Biofizika tesztkérdések

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Biofizika tesztkérdések"

Átírás

1 Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába! Relációanalízis E kérdéstípusban állítások és indoklások szerepelnek. Válassza ki az alábbiak közül a megfelelő választ és írja a kérdés előtt lévő kockába! A) Az állítás és az indoklás is igaz, és az indoklás megmagyarázza az állítást. B) Az állítás és az indoklás is igaz, de az indoklás nem magyarázza meg az állítást. C) Az állítás igaz, de az indoklás hamis. D) Az állítás hamis, de az indoklás igaz. E) Az állítás és az indoklás is hamis. 01. Kvantumfizika 1. Az abszolút fekete test által kibocsátott hőmérsékleti sugárzás összenergiája (teljesítmény) nem függ a fekete test hőmérsékletétől. arányos a fekete test hőmérsékletének négyzetével. arányos a fekete test hőmérsékletének negyedik hatványával. 2. Egy abszolút fekete test által T hőmérsékleten kisugárzott összenergia nem függ a hőmérséklettől. fordítottan arányos a hőmérséklettel. arányos a hőmérséklet négyzetével. fordítottan arányos a hőmérséklet négyzetével. arányos a hőmérséklet negyedik hatványával. 3. A Planck-állandó dimenziója energia/idő. (J/s) energia idő. (J s) energia/hosszúság. (J/m) energia hosszúság. (J m) energia. (J) 4. A Planck-állandó energiadimenziójú mennyiség. (Energiával azonos mértékegység.) értéke arányos a rendszám négyzetgyökével. meghatározható a fotoelektronok mozgási energiájának frekvencia-függéséből. megegyezik az elektron töltésének és tömegének hányadosával. a folyamatok kvantumhatásfokának függvénye. Biofizika tesztkérdések 1 of 66

2 5. Mi a fényelektromos jelenség? Az ellenálláson áthaladó elektromos áram izzásba hozza az ellenállást. Adott fém felületéről megvilágítás hatására elektronok lépnek ki. Feszültségkülönbség hatására kisülési csőben létrejövő fényjelenség. Elektronok cinkszulfid ernyőbe ütközve az ernyőn fényfelvillanást idéznek elő. 6. A fényelektromos hatás során megvilágított fémekben áram indukálódik. a keletkező áram erőssége fordítottan arányos a fény frekvenciájával. az elnyelt (abszorbált) fotonok energiája részben az elektronok kilépési munkát fedezi. alkáli fémekből megvilágítás hatására ionok lépnek ki. elektropozitív elemekből pozitronok lépnek ki. 7. Az alábbiak közül melyik jelenség bizonyítja legegyértelműbben a fény részecske természetét? A fényelektromos hatás. A fény interferenciája. A fény törése. A fény visszaverődése. A teljes (belső) visszaverődés. 8. Fényelektromos hatás során a fém felületéről kilépő egyes elektronok energiáját nem befolyásolja a fény intenzitásának növelése. a fény frekvenciájának növelése. a fény hullámhosszának növelése. a fény fotonenergiájának növelése. 9. A fényelektromos jelenség vizsgálatánál a megvilágított fémből kilépő fotoelektronok száma függ a fény frekvenciájától. függ a fény hullámhosszától. függ a fény intenzitásától. a fentiek közül egyiktől sem függ. a fentiek közül mindegyiktől függ. 10. A fényelektromos jelenség során a fémből kilépő elektron kinetikus energiáját nem befolyásolja a fény intenzitásának növelése. nem befolyásolja a fény frekvenciájának növelése. nem befolyásolja a fény hullámhosszának növelése. a felsorolt tényezők egyike sem befolyásolja. a felsorolt tényezők mindegyike befolyásolja. 11. Alkáli fémből fénysugárzás hatására kilépő elektron sebessége, függ a megvilágító fény intenzitásától. hullámhosszától. intenzitásától és hullámhosszától egyaránt. Biofizika tesztkérdések 2 of 66

3 12. A fényelektromos hatás vizsgálatánál a jelenséget leállító (az áramot megszüntető) feszültség nő, ha a fény intenzitása nő. csökken, ha a fény intenzitása nő. nő, ha a fény frekvenciája nő. csökken, ha a fény frekvenciája nő. 13. Mit jelent a fény kettős természete? A fény egyaránt rendelkezik elektromos és mágneses komponenssel. A fény mind hullám-, mind részecske tulajdonságokkal rendelkezik. A fény mészpát kristályon áthaladva kettős törést szenved. A poláros fény rezgési síkját az optikailag aktív anyagok jobbra, mások balra forgatják. A fény lehet lineárisan vagy cirkulárisan poláros. 14. A de Broglie-féle anyaghullám hipotézis szerint minden mozgó részecskéhez hullám tartozik, amelynek hullámhossza egyenesen arányos a részecske impulzusával (lendületével). egyenesen arányos a részecske sebességével és fordítottan arányos a tömegével. egyenesen arányos a részecske tömegével és fordítottan arányos a sebességével. fordítottan arányos a részecske impulzusával. 15. A de Broglie-képlet szerint a fotonok energiája hc/m. az elektron hullámhossza arányos az impulzusával (lendület). az elektron hullámhossza fordítottan arányos a sebességével. az elektromosan töltött részecskék hullámhossza arányos a töltésükkel. 16. A de Broglie-féle képlet megadja egy részecske lendülete és az ehhez rendelhető hullámhossz közötti összefüggést. egy részecske kinetikus energiája és az ehhez rendelhető hullámhossz közötti összefüggést. egy részecske lendülete és az ehhez rendelhető sebesség közötti összefüggést. egy részecske lendülete és az ehhez rendelhető kinetikus energia közötti összefüggést. egy részecske lendülete és az ehhez rendelhető perdület közötti összefüggést. 17. Mekkora a frekvenciája egy 500 nm hullámhosszúságú monokromatikus fénynek (a fény sebessége m/s)? 150 Hz. 600 Hz Hz Hz Hz. 18. Mekkora a hullámhossza egy Hz frekvenciájú monokromatikus fénynek (a fény sebessége m/s)? 1, m. 1, m. Biofizika tesztkérdések 3 of 66

4 600 m. 1, m m. 6, m. 19. Milyen jelenség bizonyítja legegyértelműbben a fény hullámtermészetét? Az interferencia. A fényelektromos jelenség. A fény törése. A fény visszaverődése. A teljes (belső) fényvisszaverődés. 20. A fényelektromos hatás során az atom infravörös sugárzást bocsát ki. az atom egy elektront és egy pozitront bocsát ki. az atom ionizálódik. a fenti állitások egyike sem helyes. 21. A fényelektromos jelenség vizsgálatánál a leállító (az áramot megszüntető) feszültség nő, ha a fény intenzitása nő. csökken, ha a fény intenzitása nő. nő, ha a fény hullámhossza nő. csökken, ha a fény hullámhossza nő. 22. A fotoelektromos hatás bizonyítja hogy a fényt fotonok alkotják. a fény elektromágneses hullám. az elektron töltése a természetben előforduló legkisebb töltés. létezik ionizációs energia. egy atom energiaállapotai kvantáltak. 23. De Broglie képletének helyes alakja: λ = h p p=λ h λ = h/p 24. A Wien-féle eltolódási törvény szerint a fekete test maximális emisszióképességéhez tartozó hullámhossz független az abszolút hőmérséklettől. az abszolút hőmérséklettel egyenesen arányos. az abszolút hőmérséklettel fordítva arányos. az abszolút hőmérséklet négyzetével fordítva arányos. az abszolút hőmérséklet harmadik hatványával arányos. 25. Egy test hőmérsékletének növelésével a test által kibocsátott elektromágneses sugárzás spektruma a nagyobb hullámhosszak felé tolódik, MERT a nagyobb hullámhosszú elektromágneses sugárzás nagyobb Biofizika tesztkérdések 4 of 66

5 fotonenergiát képvisel. [E] 02. Atomfizika 26. Egy atom sugarának nagyságrendje 1 pm. 0,1 nm. 1 nm. 100 nm. 1 μm. 27. Mely fizikai mennyiség diszkrét értékeit határozza meg Bohr első posztulátuma? Az elektron energiája. Az elektron lendülete. Az elektron perdülete. Az elektron pályájának sugara. 28. A Bohr-modell szerint egy elektron energiája az atomban arányos a főkvantumszámmal. arányos a főkvantumszám négyzetével. fordítottan arányos a főkvantumszámmal. fordítottan arányos a főkvantumszám négyzetével. 29. A Bohr-modell szerint az elektron körpályájának lehetséges sugara egyenesen arányos a főkvantumszám negyedik hatványával. egyenesen arányos a főkvantumszám négyzetével. egyenesen arányos a főkvantumszámmal. fordítottan arányos a főkvantumszámmal. fordítottan arányos a főkvantumszám négyzetével. 30. Az atom melyik részében keletkezik a látható fénysugárzás? Az atommagban. A belső elektronhéjakban. A külső elektronhéjakban. A belső és külső elektronhéjakban egyaránt. A belső elektronhéjakban és a magban egyaránt. 31. A 2p elektronpálya (orbitál) csak a kétatomos molekulákat jellemzi. ugyanazzal a főkvantumszámmal rendelkezik mint a 3p orbitál. elektroneloszlása gömbszimmetrikus. összesen hat elektront tartalmazhat. a He atom elektronjainak alapállapota. Biofizika tesztkérdések 5 of 66

6 32. Az adott n főkvantumszámhoz tartozó elektronállapotok teljes száma n(n + 1). n 2. 2n n 2. n(n + 1) A Heisenberg-féle határozatlansági reláció szerint az alábbi mennyiségpárok értéke nem határozható meg egyszerre tetszőleges pontossággal: energia-impulzus hely-impulzus hely-idő impulzus-idő 34. Kinek a nevéhez fűződik a mazsolás puding kifejezés? Ernest Rutherford. James Franck. John Joseph Thomson. Niels Bohr. 35. A Franck-Hertz kísérlet bizonyítja a Rutherford elméletet. Bohr elméletet. Thomson elméletet. 36. Milyen anyaggal töltik meg az elektroncsövet a Franck-Hertz kísérletben? Neongáz. Hidrogéngáz. Vízgőz. Higanygőz. 37. Mit határoz meg a mellékkvantumszám? Energiát. Impulzust. Impulzusmomentumot (perdület). 38. Melyik mennyiség értékeit határozza meg a spinkvantumszám? Impulzus. Saját impulzusmomentum (saját perdület). Pálya impulzusmomentum. Energia. 39. Mi a neve a legnagyobb főkvantumszámú (legkülső) héjon található elektronoknak? Ekvivalens elektronok. Vegyértékelektronok. Biofizika tesztkérdések 6 of 66

