1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója?

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója?"

Átírás

1 1. Prefix jelentések deka 10-1 deci 10 2 hektó 10-2 centi 10 3 kiló 10-3 milli 10 6 mega 10-6 mikró 10 9 giga 10-9 nano tera piko peta fento exa atto 2. Mi alapján definiáljuk az 1 másodpercet? Cs133 atom legkülső elektron héján (6s1) lévő elektron hiperfinom átmenetkor keletkező megfelelő sugárzás (elektromágneses) T periódusidejének szerese egyenlő 1 szekundummal. ~ x9 milliárd 3. Mi alapján definiáljuk az 1 métert? A fény vákuumban 1 szekundum alatt megtett útjának 1/ ad része egyenlő 1 méterrel. ~ x 1/300millió mod része 4. Mi a tömegegység definíciója? A Sévres-i platina-irídium henger tömege 1 kg vagy 1, dm 3 277,15 K-es (4 C) Pa nyomású víz tömegével egyenlő. 5. Foglalja össze a Michelson-Morley kísérlet lényegét! A kísérlet a föld éterhez viszonyított mozgását vizsgálja. Egy higanyfürdőben úsztatott márványkorongon monokromatikus (egy frekvenciájú) fényforrással és tükör, illetve féligáteresztő tükör felhasználásával állították össze a kísérletet. LI LII távolságok v föld mozgása az éterhez képest (feltesszük, hogy mozog) c fény sebessége Fényforrástól a félig áteresztő tükörig, és attól az ernyőig, azonos a két fénynyaláb útja. A másik két utat vizsgálva: II) szakasz Ahol LII a második szakasz hossza = + + = + + = 2 t2 a fénynyaláb második szakaszban tartózkodásának időtartalma.

2 I) szakasz és így: Ahol LI az első szakasz hossza = 2 = t1 a fénynyaláb első szakaszban tartózkodásának időtartalma. 2 = 2 t a két megtett út alatt eltelt idő különbsége A korongot a higanyfürdőben 90 -al elforgatták, az ernyőn az interferencia miatt a képnek változnia kellett volna, de nem változott. Éter nincs! 6. Mi a speciális relativitáselmélet két alappillére? 1) fény sebessége állandó 2) nincsen kitüntetett inercia rendszer. 7. Mi a Lorentz transzformáció? Kapcsolatot létesít két (párhuzamos x, y, z tengelyű) inercia rendszer között, amik egymáshoz képest x irányban v sebességű egyenes vonalú egyenletes mozgást végeznek. Segítségével kiszámítható a K rendszerben történt esemény helyét és idejét, a K rendszerben. Nincs összhangban a mechanikával, csak az elektromágnesesség tannal.

3 8. Írja fel a Lorentz transzformáció képleteit. Lorentz transzformáció x=γ(x +vt ) x =γ(x-vt) γ=? = 9. Mi az idődilatáció? Galilei transzformáció: t=t y=y z=z x=x +vt x =x-vt A relatív sebeség a fénys.-nél kisebb fénynél csak kisebb v van! = 1 = 1 Az időtartam koordinátarendszer függő mennyiség: Az eseményhez képest mozgó koordináta rszrben kapott idő hosszabb. K -ban van a megfigyelés, K v sebességgel mozog. K -ben lámpát kapcsolgatunk. A lámpa t1 időpontban kigyullad, t2 ben elalszik. Mennyi az eltérés? = ( + ) = ( + ) = ( ) > 1 => > Minél nagyobb a sebesség, annál jobban megnyúlik az idő. 10. Mi a hosszúság kontrakció? A hosszúság koordinátarendszer függő mennyiség. A mozgó rszrből mért mozgási hossz kisebbnek adódok, mint a nyugvó rszrben mért nyugalmi hossz. (pl. oszlop mellett elrobogó vonat hosszát mérve) A mért hossz a megfigyelő, és a tárgy relatív sebességétől függ. = ( ) = ( ) = = ( ) > 1 => >

4 11. Mit tud a tömegről? A tömeg is koordináta rszr függő mennyiség, a hozzánk képest mozgó tömeget, nagyobbnak találjuk (relativisztikus tömeg), mintha nyugalomban van (nyugalmi tömeg). = Ahol m0 "a mért tömeg" m "a megnőtt tömeg" = - Lorentz tényező A tömeg a fizikai testek tulajdonsága, a bennük lévő anyag és energia mennyiségét méri. Háromféle tömeget különböztetünk meg: tehetetlen tömeg: a rá ható erő mozgásállapot változtató hatásával szembeni ellenállás. passzív gravitációs tömeg: "súly" A test és a gravitációs tér kölcsönhatásának mértéke. aktív gravitációs tömeg: A test által létrehozott gravitációs tér erősségének mértéke. 12. Energia-impulzus összefüggése. Ha egy m tömegű test v sebességgel mozog, akkor energiája és impulzusa: = Ekkor az energia impulzus összefüggés: 13. Mi a Minkowski tér? = ( ) = ( ) A fizikában a 3Ds Euklideszi tér, egy 4. dimenzióval való kiegészítése. (x; y; z; t) 14. Mit nevezünk invariáns mennyiségnek? Azokat a mennyiségeket, amik nem változnak koordináta transzformáció következtében.(pl.: fénysebesség, töltésmennyiség) 15. Írjon fel a 4 dimenziós térben egy invariáns mennyiséget! + + ( ) = + + ( ) Azok a pontok, amiket a fény t és t' idő alatt ér el K és K' rendszerben, egy gömbfelületen helyezkednek el. 16. Mi a maghasadás és a magfúzió? Maghasadás (fisszió): Egy atommag két vagy több kisebb magra szakad, amit kísérhet gamma valamint neutronsugárzás. Ahhoz hogy energia szabaduljon fel, a termékmagok kötési energiájának, nagyobbnak kell lennie, mint a kiindulási mag kötési energiája.(pl. atomerőmű; atombomba) Magfúzió: Két kisebb atommag egyesül egy nagyobbat eredményezve. Ahhoz hogy energia szabaduljon fel, a folyamatban résztvevő elemeknek könnyebbeknek kell lenniük a vasnál. (pl.: csillagok; hidrogénbomba) 17. Mi az energiával kapcsolatos Planck hipotézis? Az energia hv adagokban/kvantumokban változik. = h h Planck állandó (6,626*10-34 Js) v - frekvencia

