ullámjellegű tulajdonságokat. Atommodellek A Tomson modell J.J. Tomson 1898 A negatív töltésű elektronok pozitív

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Elektromos vezetési tulajdonságok

Elektromos vezetési tulajdonságok Elektromos vezetési tulajdonságok Vezetési jelenségek (transzportfolyamatok) fenomenologikus leírása Termodinamikai hajtóerő: kémiai potenciál különbség: Egyensúlyban lévő rendszer esetén: = U TS δ = δx

Részletesebben

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja László András Wigner Fizikai Kutatóintézet, Részecske- és Magfizikai Intézet 1 Kivonat Az erősen kölcsönható anyag és fázisai Megfigyelések a fázisszerkezettel

Részletesebben

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat

Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat Periódusosság 9-1 Az elemek csoportosítása: aperiódusos táblázat 9-2 Fémek, nemfémek és ionjaik 9-3 Az atomok és ionok mérete 9-4 Ionizációs energia 9-5 Elektron affinitás 9-6 Mágneses 9-7 Az elemek periódikus

Részletesebben

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Szeretném megköszönni opponensemnek a dolgozat gondos. 1. A 3. fejezetben a grafén nagyáramú elektromos transzportját vizsgálja és

Szeretném megköszönni opponensemnek a dolgozat gondos. 1. A 3. fejezetben a grafén nagyáramú elektromos transzportját vizsgálja és Válasz Kriza György bírálatára Szeretném megköszönni opponensemnek a dolgozat gondos áttanulmányozását, az értekezéshez fűzött elismerő megjegyzéseit és kritikus észrevételeit. Kérdéseire az alábbiakat

Részletesebben

NANOELEKTRONIKA JEGYZET MIZSEI JÁNOS RÉSZEIHEZ

NANOELEKTRONIKA JEGYZET MIZSEI JÁNOS RÉSZEIHEZ NANOELEKTRONIKA JEGYZET MIZSEI JÁNOS RÉSZEIHEZ Készítette: Riedl Tamás Tartalomjegyzék 1. Történeti áttekintés... 3 2. A technológia fejlődése, alapok... 3 A MOS tranzisztor... 4 3. Nemlinearitás: A bináris

Részletesebben

Mikrokozmosz - makrokozmosz: hova lett az antianyag?

Mikrokozmosz - makrokozmosz: hova lett az antianyag? Horváth Dezső: Antianyag Trefort gimn, 2013.02.28 1. fólia p. 1/39 Mikrokozmosz - makrokozmosz: hova lett az antianyag? Horváth Dezső horvath wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Budapest és

Részletesebben

Mikroszerkezeti vizsgálatok

Mikroszerkezeti vizsgálatok Mikroszerkezeti vizsgálatok Dr. Szabó Péter BME Anyagtudomány és Technológia Tanszék 463-2954 szpj@eik.bme.hu www.att.bme.hu Tematika Optikai mikroszkópos vizsgálatok, klasszikus metallográfia. Kristálytan,

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok

Részletesebben

A SZUPRAVEZETÉS. Fizika. A mágneses tér hatása a szupravezető állapotra

A SZUPRAVEZETÉS. Fizika. A mágneses tér hatása a szupravezető állapotra Fizika A SZUPRAVEZETÉS A szupravezetés jelenségét 80 évvel ezelőtt fedezték fel, de az azóta eltelt idő alatt semmivel sem lankadt a fizikusok érdeklődése e témakör iránt. A szupravezetők tanulmányozása

Részletesebben

MIKROELEKTRONIKA 7. MOS struktúrák: -MOS dióda, Si MOS -CCD (+CMOS matrix) -MOS FET, SOI elemek -MOS memóriák

MIKROELEKTRONIKA 7. MOS struktúrák: -MOS dióda, Si MOS -CCD (+CMOS matrix) -MOS FET, SOI elemek -MOS memóriák MIKROELEKTRONIKA 7. MOS struktúrák: -MOS dióda, Si MOS -CCD (+CMOS matrix) -MOS FET, SOI elemek -MOS memóriák Fém-félvezetó p-n A B Heteroátmenet MOS Metal-oxide-semiconductor (MOS): a mikroelektronika

Részletesebben

KVANTUMMECHANIKA. a11.b-nek

KVANTUMMECHANIKA. a11.b-nek KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

Áramlástechnikai mérések

Áramlástechnikai mérések Áramlástehnikai mérések Mérés Prandtl- ső segítségével. Előző tanulmányaikból ismert: A kontinuitás elve: A A Ahol: - a közeg sebessége az. pontban - a közeg sebessége a. pontban A, A - keresztmetszetek

