Fogalmi alapok Mérlegegyenletek

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fogalmi alapok Mérlegegyenletek"

Átírás

1 1. Fogalmi alapok Mérlegegyenletek Utolsó módosítás: február 11.

2 A transzportfolyamatokról általában 1 A természetben lezajló folyamatok leírására szolgáló összefoglaló elmélet, amely attól függetlenül meg tudja fogalmazni a megoldás főbb kritériumait, hogy mely diszciplinához tartozik eredendően. Példák (/köz/ismert transzportok): hővezetés; diffúzió, elektromos vezetés; folyadékok és gázok konvektív áramlása; konvektív termikus energia-, anyag- és töltéstranszport. kereszteffektusok (együttesen jelenlévő transzportok) relativisztikus és kvantumos folyamatok

3 Egy egyszerű példa: a hőmérő tehetetlensége (1) 2 A hőmérő kezdeti hőmérséklete: T 2 A hőmérő hőmérséklete: T(t) A mérendő közeg hőmérséklete: T 1 A hőmérő belső energiája csak a hőmérséklettől függ, így állapotegyenlete: U=f(T). A hőtágulástól eltekintünk, így a munkavégzés zérus: W=0. A termodinamika I. főtétele szerint: du=dq. dq=cdt /C: hőkapacitás/ A hőmérő falán az időegységenként átadott hő: I= αa(t- T 1 ) α : hőátadási tényező; A: felület

4 Egy egyszerű példa: a hőmérő tehetetlensége (2) 3 A kiegyenlítődési folyamatot leíró transzportegyenlet: A kezdeti feltételek figyelembe vételéve az egyenlet megoldása: Itt a a hőmérő időállandója. De a térbeliséget is figyelembe kell venni!

5 Matematikai eszközök (1) 4 A térmennyiségek (pontfüggvények) helytől és időtől függenek a, skalárterek: hőmérséklet: nyomás: b, vektorterek: sebességtér: térerősség: koncentráció:

6 Matematikai eszközök (2) 5 Az iránymenti derivált és a gradiens: Skalártér: amelynek, szintfelületei (nívófelületei) pl. izoterm, izobár, ekvipotenciális felületek. A tér irányú iránymenti deriváltja az pontban:

7 Matematikai eszközök (3) 6 Keressük azt az vektort, amelyhez tartozó iránymenti derivált a legnagyobb. Merőleges a szintfelületeire. tér

8 Matematikai eszközök (4) 7 Vonalintegrál: irányított görbe vektortér Felületi integrál: irányított felület normálvektora vektortér Fluxus

9 Matematikai eszközök (5) 8 A divergencia: A,, oldalélű kockára történő felületi integrálás után: az vektortér forráserőssége

10 Matematikai eszközök (6) 9 A rotáció:

11 Matematikai eszközök (7) 10 A cirkuláció: A rotáció kiszámolása:

12 Matematikai eszközök (8) 11 Gauss-tétel: Stokes-tétel:

13 Matematikai eszközök (9) 12 Nevezetes összefüggések: Laplace-operátor

14 Matematikai eszközök (10) 13 A gradiens operátor henger és gömbi koordinátákban henger: ívelem négyzet: gömbi:

15 Matematikai eszközök (11) 14 A divergencia operátor henger és gömbi koordinátákban henger: gömbi:

16 Matematikai eszközök (12) 15 A Laplace-operátor henger és gömbi koordinátákban henger: gömbi:

17 Időderiváltak (1) 16 A lagrange-i és euleri leírás A tömegponttal együtt mozgó ezt jelenti a lagrange-i leírás rendszerbeli hőmérő által mért hőmérséklet változás a szubsztanciális időderiválttal fejezhető ki. A nyugvó rendszerből nézve a tér egy adott pontján más és más tömegpontok mennek át. Az pontbeli hőmérséklet időbeli változása:

18 Időderiváltak (2) 17 Mi a kapcsolat a két időderivált között? Osztályozás, elnevezések: a, azokban a pontokban, ahol : stagnációs pont b, ha a sebesség csak a hely függvénye, : állandó mozgás (steady state) c, ha, akkor szubsztanciális állandó d, ha, akkor lokálisan állandó e,, akkor konvektíve állandó

19 Mérlegegyenletek (1) 18 Extenzív mennyiségek (additív halmazfüggvények) A és tartományokon értelmezett extenzív mennyiségre: Ilyenek például: V: térfogat m: tömeg n: részecskeszám e: elektromos töltés Továbbá: U: belső energia p: impulzus L: impulzusmomentum S: spin

20 Mérlegegyenletek (2) 19 Extenzív mennyiségek (térfogati) sűrűsége: jobb: Extenzív mennyiségek fajlagos sűrűsége: Ekkor: Ha akkor