5 18. Mi a fotoeffektus? Bizonyos anyagok felületéről a fénysugárzás hatására elektronok lépnek ki. A kilépő elektronok energiája függ a fény frekvenciájától (hullámhosszától), de nem függ az intenzitásától. 19. Mi a Dulong-Petit törvény? Szilárd testek fajhője Az elemek moláris hőkapacitása (az atomtömeg és a hőkapacitás szorzata) bizonyos hőmérsékleti határok között közelítőleg állandó. Ők 13 elemet vizsgáltak meg és azt találták, hogy azoknak a hőkapacitása, a kémiai úton meghatározott atomtömeggel fordítva arányos. Ez az érték a legtöbb elemre nézve a 6,3 és a 6,4 között fekszik. 20. Mit nevezünk operátoroknak? Olyan műveletet egyenlet, ami függvényekhez függvényeket rendel. =, f(x) értelmezési tartománya: folytonos egyértékű korlátos négyzetesen integrálható ( ) < 21. Mi az operátor sajátértéke? Az operátor sajátértéke az a k érték, amivel a fv-t beszorozva ugyan azt kapjuk, mintha az Operátorral szoroztuk volna be. = 22. Mi a lineáris operátor? A lineáris operátor egy lineáris leképzés. Azonos test feletti vektorterek között ható művelettartó fv. Be- és kimenetele is vektor. + = + két vektor összegének képe, a vektorok képének összege = egy vektor számszorosának képe,a vektor képének ugyan az a számszorosa 23. Hogyan definiáljuk a függvények skalárszorzatát? ; = Ahol f * az f fv komplex konjugáltja. ( + ) = Tulajdonságai: ; = ; ; = ( ; ) ; = ; ( + ; h) = ( ; h) + ( ; h) ; 0 = 0 ; = 0 =>, á ő ( ; ) = 24. Mi az adjugált operátor? Ahol az Ô + az adjugált operátor. ; = ;

6 25. Mi a hermitikus operátor? Amelyik önadjugált. O = O 26. Milyen tulajdonságú a hermitikus operátor sajátértéke? A hermetikus op sajátértéke valós szám. (Neumann János tétele) 27. Mi az impulzus és hely operátora? impulzus: hely: h redukált Planck állandó i imaginárius egység h = = 1 = h = h=6, Js 28. Fizikai mennyiség mérésekor milyen értékeket kapunk eredményül? A fizikai mennyiségek matematikai leírására operátorok szolgálnak. A fizikai mennyiségek mérésekor kapott érték egy számérték, és a hozzá tartozó mértékegység. 29. Mi a helyre és impulzusra vonatkozó Heisenberg f. felcserélési törvény?, = = h 30. Írja fel az időfüggetlen 1 dimenziós Schrödinger egyenletet! A részecske mozgása egyetlen koordinátával jellemezhető. V(x) potenciál fv h redukált Planck állandó h d ψ(x) 2m dx + V x ψ x = Eψ(x) 31. Írja fel az időfüggetlen 3 dimenziós Schrödinger egyenletet! h ψ,, + V,, ψ,, = Eψ,, 2m Laplace operátor: = = Mi az állapotfüggvény fizikai jelentése? Az állapot fv a fizikai rszr-t jellemző mennyiségek valószínűségeit határozza meg,kizárólag az útvonal végpontjaiban mért paraméter értékeitől függ.

7 33. Milyen értékeket vehet fel a harmonikus lineáris oszcillátor energiája? n kvantumszámok (1; 2; 3...) h redukált Planck állandó h Planck állandó ω körfrekvencia v frekvencia Tehát az oszcillátor energiája nem vesz fel tetszőleges értéket, csak hv kvantum többszöröseit. 34. Mi a zéruspont energia? A harmonikus lineáris oszcillátor n=0 hoz tartozó energiája. Ez a legkisebb felvehető energiaérték. (>0) Mi az alagút effektus? Véges magasságú és szélességű potenciálfalak között helyezkedik el a részecske és energiája kisebb, mint a fal magassága. A Schrödinger egyenletet ilyen esetre megoldva, azt kapjuk, hogy a hullámfüggvény és így a részecske megtalálási valószínűsége nem nulla a potenciálfalon kívüli pontokban. Véges valószínűsége van, hogy a részecske a falon kívül megtalálható,, holott a falon való átjutáshoz nincs elegendő energiája. Az átjutás valószínűsége exponenciálisan csökken a potenciálfal vastagságával, s minél távolabb van a részecske energiája a falon való átjutáshoz szükséges energiától.