7 Spin elektronok. Normális elektronok. Auger elektronok. 40. Az izzó He-gáz folytonos színképű fényt bocsát ki, MERT a fénykibocsátás Bohr II. posztulátumának megfelelően történik. [D] 03. Lézer 41. Populációinverzióra jellemző, hogy csak lézerfénnyel idézhető elő. az alacsonyabb energianívók betöltöttsége nagyobb. fenntartása külső energiát igényel. az energianívók betöltöttségét a Boltzmann-eloszlás írja le. 42. Az optikai rezonátor elemei: tekercs és kondenzátor. kondenzátor és ellenállás. két lencse. két tükör. 43. Az optikai rezonátorban a tükrök távolsága a fény frekvenciájának egész számú többszöröse. a fény hullámhosszának egész számú többszöröse. a fény félfrekvenciájának egész számú többszöröse. a fény félhullámhosszának egész számú többszöröse. 44. A 632 nm hullámhosszú He-Ne lézer esetében a rezonátortükrök távolsága 31,6 nm. 63,2 nm. 632 nm. 31,6 cm. 45. Mit jelent a koherencia? A fotonok alkotta nyaláb összetart. A fotonok alkotta nyalábok párhuzamosak. A fotonok alkotta nyaláb energiája egy kicsiny pontba összpontosul. A fotonok alkotta nyaláb energiája egy rövid ideig tartó impulzusban összpontosul. A nyaláb különböző pontjain a fázis azonos. 46. Mit jelent az időbeli koherencia? Nyalábkeresztmetszet menti fázisazonosság. Spektrális sávszélességet. Különböző időpontokban emittált fotonok fázisazonossága. Biofizika tesztkérdések 7 of 66

8 Lézerek impulzus üzemmódban való működtetési lehetőség. Polarizáltság. 47. A hologramra jellemző, hogy csak adott hullámhosszúságú lézerfénnyel állítható elő. a háromdimenziós kép rekonstruálásához szükség van a teljes hologramra. Mindkettő igaz. Egyik sem igaz. 48. Egy lézer pumpálásához az energiát biztosíthatja elektromos kisülés. intenzív megvilágítás. bármelyik a kettő közül. egyik sem. 49. Mi volt az első, 1960-ben előállított lézer aktív anyaga? Hélium. Argon. Rubin. Tallium. 50. A LASER betűszó jelentése fényelnyelés indukált emisszió révén. sugárzáserősítés indukált extinkció révén. fényerősítés indukált emisszió révén. fényelnyelés spontán emisszió révén. 51. A lézernívókról történő spontán emisszió valószínűsége az indukált emisszióhoz képest igen nagy azonos. igen kicsi. nulla. 52. Mit jelent a térbeli koherencia? Felületre eső fázisszám. Fázissazonosság a nyalábkeresztmetszet mentén. A nyaláb polarizált. Kicsi a divergencia. 53. Példa a lézer orvosi alkalmazásaira: Szemészet. Fogászat. Sebészet. Mindegyik. Egyik sem. Biofizika tesztkérdések 8 of 66

9 04. Röntgensugárzás 54. A röntgensugárzás halvány zöld színű fény. fluoreszcencia révén keletkezik. láthatatlan elektromágneses sugárzás. fémtükörrel fókuszálható. hullámhossza néhány száz nanométer. 55. Milyen tartományba eshet a röntgensugárzás hullámhossza? 1 Å (10-10 m). 100 nm. 1 μm. 1 mm. 1 cm. 1 m. 56. A röntgensugárzás abban tér el a látható fénytől, hogy sebessége nagyobb. hullámhossza nagyobb. frekvenciája nagyobb. nem mutat elhajlást. az atommagban keletkezik. 57. A röntgensugárzás határhullámhossza (λ min ) a gyorsítófeszültség növelésével növekszik. nem változik. csökken. egy határig csökken, utána nem változik. egy határig növekszik, utána nem változik. 58. A röntgencső katódáramának növelésekor nő a röntgenfotonok energiája. a röntgensugárzás intenzitása. a röntgensugárzás hullámhossza. a röntgensugárzás áthatolóképessége. 59. A röntgenkatódon átfolyó áram erősségével szabályozható a röntgensugárzás intenzitása. hullámhossza. hőmérséklete. frekvenciája. 60. A röntgencső anódjába (antikatódjába) ütköző elektronok sebessége arányos a gyorsítófeszültség négyzetével. Biofizika tesztkérdések 9 of 66

10 arányos a gyorsítófeszültség négyzetgyökével. fordítottan arányos a gyorsítófeszültséggel. fordítottan arányos a gyorsítófeszültség négyzetgyökével. 61. A röntgencső anódjába (antikatódjába) ütköző elektronok mozgási energiája egyenesen arányos a gyorsítófeszültséggel. arányos a gyorsítófeszültség négyzetgyökével. fordítottan arányos a gyorsítófeszültséggel. fordítottan arányos a gyorsítófeszültség négyzetgyökével. 62. A röntgensugárzás spektruma alapján azonosítható a röntgencső katódjának anyaga. a röntgencső anódjának anyaga. a csőben lévő töltőgáz anyaga. 63. A karakterisztikus röntgenspektrum vonalainak (csúcsainak) helye függ a katód anyagától. az anód anyagától. a röntgencső gáztöltésétől. a katód hőmérsékletétől. a gyorsítófeszültségtől. 64. Az atom mely részében keletkezik a karakterisztikus röntgensugárzás? Az atommagban. A belső elektronhéjakban. A külső elektronhéjban. A külső elektronhéjban és az atommagban egyaránt. 65. A karakterisztikus röntgensugárzás keletkezése a külső elektronhéjhoz kapcsolódik. a belső elektronhéjakhoz kapcsolódik. a külső és belső elektronhéjakhoz egyaránt kapcsolódik. nem függ össze az elektronhéjakkal. 66. A fékezési röntgensugárzás frekvenciája függ a gyorsítófeszültségtől. a katód anyagától. a röntgencső hosszától. az anód hőmérsékletétől. 67. Röntgen- és gamma-sugárzás anyaggal való kölcsönhatásakor fellépő fotoeffektus eredménye infravörös sugárzás. elektron-pozitron pár keletkezése. az atom ionizációja. egy elektron megsemmisülése. Biofizika tesztkérdések 10 of 66

11 68. A röntgencső katódáramának növelésekor nő a röntgensugárzás keménysége. a röntgensugárzás intenzitása. a röntgensugárzás hullámhossza. a röntgensugárzás áthatolóképessége. a röntgensugárzás frekvenciája. 69. A röntgensugárzás abban tér el a többi elektromágneses hullámtól, hogy terjedési sebessége különböző. hullámhossza nagyobb. nem mutat elhajlást (diffrakció). az atommagban keletkezik. egyik állítás sem igaz. 70. A röntgensugár terjedési sebessége nagyobb mint a látható fényé, MERT a frekvenciája nagyobb. [D] 71. Adott atom esetén a karakterisztikus röntgenspektrum K β csúcsához tartozó frekvencia nagyobb, mint a K α csúcshoz tartozó, MERT a K-M elektronpályák között nagyobb az energiakülönbség, mint a K-L pályák között. [A] 72. Röntgensugárzás keletkezése során a karakterisztikus sugárzást mindig megelőzi egy fékezési röntgenfoton kibocsátása, MERT csak a lassú elektronok képesek eltalálni a belső héjakon található elektronokat. [E] 73. A fékezési röntgensugárzás spektruma egyetlen jól meghatározott frekvenciájú vonalból áll, MERT az elektronok a gyorsítás során azonos mozgási energiát nyernek. [D] 74. A karakterisztikus röntgensugárzás hullámhossza mindig kisebb, mint a határhullámhossz, MERT a gyorsítófeszültség meghatározza a röntgenfotonok maximális energiáját. [D] 75. A karakterisztikus röntgensugárzás spektrumvonalainak hullámhossza nem függ attól, hogy az anód anyagában az adott fém milyen vegyületben található, MERT a kémiai kötéseket a külső elektronhéjak hozzák létre. [A] 05. Röntgendiffrakció 76. Röntgendiffrakciós vizsgálatok során az egykristály mintát általában forgatni szokták, mert mert így csökkennek az effektív rácsméretek. mert ezáltal nő a szórt sugárzás összintenzitása. hogy megtalálják a pozíciót, amelyben teljesülnek a Laue feltételek. mert ezáltal nő a módszer felbontása. 77. Hogyan változik meg egy atomi rács röntgendiffrakciós képe, ha az atomok közötti távolság csökken? A diffrakciós maximumok közötti távolság csökken. Biofizika tesztkérdések 11 of 66

12 A diffrakciós maximumok közötti távolság megnő. A diffrakciós maximumok intenzitása csökken. A diffrakciós maximumok intenzitása megnő. A teljes diffrakciós kép elfordul. 78. A röntgendiffrakciós eljárás felbontása növelhető az alkalmazott röntgensugárzás hullámhosszának növelésével. az alkalmazott röntgensugárzás hullámhosszának csökkentésével. az alkalmazott röntgensugárzás energiájának csökkentésével. a vizsgált preparátum hőmérsékletének csökkentésével. 06. Magfizika, radioaktivitás 79. Hogyan változik a neutron/proton arány az atomok tömegszámának növekedésével? Csökken. Nem változik. Nő. 80. A nukleonok közötti erős kölcsönhatás (elektromos) töltéstől független. nagy hatótávolságú. lehet vonzó vagy taszító. az 1/r 2 távolságfüggést követi. 81. Mi az atommag teljes kötési energiájának definíciója? Az az energia melyet be kell fektetnünk ahhoz, hogy a magot szabad nukleonokra bontsuk. Az E=mc 2 egyenlet alapján számított energia, ahol m a magban lévő protonok össztömege, c a fény terjedési sebessége. Az E=mc 2 egyenlet alapján számított energia, ahol m a magban lévő nukleonok össztömege, c a fény terjedési sebessége. A negatív béta-bomlás során felszabaduló energia. A gamma-sugárzás kibocsátása során felszabaduló energia. 82. Az egy nukleonra eső kötési energia abszolút értéke a maximumot a vasnál éri el. a tömegszámmal egyenesen arányos. a tömegszámmal fordítva arányos. a tömegszám periodikus függvénye. független a tömegszámtól Bq (Becquerel) annak a radioaktív preparátumnak az aktivitása, amelyben 1 perc alatt 10 bomlás következik be. 1 másodperc alatt 10 bomlás következik be. 1 óra alatt 10 bomlás következik be. Biofizika tesztkérdések 12 of 66