21 Mérlegegyenletek (3) 20 Az extenzív mennyiség időbeli változása: Két okból történhet: 1. A határoló felületen történő ki- és beáramlással 2. A térfogaton belüli keletkezéssel/eltűnéssel

22 Mérlegegyenletek (4) 21 Az áramerősség a határoló felületen időegységenként áthaladó extenzív mennyiség: Az áramsűrűség a határoló felület egy egységnyi tartományán időegységenként áthaladó extenzív mennyiség: Az áramsűrűség vektor bevezetésével határoló felület irányítása figyelembe vehető: Az áramlás lehet: a, konduktív b, konvektív

23 Mérlegegyenletek (5) 22 A forráserősség a térfogatban időegységenként keletkező vagy eltűnő extenzív mennyiség: A forrássűrűség az egységnyi térfogatban időegységenként keletkező vagy eltűnő extenzív mennyiség: Ezzel már formálisan kész vagyunk az extenzív mennyiségre vonatkozó mérlegegyenlet felírásával:

24 Lokális mérlegegyenletek (1) 23 Tekintsünk egy a térben rögzített térfogatot, és az azt körülvevő felületet. E térfogatban az extenzív mennyiség változása: Bevezetve az A extenzív mennyiség áramsűrűség vektorát, valamint forrássűrűséget a következő globális/integrális mérlegegyenlet írható fel:

25 Lokális mérlegegyenletek (2) 24 A Gauss-tétel segítségével a felületi integrál térfogati integrál alakra írható át: Ezt követően egy térfogati integrál mögé írható minden tag: Innen a lokális mérlegegyenletek differenciális alakja:

26 Lokális mérlegegyenletek (3) 25 Ha a áramsűrűség konvektív folyamathoz tartozik: Tömegáram (a=1) esetén a (lokális leírásbeli) tömegáramsűrűség: Így a tömegre vonatkozó annak megmaradását kifejező mérlegegyenlet: Az ilyen alakú egyenleteket kontinuitási egyenleteknek is szokás nevezni.

27 Szubsztanciális mérlegegyenletek (1) 26 Az anyagi leíráskor ez együttmozgó tömegelem nagysága állandó, így az extenzív mennyiség időbeli változása: Itt az a fajlagos mennyiség szubsztanciális deriváltja. Ha az áramsűrűség vektor, a forrássűrűség, akkor a szubsztanciális mérlegegyenlet integrális alakja:

28 Szubsztanciális mérlegegyenletek (2) 27 A Gauss-tétel segítségével a felületi integrál térfogati integrál alakra írható át: Innen a szubsztanciális mérlegegyenlet differenciális alakja: Mi a kapcsolat a és a áramsűrűségek között? Ha a tömegelem sebességgel mozog az álló rendszerben, akkor

29 Szubsztanciális mérlegegyenletek (3) 28 Ha az extenzív mennyiség konvektív módon áramlik, akkor Ha a=1, akkor a szubsztanciális tömegáram Az egyszerű helyettesítéssel származtatható szubsztanciális tömegmérleg egyenlet mindkét tagja azonosan zérus! Hm!?

30 Szubsztanciális tömegmérleg 29 Korábbról: lokális tömegmérleg továbbá Ekkor e kettőből a szubsztanciális tömegmérleg: Ha, azaz a sűrűség nem változik, akkor a az összenyomhatatlanság feltétele.

31 Egy egyszerű példa: impulzusmérleg ideális folyadékokban (1) 30 A folyadék egy tartományára ható erő a nyomás tenzorral Kifejezve, amely a Gauss-tétellel Mivel, így Mivel folyadék egységnyi térfogatának -ja, így az ideális folyadék mozgásegyenlete

32 Egy egyszerű példa: impulzusmérleg ideális folyadékokban (2) 31 Figyelembe véve, hogy alakban írható a mozgásegyenlet. A folyadék dv térfogatelemének impulzusa: Az egységnyi térfogatbeli folyadék impulzusának változása:

33 Egy egyszerű példa: impulzusmérleg ideális folyadékokban (3) 32 Innen: Továbbá egyrészt a lokális tömegmérlegből: Másrészt a mozgásegyenletből: Behelyettesítés után adódik:

34 Egy egyszerű példa: impulzusmérleg ideális folyadékokban (4) 33 Felhasználva a: valamint a: összefüggéseket a tenzor vezethető be (a a diadikus szorzatot jelenti), amellyel az impulzus változás (mérleg) kifejezhető A az impulzusáramsűrűség tenzor.