8 36. Mit bizonyít a Stern-Gerlach kísérlet? Azt bizonyítja, hogy az elektronnak van saját mágneses dipól momentuma.(az elektron spint bizonyítja) Ag Mi a de Broglie féle hullámhossz? Azt állította de Broglie hogy a mozgó részecskéknek van hullámtermészete. Az ehhez tartozó hullámhosszt adja meg a következő egyenlet: λ hullámhossz h Planck állandó p részecske lendülete m részecske nyugalmi tömege v - sebesség = h 38. Milyen kvantumszámokkal jellemezzük az elektronokat az atomokban? 4 kvantumszám főkvantumszám n=1, 2, 3... (nem csak 7ig, mert gerjeszthető) mellékkvantumszám l=0, 1, 2...(n-1) mágneses kvantumszám m=0, ±1, ±2...±l spinkvantumszám s=, 39. Mivel kapcsolatos a fő, mellék és mágneses kvantumszám? főkvantumszám Az elektron energiája és pályasugara meghatározott nagyságú (kvantált). Az elektron és az atommag távolságát,az energia értéket adja meg.(elektronhéjak) mellékkvantumszám Az elektron mag körüli mozgását, pályája alakját adja meg. (s, p, d, f) mágneses kvantumszám A pálya térbeli elhelyezkedését adja meg.

9 40. Milyen értékeket vehet fel a fő, mellék és mágneses kvantumszám? főkvantumszám n=1, 2, 3... (nem csak 7ig, mert gerjeszthető) mellékkvantumszám l=0, 1, 2...(n-1) mágneses kvantumszám m=0, ±1, ±2...±l (spinkvantumszám s=, ) 41. Mi a Heisenberg féle bizonytalansági elv? Egy részecskének nem tudjuk egy időben pontosan meghatározni a helyét és impulzusát. 42. Mi a gap? h 2 gap tiltott sáv Egy atomban az elektronok diszkrét szinteken léteznek, az elektronok energiája a megengedett sávokba eshetnek. Ezeket a megengedett sávokat általában tiltott sávok választják el egymástól. A legfelső teljesen betöltött sávot vegyérték (valencia) sávnak hívjuk, ahol pedig az elektronok már szabadon mozoghatnak, vezetési sávnak hívjuk. A valencia sávból gerjesztéssel lehet a vezetési sávba elektront juttatni. 43. Mi jellemzi a szigetelők elektronszerkezetét? A tiltott sáv nagyobb, mint 5,5 ev, ideális esetben nincs szabad töltéshordozó a vezetési sávon. 44. Mi jellemzi a jó vezetők elektronszerkezetét? A legfelső sáv csak részben betöltött, a tiltott sáv gyakorlatilag 0 ev. 45. Mi jellemzi a félvezetők elektronszerkezetét? A félvezetőknél termikus gerjesztés hatására a valencia sávból a tiltott sávot átugorva a vezetési sávba jutnak elektronok. Mivel kevés elektron megy át, ezért nem jó vezetők. A valencia sávban keletkezett lyuk (hole) egy kvázi részecske (olyan, mint egy részecske), rendelkezik tömeggel, + töltéssel és a lyukvezetéssel áramot hoz létre. A félvezetőknél elektron és lyukvezetés is van. A hőmérséklet emelkedésére az ellenállás exponenciálisan csökken. 46. Mi a Meissner effektus? A szupravezetők kiszorítják magukból a mágneses teret. A szupravezetőt gyenge mágneses térbe helyezve, a tér csak egy minimális λ távolságra (behatolási mélység) hatol be a vezetőbe, ami után a mágneses térerősség 0 ra csökken. A szupravezető belseje felé a mágneses tér exponenciálisan csökken. H = λ H A Meissner effektus megszűnik, ha túl nagy a mágneses tér. "be van ágyazva"

10 47. Hogyan működik a Xerox másoló? A fotóvezető réteggel (régen Se, ma a-si:h /amorf Si ami tartalmaz H-t is/) borított henger felületén fényhatással elektromos töltéskép formájában alakítjuk ki a nyomtatandó ábrát. A hengert festékporral hozzuk érintkezésbe, amin a töltésképnek megfelelően megtapad a festék. A hengerről a festéket a papírra hengereljük, majd beleégetjük. 48. Mi az alapfolyamat a napelemekben? A fényelektromos jelenség segítségével a napelem a nap sugárzását elektromos árammá alakítja. A szolár cellák két fajta p és n típusú- félvezetőket tartalmaznak. Fotonnal gerjesztett félvezetők p és n többlettöltései külső áramforráson kiegyenlíthetők. 100% -os hatásfok az elméletben nem érhető el, (a hatás tükörrel javítható). Laboratóriumi körülményekben a hatásfok 30-40%, háztartásban ~20%. 49. Mi alapján működik a DVD? Alapja a kalkogén üveg. Az újra kristályosodást kihasználva változtatja meg az adathordozó felület felszínét. Olvadási hőmérséklet fölé melegítve, és utána gyorsan lehűtve amorf szerkezet jön létre, míg csak az újrakristályosodási hőmérséklet fölé melegítve és ott kitartva, ki tud alakulni a rendezett kristályrács. Ehhez kell a fázisváltó anyag. A fázisoktól függ, a felület optikai tulajdonsága. 50. Írja fel a Boltzmann faktort Ei energia állapot kb Boltzmann állandó 1,38 10 T - hőmérséklet A test hőmérsékletére, és az azt felépítő részecskék energiájára vonatkozik. 51. Az entrópia Boltzmann féle definíciója A rendszer entrópiája xi állapotban: Si entrópia k Boltzmann állandó ωi - = ln

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos.