13 10 másodperc alatt 1 bomlás következik be. 10 perc alatt 1 bomlás következik be. 84. Egy radioaktív atommag időegység alatt történő elbomlásának valószínűsége nagyobb mint egy. pozitív, de kisebb mint egy. bármilyen érték lehet. csak zérus vagy egy lehet. mindig páros szám. 85. A radioaktív atommagok bomlási valószínűségét befolyásolja a mintát körülvevő nagyfrekvenciás mágneses tér. befolyásolja a külső nyomás. befolyásolja a hőmérséklet. befolyásolja a közeg oxigén-tartalma. külső fizikai körülmények egyáltalán nem befolyásolják. 86. Egy radioaktív mintában az időegység alatt elbomló atomok száma függ a hőmérséklettől. a külső nyomástól. a jelenlévő radioaktív atomok számától. a külső mágneses tértől. a külső elektromos tértől. 87. Hogyan függ össze a radioaktív bomlási állandó és a felezési idő? Nagyobb bomlási állandóhoz nagyobb felezési idő tartozik. Nagyobb bomlási állandóhoz kisebb felezési idő tartozik. Nincs közöttük összefüggés. 88. Milyen összefüggés van a radioaktív atommagok felezési ideje és átlagos élettartama között? Semmilyen (függetlenek egymástól). Egyenesen arányosak egymással. Fordítottan arányosak egymással. Más függvény szerint függenek egymástól. 89. Egy adott radioaktív anyag felezési ideje megegyezik a radioaktív magok átlagos élettartamával. mindig nagyobb mint a radioaktív magok átlagos élettartama. mindig kisebb mint a radioaktív magok átlagos élettartama. lehet kisebb vagy nagyobb mint a radioaktív magok átlagos élettartama. 90. Ha egy radioaktív anyag felezési ideje 1 nap, mennyi idő alatt csökken a radioaktív magok száma nullára? 0,5 nap. 1 nap. 2 nap. Biofizika tesztkérdések 13 of 66

14 4 nap. Nagyon hosszú idő alatt. 91. Kilencszeres felezési idő alatt a bomlatlan magok száma az eredeti szám 64-ed részére csökken. 256-od részére csökken. 512-ed részére csökken ed részére csökken ad részére csökken. 92. Az alfa-sugárzást elektronok alkotják. pozitronok alkotják. hélium-atommagok alkotják. fotonok alkotják. neutronok alkotják. protonok alkotják. 93. A negatív béta-sugárzást elektronok alkotják. pozitronok alkotják. hélium-atommagok alkotják. fotonok alkotják. neutronok alkotják. protonok alkotják. 94. A pozitív béta-sugárzást elektronok alkotják. pozitronok alkotják. hélium-atommagok alkotják. fotonok alkotják. neutronok alkotják. protonok alkotják. 95. A gamma-sugárzást elektronok alkotják. pozitronok alkotják. hélium-atommagok alkotják. fotonok alkotják. neutronok alkotják. protonok alkotják. 96. Melyik állítás igaz az alábbiak közül? Az alfa-sugárzást hélium-atomok alkotják. A negatív béta-sugárzást fotonok alkotják. Biofizika tesztkérdések 14 of 66

15 A pozitív béta-sugárzást pozitronok (antielektronok) alkotják. A gamma-sugárzást neutronok alkotják. A röntgensugárzást elektronok alkotják. 97. Az atom mely részében keletkezik a gamma-sugárzás? Az atommagban. A belső elektronhéjban. A külső elektronhéjban. A belső elektronhéjban és az atommagban egyaránt. 98. A gamma-sugárzás gyors elektronok lefékezésekor keletkezik. atommag eredetű elektromágneses hullám. elektromosan semleges részecskékből áll, amelyek mágneses térrel eltéríthetők. elektronok két belső elektronpálya közötti átmenetekor keletkezik. 99. Melyik állítás igaz az alábbiak közül? Az alfa-, béta-, és gamma-sugárzás energiaspektruma egyaránt folytonos. Az alfa-, béta-, és gamma-sugárzás energiaspektruma egyaránt vonalas. Az alfa- és béta-sugárzás energiaspektruma folytonos, a gamma-sugárzásé vonalas. A gamma- és alfa-sugárzás energiaspektruma folytonos, a béta-sugárzásé vonalas. A béta-sugárzás energiaspektruma folytonos, az alfa- és gamma-sugárzásé vonalas Az atommag tömegszáma alfa-sugárzás esetén néggyel csökken. pozitív béta-sugárzás esetén eggyel csökken. negatív béta-sugárzás esetén eggyel nő Negatív béta-sugárzás kibocsátása során a rendszám kettővel nő. eggyel nő. változatlan marad. eggyel csökken. kettővel csökken Negatív béta-sugárzás kibocsátása során a tömegszám kettővel nő. eggyel nő. változatlan marad. eggyel csökken. kettővel csökken Pozitív béta-sugárzás kibocsátása során a rendszám kettővel nő. eggyel nő. változatlan marad. Biofizika tesztkérdések 15 of 66

16 eggyel csökken. kettővel csökken Elektron befogás (K-befogás) során a rendszám kettővel nő. eggyel nő. változatlan marad. eggyel csökken. kettővel csökken Az elektron-befogást (K-befogást) pozitron-sugárzás kíséri. proton-sugárzás kíséri. neutron-sugárzás kíséri. karakterisztikus röntgensugárzás kíséri. nem kíséri semmilyen sugárzás Az izotópok elemek radioaktív változatai. elemek kisebb kötési energiájú változatai. tömege a radioaktív bomlás során csökken. atommagjában a nukleonok száma mindig páros. kémiailag nem különböztethetők meg Melyik a bomlási törvény helyes formája (N 0 = radioaktív magok száma kezdetben, N = radioaktív magok száma t idő múlva, T = felezési idő)? N=N 0 e t/t N=N 0 e t/t N=N 0 2 t/t N=N 0 2 t/t 108. Az atommag sugarának nagyságrendje 1 fm (10-15 m). 1 pm (10-12 m). 1 Å (10-10 m). 1 nm. 1 μm. 1 mm Az atommag héjmodelljéből következő stabilitási szabály a következő: több páratlan rendszámú stabil atommag létezik, mint páros rendszámú. több páros neutronszámú stabil atommag létezik, mint páratlan neutronszámú. több páratlan tömegszámú stabil atommag létezik, mint páros tömegszámú. a páratlan tömegszámú stabil atommagok rendszáma általában páros. csak két olyan stabil atommag létezik, amelyben a protonok száma nagyobb, mint a neutronok száma. Biofizika tesztkérdések 16 of 66

17 110. A neutronok nem alkalmasak atommagok átalakítására, MERT negatív töltésük révén nem tudnak a magba behatolni. [E] 111. Egy adott radioaktív minta bomlási sebessége nem befolyásolható, MERT a bomlási valószínűség nem függ a külső körülményektől. [A] 112. Az egy nukleonra eső átlagos kötési energia a tömegszám növelésével fokozatosan nő, MERT a tömegszám növelésével nő a nukleonok száma. [D] 113. A lineáris abszorpciós együttható és a felező rétegvastagság egymással egyenesen arányos, MERT szorzatuk állandó. [D] 114. A radioaktív magok időegységre eső bomlási valószínűsége az idővel növekszik, MERT a bomlatlan magok száma csökken. [D] 115. A nehéz atommagokban nagyobb a neutronok aránya, MERT az egy nukleonra eső kötési energiát a tömegszám függvényében ábrázolva a görbének egy maximuma van. [B] 116. Azonos hullámhosszú röntgen és gamma fotonok csak energiájukban különböznek, MERT mindkettő elektromágneses sugárzás. [D] 117. A felezési idő nem jellemzi az illető radioaktív izotópot, MERT egyenesen arányos az izotópra jellemző bomlási állandóval. [E] 07. Sugárzás-anyag kölcsönhatás 118. A röntgensugárzás elnyelődésének mértéke függ az abszorbens rendszámától. az abszorbens sűrűségétől. a röntgensugárzás hullámhosszától. mindhárom felsorolt paramétertől A röntgensugárzás abszorpciója nem függ az abszorbens anyagi minőségétől. a röntgensugárzás hullámhosszától. a besugárzás idejétől. a rétegvastagságtól Az alfa-sugárzás lineáris ionsűrűsége a rétegvastagság függvényében, Lineárisan nő. Lineárisan csökken. Az elején közel állandó, majd meredeken növekszik és a végén hirtelen csökken. Az elején állandó, majd elér egy minimumot, végül megnő. Periodikusan változik. Biofizika tesztkérdések 17 of 66

18 121. A párképzés jelensége akkor jöhet létre, ha az atom közelébe érkező foton energiája tetszőleges. legalább 1,02 MeV. legalább 0,9 MeV. legfeljebb 1,4 MeV. legfeljebb 1,02 MeV A felező rétegvastagság hányszorosa csökkenti a radioaktív sugárzás intenzitását kb. ezredrészére? A sugárzás gyengülése nem függ a rétegvastagságtól Az alfa sugárzás hatótávolsága levegőben kb. 1 cm. 10 cm. 100 cm Röntgen- vagy gamma-sugárzás anyaggal való kölcsönhatásakor fellépő fotoeffektus eredménye az infravörös sugárzás. elektron-pozitron pár képződése. az atom ionizációja. egy elektron megsemmisülése A fényelektromos hatás során a gamma-foton az atommaggal lép kölcsönhatásba. egy külső pályán levő elektronnal lép kölcsönhatásba. egy belső pályán levő elektronnal lép kölcsönhatásba. egy tetszőleges elektronnal lép kölcsönhatásba A Compton-effektus gamma-fotonok kölcsönhatása az atommaggal. gamma-fotonok keletkezése elektron-pozitron pár megsemmisülése során. fotonok szóródása az atomok külső elektronhéján. elektronok kilépése egy megvilágított fémfelületről. elektronok szóródása az atomok külső elektronhéján A párkeltéskor keletkező részecskék alfa- és béta-részecske. proton és neutron. elektron és pozitron. proton és elektron Az alábbiak közül melyik képlettel számítható ki a párkeltéshez minimálisan szükséges fotonenergia Biofizika tesztkérdések 18 of 66

19 (m = az elektron tömege, v = az elektron sebessége, c = fénysebesség)? E = 0,5 mc 2 E = 0,5 mv 2 E = mc 2 E = mv 2 E = 2mc 2 E = 2mv Mekkora az a minimális fotonenergia, amely esetén megvalósulhat a párkeltés folyamata? 0,75 MeV. 1,00 MeV. 0,95 MeV. 1,02 MeV. 1,32 MeV Milyen típusú sugárzás a megsemmisülési sugárzás? Neutronsugárzás. Elektron- és pozitronsugárzás. Elektromágneses sugárzás. Pozitív béta-sugárzás. Negatív béta-sugárzás Az alfa-sugárzás által levegőben létrehozott ionok sűrűsége a részecske pályája mentén exponenciálisan csökken. a részecske pályája mentén lineárisan csökken. legnagyobb a részecske pályájának első szakaszán. legnagyobb a részecske pályájának utolsó szakaszán Az alfa sugárzás hatótávolsága levegőben néhány tized mm. néhány mm. néhány cm. néhány méter Az alfa sugárzás hatótávolsága lágy szövetekben néhány tized mm. néhány mm. néhány cm. néhány méter A gamma-sugárzás fajlagos ionizációja levegőben 1 ionpár/cm. 10 ionpár/cm. 100 ionpár/cm ionpár/cm. Biofizika tesztkérdések 19 of 66