35 Fourier-féle hővezetés (1) 34 A belső energia mérlegegyenlete Az m tömegű test belső energiájának változása a dt hőmérsékletváltozás során (c a fajhő): A fajlagos belső energia változás: vagy A szubsztanciális belső energia mérleg: hőáram sűrűség forrás: Joule-hő, kémiai reakció, magreakció

36 Fourier-féle hővezetés (2) 35 Ha a konvekciótól eltekintünk, akkor A hőáramsűrűség Tekintsünk két, egymástól távolságban lévő sík falat, amely egyike, a másik hőmérsékletű. A két fal közötti hőáram arányos a felülettel a hőmérsékletkülönbséggel a két felület közti távolság reciprokával

37 Fourier-féle hővezetés (3) 36 A hőáram: Itt a Fourier-féle hővezetési együttható, amely általában erősen függ a hőmérséklettől. Így a Fourier-féle hővezetési egyenlet :

38 Fourier-féle hővezetés (4) 37 Másképp: Ha konstans, akkor az ismert alakú Fourier-egyenlet: Sok esetben fémekre konstansnak vehető, de pl. kis hőmérsékleten

39 A differenciálegyenlet 38 A és helyettesítés után a hővezetési egyenlet a alakra hozható, amely egy parabolikus differenciálegyenlet, és a diffúzió folyamatára is hasonló. A paraméter neve hődiffúzívitás. A Laplace-operátor szemléletes jelentése: a konvexitás mértéke a környezeti átlaghőmérséklet és a vizsgált pontbeli hőmérséklete közötti különbség.

40 Peremfeltételek 39 Lehetőségek: a, előírt hőmérséklet a határoló felületen b, előírt hőáram a felületen: (a normális irányú komponense) c, általános lineáris peremfeltétel (lehet persze nemlineáris is) Összefoglalva: Itt függvénye. a, eset: b, eset: c, eset: mindkettő

41 Kezdeti feltételek 40 A kezdeti időpontban fennálló hőmérséklet eloszlást a teljes térfogatra meg kell adni: A kialakuló hőmérséklet eloszlást az forrás, a kezdeti feltétel és a peremfeltétel együtt határozza meg. Forrásmentes esetben : a hőmérséklet időben nő minden olyan helyen, ahol

42 Maximum és szimmetria elvek 41 Maximum-elv: a hőmérséklet a maximumát/minimumát a kezdetben vagy a peremen éri el. Erős maximum-elv: ha a hőmérséklet eloszlásnak egy belső pontban maximuma / minimuma van ott Szimmetria-elv: ha a feladat / ok szimmetrikus ugyanolyan értelemben szimmetrikus. Pl.: eltolás, tükrözés, forgásszimmetria a megoldás

Részletes szakmai beszámoló

Részletes szakmai beszámoló Részletes szakmai beszámoló 1. Diszlokációk kollektív tulajdonságainak elméleti vizsgálata 1. 1 Belső feszültség eloszlásfüggvénye A diszlokációk kollektív tulajdonságainak megértéséhez igen fontos az

Részletesebben

Áramlástechnikai gépek Dr. Szlivka, Ferenc

Áramlástechnikai gépek Dr. Szlivka, Ferenc Áramlástechnikai gépek Dr. Szlivka, Ferenc Áramlástechnikai gépek írta Dr. Szlivka, Ferenc Publication date 2012 Szerzői jog 2012 Dr. Szlivka Ferenc Kézirat lezárva: 2012. január 31. Készült a TAMOP-4.1.2.A/2-10/1

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1413 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Elektromágneses hullámok - Hullámoptika

Elektromágneses hullámok - Hullámoptika Bevezetés a modern fizika fejezeteibe 2. (c) Elektromágneses hullámok - Hullámoptika Utolsó módosítás: 2015. január 17. 1 Az elektromágneses hullámok visszaverődési és törési törvényei (1) Kérdés: Mi történik

Részletesebben

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert:

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert: 1 / 12 A TételWiki wikiből 1 Ritka gázok állapotegyenlete 2 Viriál sorfejtés 3 Van der Waals gázok 4 Ising-modell 4.1 Az Ising-modell megoldása 1 dimenzióban(*) 4.2 Az Ising-modell átlagtérelmélete 2 dimenzióban(**)

Részletesebben

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos.

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos. Az alábbi kiskérdéseket a korábbi Pacher-féle vizsgasorokból és zh-kból gyűjtöttük ki. A többségnek a lefényképezett hivatalos megoldás volt a forrása (néha még ezt is óvatosan kellett kezelni, mert egy

Részletesebben

Reológia Nagy, Roland, Pannon Egyetem

Reológia Nagy, Roland, Pannon Egyetem Reológia Nagy, Roland, Pannon Egyetem Reológia írta Nagy, Roland Publication date 2012 Szerzői jog 2012 Pannon Egyetem A digitális tananyag a Pannon Egyetemen a TÁMOP-4.1.2/A/2-10/1-2010-0012 projekt keretében

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

A dinamikus meteorológia oktatása az ELTE-n. Tasnádi Péter, Weidinger Tamás ELTE Meteorológiai Tanszék