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos. Az alábbi kiskérdéseket a korábbi Pacher-féle vizsgasorokból és zh-kból gyűjtöttük ki. A többségnek a lefényképezett hivatalos megoldás volt a forrása (néha még ezt is óvatosan kellett kezelni, mert egy

Részletesebben

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

Részecskék hullámtermészete

Részecskék hullámtermészete Részecskék ullámtermészete Bevezetés A sugárzás és az anyag egyaránt mutat részecskejellegű és ullámjellegű tulajdonságokat. Atommodellek A Tomson modell J.J. Tomson 1898 A negatív töltésű elektronok pozitív

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

Zitterbewegung. általános elmélete. Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék

Zitterbewegung. általános elmélete. Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék A Zitterbewegung általános elmélete Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék 1. Mi a Zitterbewegung? A Zitterbewegung általános elmélete 2. Kvantumdinamika Heisenberg-képben

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.)

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Atomok, atommodellek (tankönyv 82.o.-84.o.) Már az ókorban Démokritosz (i. e. 500) úgy gondolta, hogy minden anyag tovább nem osztható alapegységekből,

Részletesebben

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása Az ionizáló sugárzások kölcsönhatása anyaggal, nehéz és könnyű töltött részek kölcsönhatása, röntgen és γ-sugárzás kölcsönhatása Az ionizáló sugárzások mérése, gáztöltésű detektorok (ionizációs kamra,

Részletesebben

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.)

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.) A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla 7. Előadás (2015.10.29.) Az atomelmélet fejlődése (folyt.) 1, az anyag atomos szerkezetének bizonyítása

Részletesebben

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA B2 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK MFI mérés HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN

XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN 2007. február 6. 1 Pálinkás József: Fizika 2. XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN Bevezetés: Az előző fejezetekben megismertük, hogy a kvantumelmélet milyen jól leírja az atomok és a molekulák felépítését.

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

Készítette: Bujnóczki Tibor Lezárva: 2005. 01. 01.

Készítette: Bujnóczki Tibor Lezárva: 2005. 01. 01. VILÁGÍTÁSTECHNIKA Készítette: Bujnóczki Tibor Lezárva: 2005. 01. 01. ANYAGOK FELÉPÍTÉSE Az atomok felépítése: elektronhéjak: K L M N O P Q elektronok atommag W(wolfram) (Atommag = proton+neutron protonok

Részletesebben

Testek mozgása. Készítette: Kós Réka

Testek mozgása. Készítette: Kós Réka Testek mozgása Készítette: Kós Réka Fizikai mennyiségek, átváltások ismétlése az általános iskolából, SI Nemzetközi Mértékegység Rendszer 1. óra Mérés A mérés a fizikus alapvető módszere. Mérőeszközre,

Részletesebben

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert:

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert: 1 / 12 A TételWiki wikiből 1 Ritka gázok állapotegyenlete 2 Viriál sorfejtés 3 Van der Waals gázok 4 Ising-modell 4.1 Az Ising-modell megoldása 1 dimenzióban(*) 4.2 Az Ising-modell átlagtérelmélete 2 dimenzióban(**)

Részletesebben

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8.

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. 1. feladat: Az elszökő hélium Több helyen hallhattuk, olvashattuk az alábbit: A hélium kis móltömege miatt elszökik a Föld gravitációs teréből. Ennek

Részletesebben

Mikrohullámok vizsgálata. x o

Mikrohullámok vizsgálata. x o Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia

Részletesebben

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje) lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,

Részletesebben

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv?

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv? Ismertesse az optika fejlődésének legjelentősebb mérföldköveit! - Ókor: korai megfigyelések - Euklidész (i.e. 280) A fény homogén közegben egyenes vonalban terjed. Legrövidebb út elve (!) Tulajdonképpen

Részletesebben

τ Γ ħ (ahol ħ=6,582 10-16 evs) 2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) 2.3.1. A Mössbauer-effektus

τ Γ ħ (ahol ħ=6,582 10-16 evs) 2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) 2.3.1. A Mössbauer-effektus 2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) 2.3.1. A Mössbauer-effektus A Mössbauer-spektroszkópia igen nagy érzékenységű spektroszkópia módszer. Alapfolyamata

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 19. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

F1404 ATOMMAG- és RÉSZECSKEFIZIKA

F1404 ATOMMAG- és RÉSZECSKEFIZIKA F1404 ATOMMAG- és RÉSZECSKEFIZIKA Dr. Raics Péter DE TTK Kísérleti Fizikai Tanszék, Debrecen, Bem tér 18/A RAICS@TIGRIS.KLTE.HU Ajánlott irodalom Raics P.: Atommag- és részecskefizika. Jegyzet. DE Kísérleti