20 A gamma-sugárzás nem okoz ionizációt Ha egy radioaktív anyag fizikai és biológiai felezési ideje egyaránt 1 nap, akkor az effektív felezési idő 0,5 nap, MERT ekkor a radioaktív anyag mennyisége 1 nap alatt csökken nullára. [C] 136. A béta-sugárzás intenzitása exponenciálisan csökken az elnyelő réteg vastagságával, MERT a béta-részecskék az atomok elektronburkából származnak. [C] 137. A béta-sugárzás ionizációs képessége sokkal nagyobb, mint az alfa- vagy gamma-sugárzásé, MERT az alfa és gamma-sugárzással ellentétben a béta-sugárzás az atom elektronhéjából és nem az atommagból származik. [E] 138. Az annihilációs (megsemmisülési) sugárzás során keletkezett két gamma-foton mozgásiránya egymással 180 fokos szöget zár be, MERT a folyamat során érvényes az energiamegmaradás törvénye. [B] 139. Az annihilációs (megsemmisülési) sugárzás során keletkezett két gamma-foton mozgásiránya egymással 180 fokos szöget zár be, MERT a folyamat során érvényes a lendületmegmaradás törvénye. [A] 140. Az alfa-sugárzás áthatolóképessége nagyobb, mint a béta-sugárzásé, MERT az alfa-részecskék a béta-részecskékkel ellentétben semlegesek. [E] 141. Az alfa-sugárzás minden körülmények között teljesen veszélytelen, MERT már néhány centiméter levegő is elnyeli. [D] 142. Az alfa-sugárzás hatótávolsága kicsi, MERT az alfa-sugárzás energiája diszkrét. [B] 143. Az alfa-sugárzás hatótávolsága viszonylag kicsi, MERT az alfa-részecskék élettartama nagyon rövid. [C] 144. Az alfa-sugárzás specifikus ionizációja nagyobb, mint a béta-sugárzásé, MERT az alfa-sugárzás energiaspektruma vonalas, míg a béta-sugárzásé folytonos. [B] 145. Az alfa-sugárzást már néhány centiméter levegő elnyeli, MERT igen nagy fajlagos ionizálóképessége miatt energiáját rövid úton elveszíti. [A] 08. Sugárbiológia 146. Egy radioaktív anyag effektív felezési ideje lassú kiürülés esetén hosszabb, mint a fizikai felezési idő. nagyon hosszú fizikai felezési idő esetén gyakorlatilag megegyezik a biológiai felezési idővel. nem függ az anyagcsere sebességétől. lineáris függvénye a fizikai felezési időnek. exponenciális függvénye a fizikai felezési időnek Ha egy radioaktív anyag fizikai és biológiai felezési ideje egyaránt 2 nap, akkor az effektív felezési idő Biofizika tesztkérdések 20 of 66

21 0,5 nap. 1 nap. 2 nap. 4 nap Ha egy radioaktív anyag fizikai és biológiai felezési ideje egyaránt 1 nap, akkor az effektív felezési idő 0,5 nap. 1 nap. 2 nap. 4 nap Besugárzást követően a túlélő egyedek hányada a dózis növelésével exponenciálisan nő. a dózis növelésével exponenciálisan csökken. a dózis növelésével lineárisan nő. a dózis növelésével lineárisan csökken A szövetek csökkenő sugárérzékenysége alapján a helyes sorrend nyirokszövet, ivarsejtek, idegszövet, erek. erek, ivarsejtek, nyirokszövet, idegszövet. nyirokszövet, ivarsejtek, erek, idegszövet. idegszövet, ivarsejtek, nyirokszövet, erek. ivarsejtek, nyirokszövet, erek, idegszövet A D 37 érték alapján meghatározható a sugárérzékeny térfogat. a radioaktív minta aktivitása. a besugárzás során keletkező szabadgyökök koncentrációja. az egységnyi térfogatban a sugárzás hatására létrejött töltések mennyisége Azonos besugárzás mellett egy hígabb oldatban az enzimmolekulák nagyobb hányada károsodik, MERT hígabb oldatban egy enzimmolekulára több szabadgyök jut, mint töményebb oldatban. [A] 153. Ha egy hígabb enzimoldatot sugárzunk be, az enzimmolekulák kisebb hányada inaktiválódik, MERT a sugárzás részecskéi közvetlenül kevesebb enzimmolekulát találnak el. [D] 154. A sugárhatás a hígítás bizonyos határon túli növelésével már nem fokozható, MERT a további hígítás eredményeként keletkező újabb szabadgyökök inaktiválás előtt növekvő valószínűséggel rekombinálódnak. [A] 155. A közölt dózis mindig nagyobb, mint az elnyelt dózis, MERT a keletkező másodlagos sugárzás nem léphet ki a vizsgált térfogatelemből. [E] 156. Bármely radioaktív sugárzás egyenlő besugárzási dózisai azonos biológiai hatást eredményeznek, MERT a biológiai hatás szoros kapcsolatban áll a specifikus ionizációval. [D] Biofizika tesztkérdések 21 of 66

22 157. A sugárérzékeny térfogat a D 37 értékkel egyenesen arányos, MERT a D 37 az egyedek 37%-os túléléséhez tartozó dózis. [D] 158. A sztochasztikus sugárhatásnak meghatározott küszöbdózisa van, MERT az e körbe tartozó megbetegedések (pl. rákbetegségek, lymphomák), illetve az utódokat sújtó genetikai károsodások bizonyos dózisszint alatt egyáltalán nem fordulnak elő. [E] 159. A dózisegyenérték fogalma lehetővé teszi, hogy valamennyi ionizáló sugárzástípus biológiai hatását összehasonlithassuk, MERT mindegyik sugárzástípusra ugyanazt a minőségi tényezőt alkalmazza. [C] 160. Különböző ionizáló sugárzásokból elnyelt azonos dózis esetében azonos a kiváltott biológiai hatás, MERT a biológiai hatás csak az anyagcsere jellemzőitől függ. [E] 09. Termodinamika 161. Az alábbi mennyiségek közül melyik nem extenzív? Tömeg. Térfogat. Hőmérséklet. Belső energia. Entrópia Az alábbi termodinamikai mennyiségek egyike NEM állapotfüggvény. Melyik? Entrópia. Entalpia. Szabadentalpia. Belső energia. A rendszer által felvett vagy leadott hőmennyiség Milyen termodinamikai rendszernek tekinthető az élő szervezet? Nyitott. Zárt. Izolált. Adiabatikus Egy termodinamikai rendszer nyitottnak tekinthető, ha az intenzív állapotjelzők nagysága helytől és időtől független. ha tömege állandó. ha környezetével csak energiát cserélhet. ha anyagot és energiát is cserélhet környezetével. ha anyag és hő kivételével bármilyen energiát cserélhet környezetével A termodinamika második főtétele szerint hő spontán csak magasabb hőmérsékletű helyről áramlik alacsonyabb hőmérsékletű hely felé. Biofizika tesztkérdések 22 of 66

23 az abszolút zérus hőmérséklet tetszőleges pontossággal megközelíthető. egy hűtőgép üzemeltetéséhez nincs szükség energiára. a hőerőgépek hatásfoka nagyobb, mint a villanymotoroké Az entrópia nem állapotfüggvény. egyenesen arányos a termodinamikai valószínűséggel. nő, ha a rendszer rendezettsége nő. irreverzíbilis folyamatok esetén csökken. reverzíbilis folyamatok esetén nem változik meg Az alábbi folyamatok közül melyik során csökken a rendszer entrópiája? Oldódás. Párolgás. Fagyás. Gázok kiterjedése A Gibbs-féle szabadenergia (szabadentalpia) megváltozása spontán folyamatok során zérus. csak reverzíbilis folyamatra értelmezett és a rendszer belső energiájától függ. megszabja az állandó nyomáson és hőmérsékleten végbemenő spontán folyamatok irányát. spontán folyamatok esetén pozitív Egy rendszer entalpiája mindig kisebb, mint a belső energiája. állapotfüggvény. csak hőközléssel változtatható. spontán folyamat során nő Az intenzív állapotjelző nagysága függ attól, hogy a rendszer mely részében mérjük. csak a rendszer tömegétől függ. rendszerek egyesítése során kiegyenlítődik. a rendszer térfogatának függvénye Az állandó térfogaton mért hőkapacitás (C v ) mindig nagyobb, mint az állandó nyomáson mért hőkapacitás. megadja a belső energia változását egységnyi hőmérsékletváltozás (1 K) hatására. független a gázok anyagi minőségétől. nem függ a tömegtől Az entrópia megváltozása spontán folyamatok során mindig pozitív. mindig negatív. a rendezettség növekedését eredményezi. csak a kiindulási állapot hőmérsékletétől függ. Biofizika tesztkérdések 23 of 66

24 173. A klasszikus termodinamika segítségével nem írhatók le a reverzíbilis folyamatok. a rendszerek egyensúlyának feltételei. a rendszerek energiaváltozási módjai. a rendszerben végbemenő folyamatok időbeli lefolyása. a rendszerben végbemenő folyamatok iránya Az alábbi állítások közül melyik érvényes a reverzíbilis folyamatokra? A rendszer által végzett munka maximális. A rendszeren végzett munka maximális. Az eredeti állapot visszaállításához több energiát kell befektetni mint amennyit a rendszer szolgáltatott. A folyamat hatásfoka mindig 100% Melyik termodinamikai főtétel határozza meg a természetben végbemenő folyamatok irányát? A nulladik főtétel. Az első főtétel. A második főtétel. A harmadik főtétel. Egyik főtétel sem A termodinamikai valószínűség egyenesen arányos a matematikai valószínűséggel. fordítottan arányos a matematikai valószínűséggel. a kedvező esetek számának és a lehetséges esetek számának hányadosa. azon mikroállapotok számát jelenti mellyel egy adott makroállapot megvalósítható. csak egynél kisebb szám lehet Melegítés hatására létrejövő fázis-átalakuláskor nem szabadulnak fel új szabadsági fokok. az új állapot fajhőjének értéke azonos maradhat az előző halmazállapotéval. nő a térfogat. állandó a hőmérséklet a fázisátalakulás során. nő a molekulák mozgási energiája A II. főtétel értelmében bármely folyamat az univerzum összentrópiáját növeli. nem változtatja. növeli, vagy nem változtatja. csökkenti. Mindhárom eset lehetséges A következő gázokra vonatkozó kémiai reakciók közül melyik eredményez nyomásnövekedést zárt reakciótérben? A + B AB Biofizika tesztkérdések 24 of 66

25 A + B C + D 2A + B C + 2D AC A + C 180. Melyik reakció termel hőt? Termikus. Endotermikus. Exotermikus. Termogenetikus. Adiabatikus Zárt rendszerben csak addig lehetségesek spontán állapotváltozások, míg az entrópia minimumot ér el, MERT ha egy zárt rendszer entrópiája minimális, a rendszer egyensúlyban van. [E] 10. Diffúzió 182. Egy közegben a részecske szabad úthossza akkor a legnagyobb, ha a közeg szilárd. folyékony. fagyott. gáz A diffúzió hajtóereje elektromos tér, mert csak elektromosan töltött részecskék diffundálnak. a részecskék közötti kémiai kölcsönhatás. az egymáson elcsúszó rétegek közti sebesség-gradiens. a molekulák véletlenszerű hőmozgása (Brown mozgás). a kísérleti edény alsó és felső része közötti nyomáskülönbség Diffúzió jön létre elektromos erőtér hatására. a részecskék közötti kémiai kölcsönhatás hatására. az egymáson elcsúszó különböző sebességű folyadékrétegek között. a részecskék rendezetlen hőmozgása révén. ha egy áramlási cső két vége között nyomáskülönbséget hozunk létre A diffúzió időben leírható a van't Hoff-törvénnyel. az általános gáztörvénnyel. Fick második törvényével. Fick harmadik törvényével. a Stokes-törvénnyel A diffúziós állandó információt nyújt Biofizika tesztkérdések 25 of 66