A dinamikus meteorológia oktatása az ELTE-n. Tasnádi Péter, Weidinger Tamás ELTE Meteorológiai Tanszék A dinamikus meteorológia oktatása az ELTE-n Tasnádi Péter, Weidinger Tamás ELTE Meteorológiai Tanszék Fıbb témakörök Mi a dinamikus meteorológia, miért fontos és miért egyszerő? A dinamikus meteorológia

Részletesebben

Elektrodinamika. Nagy, Károly

Elektrodinamika. Nagy, Károly Elektrodinamika Nagy, Károly Elektrodinamika Nagy, Károly Publication date 2002 Szerzői jog 2002 Nagy Károly, Nemzeti Tankönyvkiadó Rt. Szerző: Nagy Károly Bírálók: DR. GÁSPÁR REZSŐ - egyetemi tanár, a

Részletesebben

Mikrohullámok vizsgálata. x o

Mikrohullámok vizsgálata. x o Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia

Részletesebben

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója?

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója? 1. Prefix jelentések. 10 1 deka 10-1 deci 10 2 hektó 10-2 centi 10 3 kiló 10-3 milli 10 6 mega 10-6 mikró 10 9 giga 10-9 nano 10 12 tera 10-12 piko 10 15 peta 10-15 fento 10 18 exa 10-18 atto 2. Mi alapján

Részletesebben

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Készítette: Hornich Gergely, 2013.12.31. Kiegészítette: Mosonyi Máté (10., 32. feladatok), 2015.01.21. (Talapa Viktor 2013.01.15.-i feladatgyűjteménye

Részletesebben

A műszaki rezgéstan alapjai

A műszaki rezgéstan alapjai A műszaki rezgéstan alapjai Dr. Csernák Gábor - Dr. Stépán Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanikai Tanszék 2012 Előszó Ez a jegyzet elsősorban gépészmérnök hallgatóknak

Részletesebben

MATEMATIKAI ÉS FIZIKAI ALAPOK

MATEMATIKAI ÉS FIZIKAI ALAPOK MATEMATIKAI ÉS FIZIKAI ALAPOK F:\EGYJEGYZ\20\alapok.doc 4 Feb 20 www.rmki.kfki.hu/~szego/egyjegyz. A Dirac-delta 2. Elektrodinamika mozgó közegekben 3. Függvénytranszformációk (Fourier transzformáció)

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

3. számú mérés Szélessávú transzformátor vizsgálata

3. számú mérés Szélessávú transzformátor vizsgálata 3. számú mérés Szélessávú transzformátor vizsgálata A mérésben a hallgatók megismerkedhetnek a szélessávú transzformátorok főbb jellemzőivel. A mérési utasítás első része a méréshez szükséges elméleti

Részletesebben

2. előadás: További gömbi fogalmak

2. előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással

Részletesebben

Alkalmazott fizika Babák, György

Alkalmazott fizika Babák, György Alkalmazott fizika Babák, György Alkalmazott fizika Babák, György Publication date 2011 Szerzői jog 2011 Szent István Egyetem Copyright 2011, Szent István Egyetem. Minden jog fenntartva, Tartalom Bevezetés...

Részletesebben

Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai

Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A VETÜLETEK ALAP- ÉS KÉPFELÜLETE Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A geodézia, a térinformatika és a térképészet a görbült földfelületen elhelyezkedő geometriai alakzatokat

Részletesebben

4. FELADATSOR (2015. 03. 02.)

4. FELADATSOR (2015. 03. 02.) 4 FELADATSOR (2015 03 02) 1 feladat Egy rendszer fundamentális egyenlete a következő:,,= a) Írd fel az egyenletet intenzív mennyiségekkel! b) Írd fel az egyenletet entrópiareperezentációban! c) Ellenőrizd,

Részletesebben

Elektromágneses terek 2011/12/1 félév. Készítette: Mucsi Dénes (HTUCA0)

Elektromágneses terek 2011/12/1 félév. Készítette: Mucsi Dénes (HTUCA0) Elektromágneses terek 2011/12/1 félév Készítette: Mucsi Dénes (HTUCA0) 1 1 Bevezetés... 11 2 Vázlat... 11 3 Matematikai eszköztár... 11 3.1 Vektoranalízis... 11 3.2 Jelenségek színtere... 11 3.3 Mezők...

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

Matematika emelt szint a 11-12.évfolyam számára

Matematika emelt szint a 11-12.évfolyam számára Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka

Részletesebben

ÉGÉSELMÉLET, HŐTAN TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR ENERGIA- ÉS MINŐSÉGÜGYI INTÉZET

ÉGÉSELMÉLET, HŐTAN TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR ENERGIA- ÉS MINŐSÉGÜGYI INTÉZET ÉGÉSELMÉLET, HŐTAN ANYAGMÉRNÖK ALAPKÉPZÉS HŐENERGIAGAZDÁLKODÁSI valamint KÉPLÉKENYALAKÍTÁSI SZAKIRÁNYON ANYAGMÉRNÖK MESTERKÉPZÉS (levelező munkarendben) TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM

Részletesebben

ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET.

ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET. Dr. Takáts Ágoston ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET. A TUDOMÁNYOS GONDOLKODÁSRÓL ÉS A MEGISMERÉS HÁRMAS ABSZTRAKCIÓS SZINTJÉRŐL 2007. Tartalom 1. AZ ENERGETIKAI AXIÓMARENDSZER

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

Bevezetés és gyakorlati tanácsok Az első lépés minden tudomány elsajátítása felé az, hogy megértjük az alapjait, és megbízható tudást szerzünk

Bevezetés és gyakorlati tanácsok Az első lépés minden tudomány elsajátítása felé az, hogy megértjük az alapjait, és megbízható tudást szerzünk Bevezetés és gyakorlati tanácsok Az első lépés minden tudomány elsajátítása felé az, hogy megértjük az alapjait, és megbízható tudást szerzünk belőle. A következő az, hogy a megszerzett tudást elmélyítjük.

Részletesebben

Fizikai alapismeretek

Fizikai alapismeretek Fizikai alapismeretek jegyzet Írták: Farkas Henrik és Wittmann Marian BME Vegyészmérnöki Kar J6-947 (1990) Műegyetemi Kiadó 60947 (1993) A jegyzet BME nívódíjat kapott 1994-ben. Az internetes változatot

Részletesebben

19. Az elektron fajlagos töltése

19. Az elektron fajlagos töltése 19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................

Részletesebben

9. Áramlástechnikai gépek üzemtana

9. Áramlástechnikai gépek üzemtana 9. Áramlástechnikai gépek üzemtana Az üzemtan az alábbi fejezetekre tagozódik: 1. Munkapont, munkapont stabilitása 2. Szivattyú indítása soros 3. Stacionárius üzem kapcsolás párhuzamos 4. Szivattyú üzem

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

Nagy Sándor: Magkémia

Nagy Sándor: Magkémia Nagy Sándor: Magkémia (kv1c1mg1) 03. Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások Nagy Sándor honlapja ismeretterjesztő anyagokkal: http://nagysandor.eu/ A Magkémia tantárgy weboldala:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 00. február. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Matematika emelt szint Fontos tudnivalók Formai

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády. Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51.

Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády. Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51. Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51. évfolyam Az BB kategória 01. fordulójának feladatai (Archimédiász) (A

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA B1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK MFI mérés HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON

Részletesebben

A magkémia alapjai. Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások. Nagy Sándor ELTE, Kémiai Intézet

A magkémia alapjai. Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások. Nagy Sándor ELTE, Kémiai Intézet A magkémia alapjai Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások Nagy Sándor ELTE, Kémiai Intézet 03 E gradu U x, r U y U, r U z T Mondom: NIN-CSEN TÉR-E-RŐŐŐŐ! A tömör golyó töltéseloszlásához

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok

Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 05/08/2012 Beadás ideje: 05/11/2012 Érdemjegy: 1 1. A mérés

Részletesebben

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje) lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,

Részletesebben

A kvantummechanika általános formalizmusa

A kvantummechanika általános formalizmusa A kvantummechanika általános formalizmusa October 4, 2006 Jelen fejezetünk célja bevezetni egy általános matematikai formalizmust amelynek segítségével a végtelen dimenziós vektorterek elegánsan tárgyalhatók.

Részletesebben

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin

Részletesebben

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8.

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. 1. feladat: Az elszökő hélium Több helyen hallhattuk, olvashattuk az alábbit: A hélium kis móltömege miatt elszökik a Föld gravitációs teréből. Ennek

Részletesebben

Tartalom. Matematikai alapok. Termékgyártási példafeladat. Keverési példafeladat Szállítási példafeladat Hátizsák feladat, egészértékű feladat

Tartalom. Matematikai alapok. Termékgyártási példafeladat. Keverési példafeladat Szállítási példafeladat Hátizsák feladat, egészértékű feladat 6. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Termékgyártási

Részletesebben

Integrált áramkörök termikus szimulációja

Integrált áramkörök termikus szimulációja BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Villamosmérnöki és Informatikai Kar Elektronikus Eszközök Tanszéke Dr. Székely Vladimír Integrált áramkörök termikus szimulációja Segédlet a Mikroelektronika

Részletesebben

Részecskék hullámtermészete

Részecskék hullámtermészete Részecskék ullámtermészete Bevezetés A sugárzás és az anyag egyaránt mutat részecskejellegű és ullámjellegű tulajdonságokat. Atommodellek A Tomson modell J.J. Tomson 1898 A negatív töltésű elektronok pozitív