Részletesebben

1D multipulzus NMR kísérletek

1D multipulzus NMR kísérletek D multipulzus NMR kísérletek Rohonczy János ELTE, Szervetlen Kémia Tanszék Modern szerkezetkutatási módszerek elıadás 202. . Protonlecsatolt heteronukleáris mérések Elv 3 C mag detektálása alatt a protoncsatornán

Részletesebben

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

SZIGETELŐK, FÉLVEZETŐK, VEZETŐK

SZIGETELŐK, FÉLVEZETŐK, VEZETŐK SZIGETELŐK, FÉLVEZETŐK, VEZETŐK ITRISIC (TISZTA) FÉLVEZETŐK E EXTRÉM AGY TISZTASÁG (kb: 10 10 Si, v. Ge, 1 szennyező atom) HIBÁTLA KRISTÁLYSZERKEZET abszolút nulla hőmérsékleten T = 0K = elektron kevés

Részletesebben

Nanotudományok vívmányai a mindennapokban Lagzi István László Eötvös Loránd Tudományegyetem Meteorológiai Tanszék

Nanotudományok vívmányai a mindennapokban Lagzi István László Eötvös Loránd Tudományegyetem Meteorológiai Tanszék Nanotudományok vívmányai a mindennapokban Lagzi István László Eötvös Loránd Tudományegyetem Meteorológiai Tanszék 2011. szeptember 22. Mi az a nano? 1 nm = 10 9 m = 0.000000001 m Nanotudományok: 1-100

Részletesebben

a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925)

a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) a magspin és a mágneses momentum, a kizárási elv (1924) Wolfgang Pauli (1900-1958) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) Hendrik Anthony Kramers (1894-1952) a mátrixmechanika

Részletesebben

Speciális relativitás

Speciális relativitás Bevezetés a modern fizika fejezeteibe 3. (b) Speciális relativitás Relativisztikus dinamika Utolsó módosítás: 2013 október 15. 1 A relativisztikus tömeg (1) A bevezetett Lorentz-transzformáció biztosítja

Részletesebben

MÁGNESESSÉG. Türmer Kata

MÁGNESESSÉG. Türmer Kata MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak

Részletesebben

NANOELEKTRONIKA ÉS KATONAI ALKALMAZÁSAI

NANOELEKTRONIKA ÉS KATONAI ALKALMAZÁSAI Nánai László NANOELEKTRONIKA ÉS KATONAI ALKALMAZÁSAI A mikroelektronika és a számítástechnika rendkívül gyors fejlődésének következményeképpen az eszközkomponensek mérete rendkívül gyors ütemben csökkent,

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás

FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK A leggyakrabban használt félvezető anyagok a germánium (Ge), és a szilícium (Si). Félvezető tulajdonsággal rendelkező elemek: szén (C),

Részletesebben

MUNKATERV / BESZÁMOLÓ

MUNKATERV / BESZÁMOLÓ MUNKATERV / BESZÁMOLÓ Werner Miklós Antal, Ph.D. hallgató 3. szemeszter (2014/2015 tanév őszi félév) email cím: wernermiklos@gmail.com állami ösztöndíjas* önköltséges* Témaleírás: Rendezetlen és korrelált

Részletesebben

Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI

Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI Kvantumszimulátorok Szirmai Gergely MTA SZFKI Graphics: Harald Ritsch / Rainer Blatt, IQOQI A kvantummechanika körülvesz tranzisztor számítógép, mobiltelefon A kvantummechanika körülvesz tranzisztor számítógép,

Részletesebben

V e r s e n y f e l h í v á s

V e r s e n y f e l h í v á s A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Sárospataki Református Kollégium Gimnáziumában TÁMOP-3.1.3-11/2-2012-0021 V e r s e n y f e l h í v á s A Sárospataki Református

Részletesebben

Optikai alapfogalmak. Az elektromágneses spektrum. n = c vákuum /c közeg. Fény: transzverzális elektromágneses hullám. (n 1 n 2 ) 2 R= (n 1 + n 2 ) 2

Optikai alapfogalmak. Az elektromágneses spektrum. n = c vákuum /c közeg. Fény: transzverzális elektromágneses hullám. (n 1 n 2 ) 2 R= (n 1 + n 2 ) 2 Optikai alapfogalmak Az anyag és s a fény f kölcsk lcsönhatása Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Visszaverődés, reflexió Törés, kettőstörés, polarizáció Elnyelés, abszorpció,

Részletesebben