Részletesebben

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK A ALAPFOGALMAK ÉS ALAPTÖVÉNYEK Elektromos töltés, elektromos tér A kémiai módszerekkel tová nem ontható anyag atomokól épül fel. Az atom atommagól és az atommagot körülvevő elektronhéjakól áll. Az atommagot

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

1. tesztlap. Fizikát elsı évben tanulók számára

1. tesztlap. Fizikát elsı évben tanulók számára 1. tesztlap Fizikát elsı évben tanulók számára 1.) Egy fékezı vonatban menetiránynak megfelelıen ülve feldobunk egy labdát. Hová esik vissza? A) Éppen a kezünkbe. B) Elénk C) Mögénk. D) Attól függ, milyen

Részletesebben

19. Az elektron fajlagos töltése

19. Az elektron fajlagos töltése 19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................

Részletesebben

Elektromágneses hullámok, a fény

Elektromágneses hullámok, a fény Elektromágneses hullámok, a fény Az elektromos töltéssel rendelkező testeknek a töltésük miatt fellépő kölcsönhatását az elektromos és mágneses tér segítségével írhatjuk le. A kölcsönhatás úgy működik,

Részletesebben

OSZTÁLYOZÓ VIZSGA TÉMAKÖREI

OSZTÁLYOZÓ VIZSGA TÉMAKÖREI OSZTÁLYOZÓ VIZSGA TÉMAKÖREI Az anyag néhány tulajdonsága, kölcsönhatások Fizika - 7. évfolyam 1. Az anyag belső szerkezete légnemű, folyékony és szilárd halmazállapotban 2. A testek mérhető tulajdonságai

Részletesebben

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)

Részletesebben

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást!

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást! 2006/I/I.1. * Ideális gázzal 31,4 J hőt közlünk. A gáz állandó, 1,4 10 4 Pa nyomáson tágul 0,3 liter térfogatról 0,8 liter térfogatúra. a) Mennyi munkát végzett a gáz? b) Mekkora a gáz belső energiájának

Részletesebben

2. Hatványozás, gyökvonás

2. Hatványozás, gyökvonás 2. Hatványozás, gyökvonás I. Elméleti összefoglaló Egész kitevőjű hatvány értelmezése: a 1, ha a R; a 0; a a, ha a R. Ha a R és n N; n > 1, akkor a olyan n tényezős szorzatot jelöl, aminek minden tényezője

Részletesebben

Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből)

Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből) Fénytan 1 Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből) Feladatok F. 1. Vízszintes asztallapra fektetünk egy negyedhenger alakú üvegtömböt, amelynek függőlegesen álló síklapját

Részletesebben

Általános Géptan I. SI mértékegységek és jelölésük

Általános Géptan I. SI mértékegységek és jelölésük Általános Géptan I. 1. Előadás Dr. Fazekas Lajos SI mértékegységek és jelölésük Alapmennyiségek Jele Mértékegysége Jele hosszúság l méter m tömeg m kilogramm kg idő t másodperc s elektromos áramerősség

Részletesebben

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás 9/1/014 Röntgen Röntgen keletkezése Tulajdonságok Anyaggal való kölcsönhatás Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken on December 1895 and presented

Részletesebben

Fogalmi alapok Mérlegegyenletek

Fogalmi alapok Mérlegegyenletek 1. Fogalmi alapok Mérlegegyenletek Utolsó módosítás: 2013. február 11. A transzportfolyamatokról általában 1 A természetben lezajló folyamatok leírására szolgáló összefoglaló elmélet, amely attól függetlenül

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK - 1 - A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK 1. Newton törvényei Newton I. törvénye Kölcsönhatás, mozgásállapot, mozgásállapot-változás, tehetetlenség,

Részletesebben

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM AZ OSZÁG VEZETŐ EGYETEMI-FŐISKOLAI ELŐKÉSZÍTŐ SZEVEZETE MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PÓBAÉETTSÉGI FELADATSOHOZ. ÉVFOLYAM I. ÉSZ (ÖSSZESEN 3 PONT) 3 4 5 6 7 8 9 3 4 5 D D C D C D D D B

Részletesebben

Fizika 2 (Modern fizika szemlélete) feladatsor

Fizika 2 (Modern fizika szemlélete) feladatsor Fizika 2 (Modern fizika szemlélete) feladatsor 1. Speciális relativitáselmélet 1. A Majmok bolygója című mozifilm és könyv szerint hibernált asztronauták a Föld távoli jövőjébe utaznak, amikorra az emberi

Részletesebben

A műszaki rezgéstan alapjai

A műszaki rezgéstan alapjai A műszaki rezgéstan alapjai Dr. Csernák Gábor - Dr. Stépán Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanikai Tanszék 2012 Előszó Ez a jegyzet elsősorban gépészmérnök hallgatóknak

Részletesebben

Villamos kapcsolókészülékek BMEVIVEA336

Villamos kapcsolókészülékek BMEVIVEA336 Villamos kapcsolókészülékek BMEVIVEA336 Szigetelések feladatai, igénybevételei A villamos szigetelés feladata: Az üzemszerűen vagy időszakosan különböző potenciálon lévő vezető részek (fém alkatrészek

Részletesebben

Elektromágneses hullámok - Hullámoptika

Elektromágneses hullámok - Hullámoptika Bevezetés a modern fizika fejezeteibe 2. (c) Elektromágneses hullámok - Hullámoptika Utolsó módosítás: 2015. január 17. 1 Az elektromágneses hullámok visszaverődési és törési törvényei (1) Kérdés: Mi történik