Részletesebben

Körmozgás és forgómozgás (Vázlat)

Körmozgás és forgómozgás (Vázlat) Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen

Részletesebben

2. Interpolációs görbetervezés

2. Interpolációs görbetervezés 2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 4. FIZ4 modul. Elektromosságtan

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 4. FIZ4 modul. Elektromosságtan Nyugat-magyarországi Egyetem Geoinformatikai Kara Csordásné Marton Melinda Fizikai példatár 4 FIZ4 modul Elektromosságtan SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi LXXVI

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

A továbbhaladás feltételei fizikából és matematikából

A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 9 IX MÁTRIxOk 1 MÁTRIx FOGALmA, TULAJDONSÁGAI A mátrix egy téglalap alakú táblázat, melyben az adatok, a mátrix elemei, sorokban és oszlopokban vannak elhelyezve Az (1) mátrixnak

Részletesebben

Jelenségközpontú, kísérletekkel támogatott feladatmegoldás, mint a szemléletformálás hatékony módszere

Jelenségközpontú, kísérletekkel támogatott feladatmegoldás, mint a szemléletformálás hatékony módszere Jelenségközpontú, kísérletekkel támogatott feladatmegoldás, mint a szemléletformálás hatékony módszere Juhász András (ELTE, Fizikai Intézet) 1. Bevezetés A feladatmegoldás a fizikatanítás egyik legfontosabb

Részletesebben

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA B2 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK MFI mérés HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON

Részletesebben

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc Karátson, János Horváth, Róbert Izsák, Ferenc numerikus módszerei számítógépes írta Karátson, János, Horváth, Róbert, és Izsák, Ferenc Publication date 2013 Szerzői jog 2013 Karátson János, Horváth Róbert,

Részletesebben

Áttekintés a felhasznált lineáris algebrai ismeretekről.

Áttekintés a felhasznált lineáris algebrai ismeretekről. Kiegészítés az előadássorozathoz. Áttekintés a felhasznált lineáris algebrai ismeretekről. A valószínűségszámítás (és a matematika) bizonyos kérdéseiben fontos szerepet játszik a lineáris algebra néhány

Részletesebben

2 1.a) Milyen tűzelőanyagokat ismer? Sorolja fel azok legfontosabb jellemzőit! Melyek a szén éghető és nem éghető alkotórészei? b) Hogyan működik a mérőperem? Milyen mérőeszközökkel mérhetjük az áramló

Részletesebben

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása Póda László Urbán ános: Fizika. Emelt szintű képzéshez c. tankönyv (NT-75) feladatainak megoldása R. sz.: RE75 Nemzedékek Tudása Tankönyvkiadó, Budapest Tartalom. lecke Az elektromos állapot.... lecke

Részletesebben

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1

Részletesebben

A kvantumos szerkezetű agy és a topológikus tudat

A kvantumos szerkezetű agy és a topológikus tudat Dienes István Stratégiakutató Intézet Tudatkutatási és elméleti fizikai csoport A kvantumos szerkezetű agy és a topológikus tudat A kvantummechanika felfedezése óta nagyon sok tudós felvetette már a kérdést,

Részletesebben

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja. 9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok

Részletesebben

ÉS TESZTEK A DEFINITSÉG

ÉS TESZTEK A DEFINITSÉG MÁTRIX DEFINITSÉGÉNEK FOGALMA ÉS TESZTEK A DEFINITSÉG ELDÖNTÉSÉRE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-..1.B-10//KONV-010-0001

Részletesebben

Mössbauer Spektroszkópia

Mössbauer Spektroszkópia Mössbauer Spektroszkópia Homa Gábor, Markó Gergely Mérés dátuma: 2008. 10. 15., 2008. 10. 22., 2008. 11. 05. Leadás dátuma: 2008. 11. 23. Figure 1: Rezonancia-abszorpció és szórás 1 Elméleti összefoglaló

Részletesebben

Gyakorló feladatok Tömegpont kinematikája

Gyakorló feladatok Tömegpont kinematikája Gyakorló feladatok Tömegpont kinematikája 2.3.1. Feladat Egy részecske helyzetének időfüggését az x ( t) = 3t 3 [m], t[s] pályagörbe írja le, amint a = indulva a pozitív x -tengely mentén mozog. Határozza

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés.