26 a diffundáló részecske viszkozitásáról. a diffundáló részecske mobilitásáról. a közeg sűrűségéről. a közeg kémiai összetételéről. a közeg molekulái között ható vonzóerő nagyságáról A diffúziós állandó nem függ a molekulák alakjától. csak gömb alakú részecskékre értelmezett. függ a hőmérséklettől. függ a közegben fennálló hidrosztatikai nyomástól A diffúziós állandó ismerete önmagában elegendő felvilágosítást ad az adott molekula töltéséről. viszkozitásáról. méretéről. fajlagos töltéséről (a töltés és a tömeg arányáról). hőmérsékletéről. A fenti lehetőségek egyike sem helyes Koncentrációkülönbség kiegyenlítődése során a diffúziós állandó értéke növekszik. egy nullánál nagyobb értékre csökken. nullára csökken. nem változik Mit jelent a koncentráció grádiens kifejezés? A diffúzió szinonimája. Koncentráció különbség és a távolság hányadosa a rendszer két pontja között. Magas koncentráció egy adott térrészben. Alacsony koncentráció egy adott térrészben Az egyszerű diffúzió definiciója: molekulák mozgása a magasabb koncentrációjú helyről az alacsonyabb koncentrációjú hely felé. molekulák mozgása az alacsonyabb koncentrációjú helyről a magasabb koncentrációjú hely felé. vízmolekulák mozgása egy membránon keresztül. gázmolekulák mozgása egy membránon keresztül. gáz- vagy vízmolekulák mozgása egy membránon keresztül Milyen jelenség írja le az anyagok áramlását a magasabb koncentrációjú helyről az alacsonyabb felé? Diffúzió. Egyensúly. Aktív transzport. Ozmózis Az egyszerű diffúzió folyamata Biofizika tesztkérdések 26 of 66

27 a részecskék random hőmozgásának következménye. energiát igényel, ha membránon keresztül történik. a diffundáló részecskék alacsonyabb koncentrációja felől a magasabb felé irányul. Az említett állítások egyike sem igaz Milyen összefüggés van a koncentráció-különbség nagysága és a diffúzió sebessége között? fordított arányosság egyenes arányosság nincs összefüggés az oldat térfogatától függ 195. Mit jelent a diffúziós állandó? Egységnyi térfogatban, 1 K hőmérsékletnövekedés hatására bekövetkező koncentrációnövekedés. Egységnyi idő alatt, egységnyi felületen átdiffundáló anyag mennyisége, ha a koncentráció különbség is egységnyi. Adott idő alatt, adott hőmérsékleten bekövetkező koncentrációváltozás. Egységyni idő alatt, egységnyi térfogatban átdiffundált anyag mennyisége, ha a hőmérsékletesés is egységnyi volt (1 K) A diffúziós együttható csökken, ha a közeg viszkozitása is csökken. értéke független a közeg viszkozitásától. nő, ha a diffundáló molekulák mérete csökken. értékét a diffundáló molekulák mérete nem befolyásolja Fick II. törvénye kimondja, hogy egy rendszer belső energiájának megváltozása egyenlő a rendszerrel közölt hő, és a rendszeren végzett munka összegével. csak a koncentráció térbeli változását veszi figyelembe. csak a koncentráció időbeli változását veszi figyelembe. a koncentráció térbeli, valamint időbeli változását is figyelembe veszi A diffúzióhoz szükséges idő a diffúziós távolság négyzetgyökével fordított arányosan nő. a diffúziós távolság négyzetével arányosan nő. és a diffúziós távolság között nincs összefüggés. a diffúziós távolság négyzetével fordított arányosan nő Mi befolyásolja a diffúzió sebességét? A hőmérséklet. A diffundáló molekula mérete. A koncentráció grádiens meredeksége (nagysága). A fentiek mindegyike Diffúzió csak gázok és folyadékok esetén figyelhető meg, MERT szilárd testekben az atomok csak rezgőmozgást végezhetnek. [E] Biofizika tesztkérdések 27 of 66

28 201. A diffúzió néhány centiméteres távolságra igen gyors folyamat, MERT a diffúziós idő a távolság négyzetével fordítottan arányos. [E] 202. A diffúzió néhány centiméteres távolságra igen gyors folyamat, MERT ha a diffúziós távolság nő, a diffúziós idő is nő. [D] 203. A diffúzió körülbelül 100 mikrométer távolságig viszonylag gyors folyamat, MERT a diffúziós idő a távolság négyzetével egyenesen arányos. [A] 204. Az Einstein-Stokes összefüggés szerint a diffuziót a viszkozitás is befolyásolja, MERT minél viszkózusabb az adott közeg, annál nagyobb a diffúziós együttható értéke. [C] 205. A diffúziós állandó értéke nem függ a diffundáló anyag alakjától, MERT a diffúzió a részecskék hőmozgásával kapcsolatos jelenség. [D] 206. A Brown-mozgás a részecskék random hőmozgásának a látható következménye, MERT a részecskék csak folyadékokban képesek hőmozgást végezni. [C] 207. Termikus egyensúly esetén a diffúziós folyamatok biztos hogy leállnak, MERT a diffúzió kizárólag hőmérséklet által befolyásolt folyamat. [E] 208. Fick II. törvénye képes leírni az összes diffúziós folyamatot, MERT a diffúziós folyamatok során a koncentráció térbeli és időbeli változását is figyelembe veszi. [A] 209. Fick I. törvénye alkalmazható az összes diffúziós folyamatra, MERT a diffúzió során a koncentráció térben és időben is változhat. [D] 11. Ozmózis 210. Ozmózis során a csak oldószert tartalmazó térrészben túlnyomás jön létre. a nagyobb koncentrációjú térrészből a kisebb koncentrációjú térrészbe haladó nettó folyadékáram jön létre. az oldott anyag áramlásával a koncentrációja kiegyenlítődik. a töményebb oldat felhígul. a térfelek közötti hőmérsékletkülönbség hőáramot hoz létre Az ozmózis létrejöttének alapvető feltétele: az oldott anyag koncentrációja a membrán két oldalán azonos. az egyik térrészben külső nyomást alkalmazunk. a két térfél között hőmérsékletkülönbség áll fenn. a membrán csak az oldószerre nézve átjárható Hipotóniás sóoldatba helyezett vörösvértestek térfogata nem változik. Biofizika tesztkérdések 28 of 66

29 megduzzadnak. zsugorodnak Vörösvértesteket rendre izotóniás, hipotóniás és hipertóniás sóoldatba helyezünk. Melyik összefüggés igaz a vörösvértestek térfogataira? V izo > V hiper > V hipo. V hiper > V izo > V hipo. V hipo > V hiper > V izo. V hiper > V hipo > V izo. V hipo > V izo > V hiper Hipotóniás sóoldatban inkubált vörösvértestek térfogata az izotóniás oldatban inkubált vörösvértestek térfogatához képest nagyobb. kisebb. ugyanakkora A termoozmózis a nagyobb koncentrációjú oldatrészek gravitációs erő hatására történő elmozdulása. gázok felhajtóerő által hajtott függőleges irányú áramlása. hőmérséklet-gradiens hatására fellépő folyadéktranszport. anyagáram nélküli energiatranszport Ozmózis során a membránnak nincs szerepe. a membrán semlegesíti az elektrolit oldatát. a membrán reflexiós koefficiense határozza meg a folyadékáram irányát. a membránnak változik a felülete. a membrán minden részecskét átenged Ozmotikus egyensúly esetén ugyanannyi oldószer áramlik át membránon mindkét irányba. a töményebb oldat felé áramlik több oldószer a membránon át. a hígabb oldat felé áramlik több oldószer a membránon át. nincs oldószer áramlás a membránon át Melyik jelenség figyelhető meg amikor vörösvértesteket desztillált vízbe helyezünk? Plazmolízis. Hemolízis. Zsugorodnak. Hidrolízis Melyik esetben történik plazmolízis? Növényi sejtek hipotóniás közegben. Növényi sejtek hipertóniás közegben. Biofizika tesztkérdések 29 of 66

30 Állati sejtek hipertóniás közegben. Állati sejtek hipotóniás közegben Vörösvértesteket 5%-os sóoldatba helyezve azok megduzzadnak. nem változnak összezsugorodnak 221. Vörösvértesteket 0,9%-os sóoldatba helyezve azok hipotóniás körülmények közé kerülnek. izotóniás körülmények közé kerülnek. hipertóniás körülmények közé kerülnek. pentatóniás körülmények közé kerülnek A sejtmembrán átjárható néhány, de nem minden anyag számára. Hogy nevezzük ezt a tulajdonságot? Szelektív permeábilitás. Ozmózis. Fermentáció. Diffúzió Hogyan nevezzük azt, amikor az adott molekulák ki- és beáramlása a sejt membránján keresztül egyenlő mértékű? Facilitált diffúzió. Aktív transzport. Ozmózis. Egyensúly (ekvilibrium) Hogyan nevezzük a víz áramlását egy szelektív permeábilis membránon keresztül? Ozmózis. Diffúzió. Facilitált diffúzió. Aktív transzport. Egyensúly (ekvilibrium) Mi történik a sejttel, ha desztillált vízbe helyezzük? A sejt összezsugorodik. Víz áramlik a sejtbe. A vízmolekulák nem tudják elhagyni a sejtet. Az oldott anyag nagy része kiáramlik a sejtből Egy sejtet ismeretlen oldatba helyezve a sejt megduzzad. Mit jelent ez? Az oldat a sejthez képest izotóniás. hipertóniás. hipotóniás Egy sejt belsejében az oldott anyag koncentrációja 0,07%. Melyik oldatban fog a sejt megduzzadni? Biofizika tesztkérdések 30 of 66

31 0,01%-os oldatban. 0,1%-os oldatban. 1%-os oldatban. 10%-os oldatban A felsoroltak közül melyik szükséges az ozmózis folyamatához? Permeábilis membrán. Szemipermeábilis membrán. Izotóniás oldat. ATP Egy sejtet izotóniás oldatba helyezve nincs nettó folyadékáramlás. folyadék áramlik a sejtbe. folyadék áramlik ki a sejtből. a sejt kidurran Melyik funkció NEM jellemző az eukarióta sejtmembránra? Energiatermelés. Aktív transzport. Ozmózis. Passzív diffúzió. Facilitált diffúzió Egy kezdetben állandó koncentrációjú híg oldatban hőmérséklet gradienst létrehozva, az oldott anyag koncentrációja egy idő után a hidegebb helyen nagyobb lesz, MERT a diffúziós állandó értéke egyenesen arányos az abszolút hőmérséklettel. [A] 232. A Van't Hoff-törvény értelmében a tömény oldatok ozmózis nyomása egyenes arányos a koncentrációval, MERT az ozmózis nyomás független az oldott anyag és az oldószer anyagminőségétől. [D] 233. Ozmotikus egyensúly esetén a nettó oldószeráramlás zéró, MERT időegység alatt ugyanannyi oldószer áramlik át a membránon mindkét irányba. [A] 234. Ödémák kezelésekor olyan anyagokat használnak, amelyek hipotóniásak az intersticiális térhez képest, MERT a felesleges víz a töményebb oldat felé áramlik. [D] 235. A féligáteresztő (szemipermeábilis) membrán egy szelektív membrán, MERT csak az oldott anyag molekuláit engedi át. [C] 236. Az ozmózisnyomás nem függ az oldat koncentrációjától, MERT csak a vízmolekulák képesek átjutni a szemipermeábilis membránon. [D] 12. Folyadékáramlás, vérkeringés, szív Biofizika tesztkérdések 31 of 66