Részletesebben

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása Póda László Urbán ános: Fizika. Emelt szintű képzéshez c. tankönyv (NT-75) feladatainak megoldása R. sz.: RE75 Nemzedékek Tudása Tankönyvkiadó, Budapest Tartalom. lecke Az elektromos állapot.... lecke

Részletesebben

7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL

7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL 7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL Számos technológiai folyamat, kémiai reakció színtere gáz, vagy folyékony közeg (fluid közeg). Gondoljunk csak a fémek előállításakor

Részletesebben

ψ a hullámfüggvény KVANTUMELEKTRONIKA Kvantummechanikai alapok

ψ a hullámfüggvény KVANTUMELEKTRONIKA Kvantummechanikai alapok KVANTUMELEKTRONIKA Kvantummechanikai alapok Miért nem jó a klasszikus megközelítés azon módon, ahogy a mikroelektronika dolgozik és eszközöket épít? Egyre komolyabb akadályok és nehézségek merülnek fel

Részletesebben

1. A gyorsulás Kísérlet: Eszközök Számítsa ki

1. A gyorsulás Kísérlet: Eszközök Számítsa ki 1. A gyorsulás Gyakorlati példákra alapozva ismertesse a változó és az egyenletesen változó mozgást! Általánosítsa a sebesség fogalmát úgy, hogy azzal a változó mozgásokat is jellemezni lehessen! Ismertesse

Részletesebben

Ph 11 1. 2. Mozgás mágneses térben

Ph 11 1. 2. Mozgás mágneses térben Bajor fizika érettségi feladatok (Tervezet G8 2011-től) Munkaidő: 180 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia. A két feladatsor nem származhat azonos témakörből.)

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

ESR színképek értékelése és molekulaszerkezeti értelmezése

ESR színképek értékelése és molekulaszerkezeti értelmezése ESR színképek értékelése és molekulaszerkezeti értelmezése Elméleti alap: Atkins: Fizikai Kémia II, 187-188, 146, 1410, 152 158 fejezetek A gyakorlat során egy párosítatlan elektronnal rendelkező benzoszemikinon

Részletesebben

A ROBBANÓANYAGOK KEZELÉSBIZTOSSÁGÁRÓL

A ROBBANÓANYAGOK KEZELÉSBIZTOSSÁGÁRÓL A ROBBANÓANYAGOK KEZELÉSBIZTOSSÁGÁRÓL Dr. BOHUS Géza*, BŐHM Szilvia* * Miskolci Egyetem, Bányászati és Geotechnikai Tanszék ABSTRACT By emitted blasting materials, treatment-safeness is required. These

Részletesebben

Tanulói munkafüzet. FIZIKA 9. évfolyam 2015. egyetemi docens

Tanulói munkafüzet. FIZIKA 9. évfolyam 2015. egyetemi docens Tanulói munkafüzet FIZIKA 9. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Az egyenletes mozgás vizsgálata... 3 2. Az egyenes vonalú

Részletesebben

Rutherford-féle atommodell

Rutherford-féle atommodell Rutherfordféle atommodell Manchesteri Egyetem 1909 1911 Hans Geiger, Ernest Marsden Ernest Rutherford vezetésével Az arany szerkezetének felderítésére irányuló szóráskísérletek Alfarészecskékkel bombáztak

Részletesebben

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I.

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I. Oktatási Hivatal A 8/9. tanévi FIZIKA Országos Közéiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 15. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 15. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM

Részletesebben

3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA

3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA 3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA 1. Az aktivitásmérés jelentosége Modern világunk mindennapi élete számtalan helyen felhasználja azokat az ismereteket, amelyekhez a fizika az atommagok

Részletesebben

EMELT SZINT SZÓBELI MINTATÉTELSOR ÉS ÉRTÉKELÉSI ÚTMUTATÓ

EMELT SZINT SZÓBELI MINTATÉTELSOR ÉS ÉRTÉKELÉSI ÚTMUTATÓ EMELT SZINT SZÓBELI MINTATÉTELSOR ÉS ÉRTÉKELÉSI ÚTMUTATÓ Az egyenes vonalú egyenletes mozgás Bizonyítsa méréssel, hogy a ferdére állított csben mozgó buborék egyenes vonalú egyenletes mozgást végez! Készítsen

Részletesebben

Budapesti Műszaki- és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Gépjárművek Tanszék

Budapesti Műszaki- és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Gépjárművek Tanszék Budapesti Műszaki- és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Gépjárművek Tanszék Gépjármű elektronika laborgyakorlat Elektromos autó Tartalomjegyzék Elektromos autó Elmélet EJJT kisautó bemutatása

Részletesebben

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció A 2008-as bajor fizika érettségi feladatok (Leistungskurs) Munkaidő: 240 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia) L Ph 1 1. Kozmikus részecskék mozgása

Részletesebben

Mössbauer Spektroszkópia

Mössbauer Spektroszkópia Mössbauer Spektroszkópia Homa Gábor, Markó Gergely Mérés dátuma: 2008. 10. 15., 2008. 10. 22., 2008. 11. 05. Leadás dátuma: 2008. 11. 23. Figure 1: Rezonancia-abszorpció és szórás 1 Elméleti összefoglaló