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés. 9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. ktivitás mérés. MÉRÉS CÉLJ: Megismerkedni a radioaktív sugárzás jellemzésére szolgáló mértékegységekkel, és a sugárzás

Részletesebben

Definíció (hullám, hullámmozgás):

Definíció (hullám, hullámmozgás): Hullámmozgás Példák: Követ dobva a vízbe a víz felszíne hullámzani kezd. Hajó úszik a vízen, akkor hullámokat kelt. Hullámokat egy kifeszített kötélen is kelthetünk. Ha a kötés egyik végét egy falhoz kötjük,

Részletesebben

Differenciál egyenletek

Differenciál egyenletek Galik Zsófia menedzser hallgató Differenciál egyenletek osztályzása Differenciál egyenletek A differenciálegyenletek olyan egyenletek a matematikában (közelebbről a matematikai analízisben), melyekben

Részletesebben

86 MAM112M előadásjegyzet, 2008/2009

86 MAM112M előadásjegyzet, 2008/2009 86 MAM11M előadásjegyzet, 8/9 5. Fourier-elmélet 5.1. Komplex trigonometrikus Fourier-sorok Tekintsük az [,], C Hilbert-teret, azaz azoknak a komplex értékű f : [,] C függvényeknek a halmazát, amelyek

Részletesebben

Mintaterv. Technológiák gépei: hűtő, szerszám, finommech. Differenciált szakmai ismeretek. Szerkezeti anyagok technológiája 4.

Mintaterv. Technológiák gépei: hűtő, szerszám, finommech. Differenciált szakmai ismeretek. Szerkezeti anyagok technológiája 4. PTE PMMIK - Tanulmányi tájékoztató 0 oldal /8 Mintaterv Természettudományos alapismeretek Fizika Mechanika. (statika) Matematika a/ Műszaki kémia Mechanika. (szil.tan) Matematika a/ Áramlástan Mechanika.

Részletesebben

Áramlástan. BMEGEÁTAE01 www.ara.bme.hu Dr. Lajos Tamás lajos@ara.bme.hu Tanszék: AE épület. v1.00

Áramlástan. BMEGEÁTAE01 www.ara.bme.hu Dr. Lajos Tamás lajos@ara.bme.hu Tanszék: AE épület. v1.00 Áramlástan BMEGEÁTAE01 www.ara.bme.hu Dr. Lajos Tamás lajos@ara.bme.hu Tanszék: AE épület v1.00 Összeállította: Péter Norbert Forrás: Lajos Tamás - Az áramlástan alapjai A 21-es kérdésért köszönet: Papp

Részletesebben

Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Szennyezőanyag transzport a talajban I. 56.lecke Transzport folyamatok ismeretének

Részletesebben

MECHANIZMUSAI. Goda Tibor okleveles gépészmérnök. Témavezető: Dr. habil. Váradi Károly egyetemi tanár. Budapest - Kaiserslautern 2002.

MECHANIZMUSAI. Goda Tibor okleveles gépészmérnök. Témavezető: Dr. habil. Váradi Károly egyetemi tanár. Budapest - Kaiserslautern 2002. KOMPOZIT-ACÉL CSÚSZÓPÁROK KOPÁSI MECHANIZMUSAI PHD ÉRTEKEZÉS Goda Tibor okleveles gépészmérnök Témavezető: Dr. habil. Váradi Károly egyetemi tanár Budapest - Kaiserslautern 2002. Nyilatkozat Alulírott

Részletesebben

Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből)

Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből) Fénytan 1 Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből) Feladatok F. 1. Vízszintes asztallapra fektetünk egy negyedhenger alakú üvegtömböt, amelynek függőlegesen álló síklapját

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor Bevezetés a számításelméletbe I. feladatgyűjtemény Szeszlér Dávid, Wiener Gábor Tartalomjegyzék Előszó 2 1. Feladatok 5 1.1. Térbeli koordinátageometria........................... 5 1.2. Vektortér, altér..................................

Részletesebben

Determinisztikus folyamatok. Kun Ferenc

Determinisztikus folyamatok. Kun Ferenc Determinisztikus folyamatok számítógépes modellezése kézirat Kun Ferenc Debreceni Egyetem Elméleti Fizikai Tanszék Debrecen 2001 2 Determinisztikus folyamatok Tartalomjegyzék 1. Determinisztikus folyamatok

Részletesebben

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A

Részletesebben

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I. Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat)

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) I. Pontszerű test 1. Pontszerű test modellje. Pontszerű test egyensúlya 3. Pontszerű test mozgása a) Egyenes vonalú egyenletes

Részletesebben

Szakács Jenő Megyei Fizikaverseny

Szakács Jenő Megyei Fizikaverseny Szakács Jenő Megyei Fizikaverseny 04/05. tanév I. forduló 04. december. . A világ leghosszabb nyílegyenes vasútvonala (Trans- Australian Railway) az ausztráliai Nullarbor sivatagon át halad Kalgoorlie

Részletesebben

Matematika tanári szeminárium a Fazekasban 2012-2013/4.

Matematika tanári szeminárium a Fazekasban 2012-2013/4. atematika tanári szeminárium a Fazekasban 2012-2013/4. 4. foglalkozás öal. 4474. feladatra 1 sok szép megoldást hoztak Gyenes Zoltán diákjai, a 9.c osztály tanulói. példához nagyon hasonló kérdéssel a

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

Feladatgyűjtemény a Topologikus Szigetelők 1. c. tárgyhoz.