32 237. A Bernoulli-törvény és a kontinuitási egyenlet szerint a sztatikus nyomás az áramlási cső hossza mentén lineárisan csökken. az idővel exponenciális arányban csökken. növekvő áramlási sebesség esetén megnő. a viszkozitással fordítottan arányos. nő, ha az áramlási cső keresztmetszete nő A Bernoulli-törvény értelmében a sztatikus, dinamikus és hidrosztatikai nyomások összege állandó. a csőkeresztmetszeten időegység alatt áthaladó folyadékmennyiség állandó. turbulens áramlás valószínűbb nagy csőátmérők esetében. értágulat helyén csökken az oldalfalra nehezedő nyomás A newtoni folyadékok nem összenyomhatók. viszkozitása függ a nyírófeszültségtől. áramlása minden körülmények között lamináris. áramlása minden körülmények között turbulens A Reynolds-szám kritikus értéke felett a hidrosztatikai nyomás lecsökken. a dinamikus nyomás lecsökken. a folyadék viszkozitása hirtelen megnő. a folyadékáramlás turbulenssé válik A viszkozitás a nyírófeszültség és a sebességgrádiens hányadosa. mértékegysége a Rayl newtoni folyadék esetén a nyírófeszültséggel fordítottan arányos. Mindegyik igaz. Egyik sem igaz Viszkózus folyadékok esetén az időegység alatt átáramló térfogat (m 3 /s) egyenesen arányos az áramlási cső keresztmetszetével. az áramlási cső hosszával. az áramlási cső hosszának negyedik hatványával. a nyomáskülönbséggel. a viszkozitással Egy viszkózus folyadék esetén az eredeti érték hányszorosa lesz az időegység alatt átáramló térfogat (m 3 /s) ha a cső hossza kétszeresére nő, de minden más paraméter változatlan marad? 1/4. 1/2. Nem változik. 2. Biofizika tesztkérdések 32 of 66

33 Egy viszkózus folyadék esetén az eredeti érték hányszorosa lesz az időegység alatt átáramló térfogat (m 3 /s) ha a cső sugara kétszeresére nő, de minden más paraméter változatlan marad? 1/4. 1/2. Nem változik A Hagen-Poiseuille törvény értelmében egy viszkózus folyadék esetén az eredeti érték hányszorosa lesz az időegység alatt átáramló térfogat (m 3 /s) ha a viszkozitás kétszeresére nő, de minden más paraméter változatlan marad? 1/4. 1/2. Nem változik Egy 1 mm sugarú arteriola keresztmetszetén időegység alatt 1 ml vér jut át. Hány ml vér jut át időegység alatt ugyanilyen nyomásviszonyok mellett egy 2 mm sugarú arteriola keresztmetszetén? 1 ml. 2 ml. 4 ml. 8 ml. 16 ml A vérnyomás független a pulzusfrekvenciától. normális értéke periodikusan változik. nem lehet nagyobb mint a külső légnyomás. a testen belül mindenütt ugyanakkora a vénákban nagyobb, mint a kapillárisokban A vér ideális folyadék. newtoni folyadék. nem-newtoni folyadék. viszkozitása állandó A vérviszkozitás függ az érátmérőtől. Biofizika tesztkérdések 33 of 66

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 12 A MODERN FIZIKa ELEMEI XII. MAGfIZIkA ÉS RADIOAkTIVITÁS 1. AZ ATOmmAG Rutherford (1911) arra a következtetésre jutott, hogy az atom pozitív töltését hordozó anyag

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Ph 11 1. 2. Mozgás mágneses térben

Ph 11 1. 2. Mozgás mágneses térben Bajor fizika érettségi feladatok (Tervezet G8 2011-től) Munkaidő: 180 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia. A két feladatsor nem származhat azonos témakörből.)

Részletesebben

Fizika 2 (Modern fizika szemlélete) feladatsor

Fizika 2 (Modern fizika szemlélete) feladatsor Fizika 2 (Modern fizika szemlélete) feladatsor 1. Speciális relativitáselmélet 1. A Majmok bolygója című mozifilm és könyv szerint hibernált asztronauták a Föld távoli jövőjébe utaznak, amikorra az emberi

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK

FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK FIZIKA KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban meghatározott módon az alábbi kompetenciák meglétét kell bizonyítania: - ismeretei összekapcsolása a mindennapokban tapasztalt

Részletesebben

Gimnázium-szakközépiskola 12. Fizika (Közép szintű érettségi előkészítő)

Gimnázium-szakközépiskola 12. Fizika (Közép szintű érettségi előkészítő) 12. évfolyam Az középszintű érettségi előkészítő elsődleges célja az előzőleg elsajátított tananyag rendszerező ismétlése, a középszintű érettségi vizsgakövetelményeinek figyelembevételével. Tematikai

Részletesebben

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció A 2008-as bajor fizika érettségi feladatok (Leistungskurs) Munkaidő: 240 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia) L Ph 1 1. Kozmikus részecskék mozgása

Részletesebben

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997 NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám Egy nukleonra jutó kötési energia Atomfizikai összefoglaló: radioaktív bomlás Varga József Debreceni Egyetem OEC Nukleáris Medicina Intézet Kötési energia (MeV) Tömegszám 1. 1. Áttekintés: atomfizika Varga

Részletesebben

Elektromágneses hullámok, a fény

Elektromágneses hullámok, a fény Elektromágneses hullámok, a fény Az elektromos töltéssel rendelkező testeknek a töltésük miatt fellépő kölcsönhatását az elektromos és mágneses tér segítségével írhatjuk le. A kölcsönhatás úgy működik,

Részletesebben

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása Az ionizáló sugárzások kölcsönhatása anyaggal, nehéz és könnyű töltött részek kölcsönhatása, röntgen és γ-sugárzás kölcsönhatása Az ionizáló sugárzások mérése, gáztöltésű detektorok (ionizációs kamra,

Részletesebben

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba BME NTI 1997 2 Tartalom 1. BEVEZETÉS... 3 2. ELMÉLETI ÖSSZEFOGLALÁS... 3 2.1. Töltéshordozók keletkezése (ionizáció) töltött részecskéknél...

Részletesebben

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8.

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. 1. feladat: Az elszökő hélium Több helyen hallhattuk, olvashattuk az alábbit: A hélium kis móltömege miatt elszökik a Föld gravitációs teréből. Ennek

Részletesebben

Fizika 12. osztály. 1. Az egyenletesen változó körmozgás kinematikai vizsgálata... 2. 2. Helmholtz-féle tekercspár... 4. 3. Franck-Hertz-kísérlet...

Fizika 12. osztály. 1. Az egyenletesen változó körmozgás kinematikai vizsgálata... 2. 2. Helmholtz-féle tekercspár... 4. 3. Franck-Hertz-kísérlet... Fizika 12. osztály 1 Fizika 12. osztály Tartalom 1. Az egyenletesen változó körmozgás kinematikai vizsgálata.......................... 2 2. Helmholtz-féle tekercspár.....................................................

Részletesebben

Tamás Ferenc: Természetes radioaktivitás és hatásai

Tamás Ferenc: Természetes radioaktivitás és hatásai Tamás Ferenc: Természetes radioaktivitás és hatásai A radioaktivitás a nem stabil magú atomok (más néven: radioaktív) természetes úton való elbomlása. Ez a bomlás igen nagy energiájú ionizáló sugárzást

Részletesebben

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.)

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Atomok, atommodellek (tankönyv 82.o.-84.o.) Már az ókorban Démokritosz (i. e. 500) úgy gondolta, hogy minden anyag tovább nem osztható alapegységekből,

Részletesebben

Rutherford-féle atommodell

Rutherford-féle atommodell Rutherfordféle atommodell Manchesteri Egyetem 1909 1911 Hans Geiger, Ernest Marsden Ernest Rutherford vezetésével Az arany szerkezetének felderítésére irányuló szóráskísérletek Alfarészecskékkel bombáztak

Részletesebben

3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA

3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA 3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA 1. Az aktivitásmérés jelentosége Modern világunk mindennapi élete számtalan helyen felhasználja azokat az ismereteket, amelyekhez a fizika az atommagok

Részletesebben

Atommag, atommag átalakulások, radioaktivitás

Atommag, atommag átalakulások, radioaktivitás Atommag, atommag átalakulások, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Paksi Atomerőmű üzemidő hosszabbítása. Meghatározások 2006.02.20.

Paksi Atomerőmű üzemidő hosszabbítása. Meghatározások 2006.02.20. Meghatározások 2006.02.20. MEGHATÁROZÁSOK Aktivitás Aktivitás-koncentráció Atomerőmű Baleset Baleset elhárítás Baleseti sugárterhelés Beavatkozás Beavatkozási szint Belső sugárterhelés Besugárzás Biztonsági

Részletesebben

Gamma-spektrometria HPGe detektorral

Gamma-spektrometria HPGe detektorral Gamma-spektrometria HPGe detektorral 1. Bevezetés A gamma-spektrometria az atommagból valamilyen magfolyamat következtében (radioaktív bomlás, mesterséges vagy természetes magreakció) kilépő gamma sugárzás

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

1. Atomspektroszkópia

1. Atomspektroszkópia 1. Atomspektroszkópia 1.1. Bevezetés Az atomspektroszkópia az optikai spektroszkópiai módszerek csoportjába tartozó olyan analitikai eljárás, mellyel az anyagok elemi összetételét határozhatjuk meg. Az

Részletesebben

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást!

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást! 2006/I/I.1. * Ideális gázzal 31,4 J hőt közlünk. A gáz állandó, 1,4 10 4 Pa nyomáson tágul 0,3 liter térfogatról 0,8 liter térfogatúra. a) Mennyi munkát végzett a gáz? b) Mekkora a gáz belső energiájának

Részletesebben

3 He ionokat pedig elektron-sokszorozóval számlálja. A héliummérést ismert mennyiségű

3 He ionokat pedig elektron-sokszorozóval számlálja. A héliummérést ismert mennyiségű Nagytisztaságú 4 He-es izotóphígítás alkalmazása vízminták tríciumkoncentrációjának meghatározására a 3 He leányelem tömegspektrométeres mérésén alapuló módszerhez Az édesvízkészletek felmérésében, a rétegvizek

Részletesebben

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás 9/1/014 Röntgen Röntgen keletkezése Tulajdonságok Anyaggal való kölcsönhatás Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken on December 1895 and presented

Részletesebben

TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika

TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika BEVEZETÉS TANMENET Óra Tananyag Tevékenység, megjegyzések I. Mechanikai rezgések és hullámok 1. Bevezetés Emlékeztet : A fejezet feldolgozásához

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

19. Az elektron fajlagos töltése

19. Az elektron fajlagos töltése 19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................

Részletesebben

Gamma-kamera SPECT PET

Gamma-kamera SPECT PET Gamma-kamera SPECT PET 2012.04.16. Gamma sugárzás Elektromágneses sugárzás (f>10 19 Hz, E>100keV (1.6*10-14 J), λ

Részletesebben

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT.