Részletesebben

Elméleti zika 2. Klasszikus elektrodinamika. Bántay Péter. ELTE, Elméleti Fizika tanszék

Elméleti zika 2. Klasszikus elektrodinamika. Bántay Péter. ELTE, Elméleti Fizika tanszék Elméleti zika 2 Klasszikus elektrodinamika Bántay Péter ELTE, Elméleti Fizika tanszék El adás látogatása nem kötelez, de gyakorlaté igen! Prezentációs anyagok & vizsgatételek: http://elmfiz.elte.hu/~bantay/eldin.html

Részletesebben

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 MŰSZAKI ISMERETEK Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Az előadás áttekintése Méret meghatározás Alaki jellemzők Felületmérés Tömeg, térfogat, sűrűség meghatározása

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

Kondenzátorok. Fizikai alapok

Kondenzátorok. Fizikai alapok Kondenzátorok Fizikai alapok A kapacitás A kondenzátorok a kapacitás áramköri elemet megvalósító alkatrészek. Ha a kondenzátorra feszültséget kapcsolunk, feltöltődik. Egyenfeszültség esetén a lemezeken

Részletesebben

6. RADIOAKTIVITÁS ÉS GEOTERMIKA

6. RADIOAKTIVITÁS ÉS GEOTERMIKA 6. RADIOAKTIVITÁS ÉS GEOTERMIKA Radioaktivitás A tapasztalat szerint a természetben előforduló néhány elem bizonyos izotópjai nem stabilak, hanem minden külső beavatkozástól mentesen radioaktív sugárzás

Részletesebben

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens Tanulói munkafüzet FIZIKA 11. évfolyam emelt szintű tananyag 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Egyenes vonalú mozgások..... 3 2. Periodikus

Részletesebben

Száloptika, endoszkópok

Száloptika, endoszkópok Száloptika, endoszkópok Optikai mikroszkópok a diagnosztikában Elektronmikroszkópia, fluorescens és konfokális mikroszkópia PTE-ÁOK Biofizikai ntézet Czimbalek Lívia 2009.03.16. Száloptika, endoszkópok

Részletesebben

Anyagszerkezettan és anyagvizsgálat (BMEGEMTAGK1)

Anyagszerkezettan és anyagvizsgálat (BMEGEMTAGK1) Segédlet az Anyagszerkezettan és anyagvizsgálat (BMEGEMTAGK1) tárgy hallgatói számára Készítette a BME Anyagtudomány és Technológia Tanszék Munkaközössége Összeállította: dr. Orbulov Imre Norbert 1 Laborgyakorlatok

Részletesebben

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható:

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható: 1. Értelmezze az áramokkal kifejezett erőtörvényt. Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. Az I 2 áramot vivő vezetőre ható F 2 erő fellépését

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. május 18. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK

FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK FIZIKA KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban meghatározott módon az alábbi kompetenciák meglétét kell bizonyítania: - ismeretei összekapcsolása a mindennapokban tapasztalt

Részletesebben

A kvantummechanika általános formalizmusa

A kvantummechanika általános formalizmusa A kvantummechanika általános formalizmusa October 4, 2006 Jelen fejezetünk célja bevezetni egy általános matematikai formalizmust amelynek segítségével a végtelen dimenziós vektorterek elegánsan tárgyalhatók.

Részletesebben

A.15. Oldalirányban nem megtámasztott gerendák

A.15. Oldalirányban nem megtámasztott gerendák A.15. Oldalirányban nem megtámasztott gerendák A.15.1. Bevezetés Amikor egy karcsú szerkezeti elemet a nagyobb merevségű síkjában terhelünk, mindig fennáll annak lehetősége, hogy egy hajlékonyabb síkban

Részletesebben

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését!

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! Az atom az anyagok legkisebb, kémiai módszerekkel tovább már nem bontható része. Az atomok atommagból és

Részletesebben

Fizika 7. 8. évfolyam

Fizika 7. 8. évfolyam Éves órakeret: 55,5 Heti óraszám: 1,5 7. évfolyam Fizika 7. 8. évfolyam Óraszám A testek néhány tulajdonsága 8 A testek mozgása 8 A dinamika alapjai 10 A nyomás 8 Hőtan 12 Összefoglalás, ellenőrzés 10

Részletesebben

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997 NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb

Részletesebben

TANTERV. A 11-12.évfolyam emelt szintű fizika tantárgyához. 11. évfolyam: MECHANIKA. 38 óra. Egyenes vonalú egyenletes mozgás kinematikája

TANTERV. A 11-12.évfolyam emelt szintű fizika tantárgyához. 11. évfolyam: MECHANIKA. 38 óra. Egyenes vonalú egyenletes mozgás kinematikája TANTERV A 11-12.évfolyam emelt szintű fizika tantárgyához 11. évfolyam: MECHANIKA 38 óra Egyenes vonalú egyenletes mozgás kinematikája Egyenes vonalú egyenletesen változó mozgás kinematikája Egyenes vonalú

Részletesebben

7. é v f o l y a m. Összesen: 54. Tematikai egység/ Fejlesztési cél. Órakeret. A testek, folyamatok mérhető tulajdonságai. 6 óra

7. é v f o l y a m. Összesen: 54. Tematikai egység/ Fejlesztési cél. Órakeret. A testek, folyamatok mérhető tulajdonságai. 6 óra 7. é v f o l y a m Témakörök Órakeret A testek, folyamatok mérhető tulajdonságai. 6 Hőmérséklet, halmazállapot. 14 A hang, hullámmozgás a természetben. 5 Az energia. 11 A járművek mozgásának jellemzése.