Feladatgyűjtemény a Topologikus Szigetelők 1. c. tárgyhoz. Asbóth János, Oroszlány László, Pályi András Feladatgyűjtemény a Topologikus Szigetelők 1. c. tárgyhoz. A kutatás a TÁMOP 4.2.4.A/1-11-1-2012-0001 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói,

Részletesebben

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM AZ OSZÁG VEZETŐ EGYETEMI-FŐISKOLAI ELŐKÉSZÍTŐ SZEVEZETE MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PÓBAÉETTSÉGI FELADATSOHOZ. ÉVFOLYAM I. ÉSZ (ÖSSZESEN 3 PONT) 3 4 5 6 7 8 9 3 4 5 D D C D C D D D B

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK - 1 - A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK 1. Newton törvényei Newton I. törvénye Kölcsönhatás, mozgásállapot, mozgásállapot-változás, tehetetlenség,

Részletesebben

Gróf Gyula HŐKÖZLÉS. Ideiglenes jegyzet

Gróf Gyula HŐKÖZLÉS. Ideiglenes jegyzet Gróf Gyula HŐKÖZLÉS Ideiglenes jegyzet Budapest, 999 Az. 5. fejezet a Termodinamka részt jelenti. TARTALOMJEGYZÉK 6. HŐVEZETÉS SZILÁRD TESTEKBEN...5 6..A hőterjedés mechanizmusa, leírása... 5 6... A hőterjedés

Részletesebben

Környezetvédelmi analitika - Rezgési spektroszkópia Billes, Ferenc

Környezetvédelmi analitika - Rezgési spektroszkópia Billes, Ferenc Környezetvédelmi analitika - Rezgési spektroszkópia Billes, Ferenc Környezetvédelmi analitika - Rezgési spektroszkópia Billes, Ferenc Tartalom Előszó... xi 1. A MOLEKULÁK SZIMMETRIAVISZONYAI... 1 1. 1.1

Részletesebben

Kondenzátorok. Fizikai alapok

Kondenzátorok. Fizikai alapok Kondenzátorok Fizikai alapok A kapacitás A kondenzátorok a kapacitás áramköri elemet megvalósító alkatrészek. Ha a kondenzátorra feszültséget kapcsolunk, feltöltődik. Egyenfeszültség esetén a lemezeken

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

F1404 ATOMMAG- és RÉSZECSKEFIZIKA

F1404 ATOMMAG- és RÉSZECSKEFIZIKA F1404 ATOMMAG- és RÉSZECSKEFIZIKA Dr. Raics Péter DE TTK Kísérleti Fizikai Tanszék, Debrecen, Bem tér 18/A RAICS@TIGRIS.KLTE.HU Ajánlott irodalom Raics P.: Atommag- és részecskefizika. Jegyzet. DE Kísérleti

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Műszaki Mechanikai Tanszék

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Műszaki Mechanikai Tanszék Budapesti Műszaki és Gazdaságtudoányi Egyete Gépészérnöki Kar Műszaki Mechanikai Tanszék Hiper és hipoelasztikus testek konstitutív egyenleteinek eléleti és nuerikus vizsgálata DIPLOMATERV Készítette:

Részletesebben

TMDK-DOLGOZAT. Stacionárius és rádiófrekvenciás elektromágneses terek vizsgálata a momentumok módszerének segítségével

TMDK-DOLGOZAT. Stacionárius és rádiófrekvenciás elektromágneses terek vizsgálata a momentumok módszerének segítségével TMDK-DOLGOZAT Stacionárius és rádiófrekvenciás elektromágneses terek vizsgálata a momentumok módszerének segítségével Írta: M.Sc. szakos villamosmérnök hallgató Konzulens: Friedl Gergely doktorandusz hallgató,

Részletesebben

Sugárzási alapismeretek

Sugárzási alapismeretek Sugárzási alapismeretek Energia 10 20 J Évi bejövő sugárzásmennyiség 54 385 1976-os kínai földrengés 5006 Föld széntartalékának energiája 1952 Föld olajtartalékának energiája 179 Föld gáztartalékának energiája

Részletesebben

Tevékenység: Gyűjtse ki és tanulja meg a kötőcsavarok szilárdsági tulajdonságainak jelölési módját!

Tevékenység: Gyűjtse ki és tanulja meg a kötőcsavarok szilárdsági tulajdonságainak jelölési módját! Csavarkötés egy külső ( orsó ) és egy belső ( anya ) csavarmenet kapcsolódását jelenti. A következő képek a motor forgattyúsházában a főcsapágycsavarokat és a hajtókarcsavarokat mutatják. 1. Kötőcsavarok

Részletesebben