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT. T&T tematika & tételek A magkémia alapjai, kv1n1mg1 (A) A magkémia alapjai tárgykiegészítés, kv1n1mgx (X) című, ill. kódú integrált előadáshoz http://www.chem.elte.hu/sandor.nagy/okt/amka/index.html Bevezető

Részletesebben

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) A sugárzások a károsító hatásuk mértékének megítélése szempontjából

Részletesebben

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat.

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat. Néhány szó a neutronról Különböző részecskék, úgymint fotonok, neutronok, elektronok és más, töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival

Részletesebben

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica Radioaktív gyógyszerkészítmények Ph.Hg.VIII. Ph.Eur. 8.0. -1 01/2014:0125 RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK Radiopharmaceutica DEFINÍCIÓ Radioaktív gyógyszerkészítménynek vagy radiogyógyszereknek nevezünk

Részletesebben

Az osztályozó vizsgák tematikája fizikából 7-11. évfolyam 2015/2016. tanév

Az osztályozó vizsgák tematikája fizikából 7-11. évfolyam 2015/2016. tanév Az osztályozó vizsgák tematikája fizikából 7-11. évfolyam 2015/2016. tanév Fizikából a tanulónak szóbeli osztályozó vizsgán kell részt vennie. A szóbeli vizsga időtartama 20 perc. A vizsgázónak 2 egyszerű

Részletesebben

Részecske- és magfizika vizsgakérdések

Részecske- és magfizika vizsgakérdések Részecske- és magfizika vizsgakérdések Az alábbi kérdések (vagy ezek kombinációi) fognak az írásbeli és szóbeli vizsgán is szerepelni. A vastag betűs kérdések egyszerűbb, beugró-kérdések, ezeknek kb. 90%-át

Részletesebben

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete Magfizika (Vázlat) 1. Az atommaggal kapcsolatos ismeretek kialakulásának történeti áttekintése a) A természetes radioaktivitás felfedezése b) Mesterséges atommag-átalakítás Proton felfedezése Neutron felfedezése

Részletesebben

SPEKTROFOTOMETRIAI MÉRÉSEK

SPEKTROFOTOMETRIAI MÉRÉSEK SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), elsı kérdésünk valószínőleg az lesz, hogy mi ez az anyag, milyen

Részletesebben

Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált

Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált Síkban polarizált hullámok Tekintsünk egy z-tengely irányában haladó fénysugarat. Ha a tér egy adott pontjában az idő függvényeként figyeljük az elektromos (ill. mágneses) térerősség vektorokat, akkor

Részletesebben

2 Mekkora az egyes sejtekre vonatkozó nyugalmi potenciál értéke? 30 és 100 mikrovolt közötti értékek nagyságrendjébe esik

2 Mekkora az egyes sejtekre vonatkozó nyugalmi potenciál értéke? 30 és 100 mikrovolt közötti értékek nagyságrendjébe esik 1 Melyik érték HMIS a nyugalmi állapotban mérhető INTRLLUÁRIS ionkoncentrációkra vonatkozóan? ~4 mmol/l l - 140 150 mmol/l Na + ~155 mmol/l fehérje-anionok 140 155 mmol/l K +

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK - 1 - A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK 1. Newton törvényei Newton I. törvénye Kölcsönhatás, mozgásállapot, mozgásállapot-változás, tehetetlenség,

Részletesebben

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés.

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés. 9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. ktivitás mérés. MÉRÉS CÉLJ: Megismerkedni a radioaktív sugárzás jellemzésére szolgáló mértékegységekkel, és a sugárzás

Részletesebben

1. tesztlap. Fizikát elsı évben tanulók számára

1. tesztlap. Fizikát elsı évben tanulók számára 1. tesztlap Fizikát elsı évben tanulók számára 1.) Egy fékezı vonatban menetiránynak megfelelıen ülve feldobunk egy labdát. Hová esik vissza? A) Éppen a kezünkbe. B) Elénk C) Mögénk. D) Attól függ, milyen

Részletesebben

Szaktanári segédlet. FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia

Szaktanári segédlet. FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia Szaktanári segédlet FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia 1 Tartalom Munka- és balesetvédelmi, tűzvédelmi szabályok... 2 1-2. Elektrosztatika... 4 3. Egyszerű áramkörök... 9 4. Ohm

Részletesebben

EMELT SZINT SZÓBELI MINTATÉTELSOR ÉS ÉRTÉKELÉSI ÚTMUTATÓ

EMELT SZINT SZÓBELI MINTATÉTELSOR ÉS ÉRTÉKELÉSI ÚTMUTATÓ EMELT SZINT SZÓBELI MINTATÉTELSOR ÉS ÉRTÉKELÉSI ÚTMUTATÓ Az egyenes vonalú egyenletes mozgás Bizonyítsa méréssel, hogy a ferdére állított csben mozgó buborék egyenes vonalú egyenletes mozgást végez! Készítsen

Részletesebben

1. A gyorsulás Kísérlet: Eszközök Számítsa ki

1. A gyorsulás Kísérlet: Eszközök Számítsa ki 1. A gyorsulás Gyakorlati példákra alapozva ismertesse a változó és az egyenletesen változó mozgást! Általánosítsa a sebesség fogalmát úgy, hogy azzal a változó mozgásokat is jellemezni lehessen! Ismertesse

Részletesebben

FIZIKA. Általános érettségi tantárgyi vizsgakatalógus Splošna matura

FIZIKA. Általános érettségi tantárgyi vizsgakatalógus Splošna matura Ljubljana 015 FIZIKA Általános érettségi tantárgyi vizsgakatalógus Splošna matura A tantárgyi vizsgakatalógus a 017. évi tavaszi vizsgaidőszaktól érvényes az új megjelenéséig. A katalógus érvényességéről

Részletesebben

feladatmegoldok rovata

feladatmegoldok rovata feladatmegoldok rovata Kémia K. 588. Az 1,2,3 al megszámozott kémcsövekben külön-külön ismeretlen sorrendben a következő anyagok találhatók: nátrium-karbonát, nátrium-szulfát, kalciumkarbonát. Döntsd el,

Részletesebben

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója?

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója? 1. Prefix jelentések. 10 1 deka 10-1 deci 10 2 hektó 10-2 centi 10 3 kiló 10-3 milli 10 6 mega 10-6 mikró 10 9 giga 10-9 nano 10 12 tera 10-12 piko 10 15 peta 10-15 fento 10 18 exa 10-18 atto 2. Mi alapján

Részletesebben

17. Kapcsolok. 26. Mit nevezünk crossbar kapcsolónak? Egy olyan kapcsoló, amely több bemenet és több kimenet között kapcsol mátrixos módon.

17. Kapcsolok. 26. Mit nevezünk crossbar kapcsolónak? Egy olyan kapcsoló, amely több bemenet és több kimenet között kapcsol mátrixos módon. Fotonika 4.ZH 17. Kapcsolok 26. Mit nevezünk crossbar kapcsolónak? Egy olyan kapcsoló, amely több bemenet és több kimenet között kapcsol mátrixos módon. 27. Soroljon fel legalább négy optikai kapcsoló

Részletesebben

Különböző fényforrások (UV,VIS, IR) működési alapjai, legújabb fejlesztések

Különböző fényforrások (UV,VIS, IR) működési alapjai, legújabb fejlesztések Különböző fényforrások (UV,VIS, IR) működési alapjai, legújabb fejlesztések Sugárzás kölcsönhatása az anyaggal Készítette: Fehértói Judit (Z0S8CG) Fábián Balázs (IT23JG) Budapest, 2014.04.15. 1 Bevezetés:

Részletesebben

EXAMENUL DE BACALAUREAT

EXAMENUL DE BACALAUREAT EXMEUL DE BCLURET - 007 Proba E: ecializarea : matematic informatic, tiin e ale naturii Proba F: Profil: tehnic toate secializ rile unt obligatorii to i itemii din dou arii tematice dintre cele atru rev

Részletesebben

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 MŰSZAKI ISMERETEK Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Az előadás áttekintése Méret meghatározás Alaki jellemzők Felületmérés Tömeg, térfogat, sűrűség meghatározása

Részletesebben

Tanulói munkafüzet. FIZIKA 10. évfolyam 2015.

Tanulói munkafüzet. FIZIKA 10. évfolyam 2015. Tanulói munkafüzet FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János Szakképző Iskola és ban 1 Tartalom Munka- és balesetvédelmi, tűzvédelmi szabályok... 2 1-2.

Részletesebben

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.)

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.) A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla 7. Előadás (2015.10.29.) Az atomelmélet fejlődése (folyt.) 1, az anyag atomos szerkezetének bizonyítása

Részletesebben

F1404 ATOMMAG- és RÉSZECSKEFIZIKA

F1404 ATOMMAG- és RÉSZECSKEFIZIKA F1404 ATOMMAG- és RÉSZECSKEFIZIKA Dr. Raics Péter DE TTK Kísérleti Fizikai Tanszék, Debrecen, Bem tér 18/A RAICS@TIGRIS.KLTE.HU Ajánlott irodalom Raics P.: Atommag- és részecskefizika. Jegyzet. DE Kísérleti

Részletesebben

A Geiger-Müller számlálócső és alkalmazásai Engárd Ferenc okl.villamosmérnök - blackbox@engard.hu

A Geiger-Müller számlálócső és alkalmazásai Engárd Ferenc okl.villamosmérnök - blackbox@engard.hu A Geiger-Müller számlálócső és alkalmazásai Engárd Ferenc okl.villamosmérnök - blackbox@engard.hu A pár évtizeddel ezelőtti gyakorlattal ellentétben, mérőműszereink gépkönyveiben csak a legritkább esetben

Részletesebben

Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Anyagvizsgálati módszerek tételsor 1. A TOC (total organic carbon) meghatározás, az egyes méréseknek mi az elve? 2. Mi a Soxhlet extraktor működési elve, mire használják? 3. Kőszenek kénmegoszlása és mi

Részletesebben

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK A ALAPFOGALMAK ÉS ALAPTÖVÉNYEK Elektromos töltés, elektromos tér A kémiai módszerekkel tová nem ontható anyag atomokól épül fel. Az atom atommagól és az atommagot körülvevő elektronhéjakól áll. Az atommagot

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Barkó Szilvia PTE ÁOK Biofizikai ntézet 2011. február E A fény elektromos térerősségvektor hullámhossz A fény kettős termzete: Hullám (terjedkor) Rzecske (kölcsönhatáskor)

Részletesebben

Anyagszerkezettan vizsgajegyzet

Anyagszerkezettan vizsgajegyzet - 1 - Anyagszerkezettan vizsgajegyzet Előadástémák: 1. Atomszerkezet 1.1. Atommag 1.2. Atomszám 1.3. Atomtömeg 1.4. Bohr-féle atommodell 1.5. Schrödinger-egyenlet 1.6. Kvantumszámok 1.7. Elektron orbitál

Részletesebben

Elektromágneses hullámok - Hullámoptika

Elektromágneses hullámok - Hullámoptika Bevezetés a modern fizika fejezeteibe 2. (c) Elektromágneses hullámok - Hullámoptika Utolsó módosítás: 2015. január 17. 1 Az elektromágneses hullámok visszaverődési és törési törvényei (1) Kérdés: Mi történik

Részletesebben

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos.