Részletesebben

Előtétszó Jele Szorzó milli m 10-3 mikro 10-6 nano n 10-9 piko p 10-12 femto f 10-15 atto a 10-18

Előtétszó Jele Szorzó milli m 10-3 mikro 10-6 nano n 10-9 piko p 10-12 femto f 10-15 atto a 10-18 1 Az anyagmennyiség, a periódusos rendszer Előtétszavak (prefixumok) Előtétszó Jele Szorzó milli m 10-3 mikro 10-6 nano n 10-9 piko p 10-12 femto f 10-15 atto a 10-18 Az anyagmennyiség A részecskék darabszámát

Részletesebben

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I. Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA B1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK MFI mérés HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON

Részletesebben

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat)

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) I. Pontszerű test 1. Pontszerű test modellje. Pontszerű test egyensúlya 3. Pontszerű test mozgása a) Egyenes vonalú egyenletes

Részletesebben

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra

Részletesebben

Akuszto-optikai fénydiffrakció

Akuszto-optikai fénydiffrakció Bevezetés Akuszto-optikai fénydiffrakció A Brillouin által megjósolt akuszto-optikai kölcsönhatást 1932-ben mutatta ki Debye és Sears. Az effektus felhasználását, vagyis akuszto-optikai elven működő eszközök

Részletesebben

A továbbhaladás feltételei fizikából és matematikából

A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban

Részletesebben

ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET.

ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET. Dr. Takáts Ágoston ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET. A TUDOMÁNYOS GONDOLKODÁSRÓL ÉS A MEGISMERÉS HÁRMAS ABSZTRAKCIÓS SZINTJÉRŐL 2007. Tartalom 1. AZ ENERGETIKAI AXIÓMARENDSZER

Részletesebben

Körmozgás és forgómozgás (Vázlat)

Körmozgás és forgómozgás (Vázlat) Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen

Részletesebben

Elektromos ingerlés ELEKTROMOS INGERLÉS. A sejtmembrán szerkezete. Na + extra. Elektromos ingerlés:

Elektromos ingerlés ELEKTROMOS INGERLÉS. A sejtmembrán szerkezete. Na + extra. Elektromos ingerlés: Elektromos ingerlés: elektromos áram hatására az ideg-izomsejtben létrejövő funkcionális változás Mi kell hozzá: Elektromos ingerlés ingerelhető sejt elektromos áram ingerlő elektróda Ingerelhető sejt:

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 10. Elektrooptika, nemlineáris optika, kvantumoptika, lézerek Cserti József, jegyzet, ELTE, 2007. Az elektrooptika, a nemlineáris optikai és az

Részletesebben

2.1 Fizika - Mechanika 2.1.5 Rezgések és hullámok. Mechanikai rezgések és hullámok Kísérletek és eszközök mechanikai rezgésekhez és hullámokhoz

2.1 Fizika - Mechanika 2.1.5 Rezgések és hullámok. Mechanikai rezgések és hullámok Kísérletek és eszközök mechanikai rezgésekhez és hullámokhoz Mechanikai rezgések és hullámok Kísérletek és eszközök mechanikai rezgésekhez és hullámokhoz Rugós inga, súlyinga (matematikai inga), megfordítható inga P0515101 Állványanyagokból különböző felépítésű

Részletesebben

Alkalmazott fizika Babák, György

Alkalmazott fizika Babák, György Alkalmazott fizika Babák, György Alkalmazott fizika Babák, György Publication date 2011 Szerzői jog 2011 Szent István Egyetem Copyright 2011, Szent István Egyetem. Minden jog fenntartva, Tartalom Bevezetés...

Részletesebben

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése: Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma

Részletesebben

Fizika 12. osztály. 1. Az egyenletesen változó körmozgás kinematikai vizsgálata... 2. 2. Helmholtz-féle tekercspár... 4. 3. Franck-Hertz-kísérlet...

Fizika 12. osztály. 1. Az egyenletesen változó körmozgás kinematikai vizsgálata... 2. 2. Helmholtz-féle tekercspár... 4. 3. Franck-Hertz-kísérlet... Fizika 12. osztály 1 Fizika 12. osztály Tartalom 1. Az egyenletesen változó körmozgás kinematikai vizsgálata.......................... 2 2. Helmholtz-féle tekercspár.....................................................

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat.

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat. Néhány szó a neutronról Különböző részecskék, úgymint fotonok, neutronok, elektronok és más, töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival

Részletesebben

Valószínűségszámítás

Valószínűségszámítás Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Valószínűségszámítás programtervező informatikusok részére Eger, 010. szeptember 0. Tartalomjegyzék 1. Véletlen események...............................

Részletesebben

Fizikai alapismeretek

Fizikai alapismeretek Fizikai alapismeretek jegyzet Írták: Farkas Henrik és Wittmann Marian BME Vegyészmérnöki Kar J6-947 (1990) Műegyetemi Kiadó 60947 (1993) A jegyzet BME nívódíjat kapott 1994-ben. Az internetes változatot

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2010. október 28. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 28. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM

Részletesebben