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos. Az alábbi kiskérdéseket a korábbi Pacher-féle vizsgasorokból és zh-kból gyűjtöttük ki. A többségnek a lefényképezett hivatalos megoldás volt a forrása (néha még ezt is óvatosan kellett kezelni, mert egy

Részletesebben

Részecske- és magfizikai detektorok. Atommag és részecskefizika 9. előadás 2011. május 3.

Részecske- és magfizikai detektorok. Atommag és részecskefizika 9. előadás 2011. május 3. Részecske- és magfizikai detektorok Atommag és részecskefizika 9. előadás 2011. május 3. Detektorok csoportosítása Tematika Gáztöltésű detektorok, ionizációs kamra, proporcionális kamra, GM-cső működése,

Részletesebben

Az optikai jelátvitel alapjai. A fény két természete, terjedése

Az optikai jelátvitel alapjai. A fény két természete, terjedése Az optikai jelátvitel alapjai A fény két természete, terjedése A fény kettős természete 1. A fény: - Elektromágneses hullám (EMH) - Optikai jelenség Egyes dolgokat a hullám természettel könnyű magyarázni,

Részletesebben

Részecskék hullámtermészete

Részecskék hullámtermészete Részecskék ullámtermészete Bevezetés A sugárzás és az anyag egyaránt mutat részecskejellegű és ullámjellegű tulajdonságokat. Atommodellek A Tomson modell J.J. Tomson 1898 A negatív töltésű elektronok pozitív

Részletesebben

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv?

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv? Ismertesse az optika fejlődésének legjelentősebb mérföldköveit! - Ókor: korai megfigyelések - Euklidész (i.e. 280) A fény homogén közegben egyenes vonalban terjed. Legrövidebb út elve (!) Tulajdonképpen

Részletesebben

A kvantumfolyadékok csodái a szuperfolyékony hélium Sasvári László ELTE Fizikai Intézet Komplex Rendszerek Fizikája Tanszék

A kvantumfolyadékok csodái a szuperfolyékony hélium Sasvári László ELTE Fizikai Intézet Komplex Rendszerek Fizikája Tanszék A kvantumfolyadékok csodái a szuperfolyékony hélium Sasvári László ELTE Fizikai Intézet Komplex Rendszerek Fizikája Tanszék Az atomoktól a csillagokig 2012. március 1. 1 He helye a periódusos rendszerben

Részletesebben

Pár szó az Optikáról

Pár szó az Optikáról Pár szó az Optikáról Hullámok: Tekintsünk egy haladó hullámot, pl. vízhullámot, a hullám forrásától elég távol. Ha egy konkrét időpillanatban lefényképeznénk, azt látnánk, hogy térben (megközelítőleg)

Részletesebben

Fizika 7. 8. évfolyam

Fizika 7. 8. évfolyam Éves órakeret: 55,5 Heti óraszám: 1,5 7. évfolyam Fizika 7. 8. évfolyam Óraszám A testek néhány tulajdonsága 8 A testek mozgása 8 A dinamika alapjai 10 A nyomás 8 Hőtan 12 Összefoglalás, ellenőrzés 10

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 4 ELeKTROMOSSÁG, MÁGNeSeSSÉG IV. MÁGNeSeSSÉG AZ ANYAGbAN 1. AZ alapvető mágneses mennyiségek A mágneses polarizáció, a mágnesezettség vektora A nukleonok (proton,

Részletesebben

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

OSZTÁLYOZÓ VIZSGA TÉMAKÖREI

OSZTÁLYOZÓ VIZSGA TÉMAKÖREI OSZTÁLYOZÓ VIZSGA TÉMAKÖREI Az anyag néhány tulajdonsága, kölcsönhatások Fizika - 7. évfolyam 1. Az anyag belső szerkezete légnemű, folyékony és szilárd halmazállapotban 2. A testek mérhető tulajdonságai

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA m ÉRETTSÉGI VIZSGA 2005. május 17. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Fizika emelt szint írásbeli vizsga

Részletesebben

IX. Az emberi szem és a látás biofizikája

IX. Az emberi szem és a látás biofizikája IX. Az emberi szem és a látás biofizikája IX.1. Az emberi szem felépítése A szem az emberi szervezet legfontosabb érzékelő szerve, mivel a szem és a központi idegrendszer közreműködésével az elektromágneses

Részletesebben

KOZMIKUS SUGÁRZÁS EXTRÉM ENERGIÁKON I. RÉSZ

KOZMIKUS SUGÁRZÁS EXTRÉM ENERGIÁKON I. RÉSZ is elôírt fizikai ismeretek tárgyalásától. Ez a kihívás indította el az orvosi irányultságú fizika/biofizika oktatását Budapesten. Tarján professzor több mint 30 éven keresztül állt a katedrán és ez alatt

Részletesebben

FIZIKA PRÓBAÉRETTSÉGI 2004. EMELT SZINT. 240 perc

FIZIKA PRÓBAÉRETTSÉGI 2004. EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. FIZIKA EMELT SZINT 240 perc A feladatlap megoldásához 240 perc áll rendelkezésére. Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét! A feladatokat

Részletesebben

Az infravörös spektroszkópia analitikai alkalmazása

Az infravörös spektroszkópia analitikai alkalmazása Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai

Részletesebben

Bevezetés és gyakorlati tanácsok Az első lépés minden tudomány elsajátítása felé az, hogy megértjük az alapjait, és megbízható tudást szerzünk

Bevezetés és gyakorlati tanácsok Az első lépés minden tudomány elsajátítása felé az, hogy megértjük az alapjait, és megbízható tudást szerzünk Bevezetés és gyakorlati tanácsok Az első lépés minden tudomány elsajátítása felé az, hogy megértjük az alapjait, és megbízható tudást szerzünk belőle. A következő az, hogy a megszerzett tudást elmélyítjük.

Részletesebben

ATTOSZEKUNDUMOS IMPULZUSOK

ATTOSZEKUNDUMOS IMPULZUSOK ATTOSZEKUNDUMOS IMPULZUSOK Varjú Katalin Szegedi Tudományegyetem Optikai és Kvantumelektronikai Tanszék Generating high-order harmonics is experimentally simple. Anne L Huillier 1 Mivel a Fizikai Szemlében

Részletesebben

2. A hőmérő kalibrálása. Előkészítő előadás 2015.02.09.

2. A hőmérő kalibrálása. Előkészítő előadás 2015.02.09. 2. A hőmérő kalibrálása Előkészítő előadás 2015.02.09. Nemzetközi mértékegységrendszer SI Alapmennyiség Alap mértékegységek Mennyiség Jele Mértékegység Jele hosszúság l méter m tömeg m kilogramm kg idő

Részletesebben

52 522 06 0000 00 00 Erőművi kazángépész Erőművi kazángépész

52 522 06 0000 00 00 Erőművi kazángépész Erőművi kazángépész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

PÉCSI TUDOMÁNYEGYETEM. Oxidkristályok lineáris terahertzes spektroszkópiai vizsgálata. Unferdorben Márta

PÉCSI TUDOMÁNYEGYETEM. Oxidkristályok lineáris terahertzes spektroszkópiai vizsgálata. Unferdorben Márta PÉCSI TUDOMÁNYEGYETEM Fizika Doktori Iskola Nemlineáris optika és spektroszkópia program Oxidkristályok lineáris terahertzes spektroszkópiai vizsgálata PhD értekezés Unferdorben Márta Témavezető: Dr. Pálfalvi

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. május 18. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

2011.11.07. Biofizika és orvostechnika alapjai

2011.11.07. Biofizika és orvostechnika alapjai Áttekintés Biofizika és orvostechnika alapjai Magátalakulások közben keletkező sugárzással alkotunk képet Képalkotás 3 A szervek működéséről, azaz a funkcióról nyújt információt Nukleáris képalkotás Szerkesztette:

Részletesebben

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek Kémiai kötések Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek fémek Fémek Szürke színűek, kivétel a színesfémek: arany,réz. Szilárd halmazállapotúak, kivétel a higany. Vezetik az

Részletesebben

Méréssel kapcsolt 3. számpélda

Méréssel kapcsolt 3. számpélda Méréssel kapcsolt 3. számpélda Eredmények: m l m 1 m 3 m 2 l l ( 2 m1 m2 m l = 2 l2 ) l 2 m l 3 = m + m2 m1 Méréssel kapcsolt 4. számpélda Állítsuk össze az ábrán látható elrendezést. Használjuk a súlysorozat

Részletesebben

Környezet. A munkakörnyezet ergonómiai. Területei: (Munkatevékenység) (Munkahely-elrendezés) (Használati eszközök) A. Fizikai környezetk

Környezet. A munkakörnyezet ergonómiai. Területei: (Munkatevékenység) (Munkahely-elrendezés) (Használati eszközök) A. Fizikai környezetk A munkakörnyezet ergonómiai értékelése 2 Környezet Területei: (Munkatevékenység) (Munkahely-elrendezés) (Használati eszközök) A. Fizikai környezet (B. Szociális környezet) A. Fizikai környezetk 3 1.1 Fénytani

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

A MODERN FIZIKA ÖSSZEHANGOLT

A MODERN FIZIKA ÖSSZEHANGOLT A MODERN FIZIKA ÖSSZEHANGOLT KÍSÉRLETES TANÍTÁSA A KÖZOKTATÁSBAN raics.peter@science.unideb.hu http://www.unideb.hu; http://falcon.phys.unideb.hu; http://falcon.phys.unideb.hu/kisfiz/raics http://falcon.phys.klte.hu/~raics/public/2016nyh

Részletesebben

Feladatok GEFIT021B. 3 km

Feladatok GEFIT021B. 3 km Feladatok GEFT021B 1. Egy autóbusz sebessége 30 km/h. z iskolához legközelebb eső két megálló távolsága az iskola kapujától a menetirány sorrendjében 200 m, illetve 140 m. Két fiú beszélget a buszon. ndrás

Részletesebben

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I. Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI

FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI I.Mechanika 1. Newton törvényei 2. Egyenes vonalú mozgások 3. Munka, mechanikai energia 4. Periodikus mozgások 5. Munka,energia,teljesítmény II.

Részletesebben