Radioaktivitás. 9.2 fejezet

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Radioaktivitás. 9.2 fejezet"

Átírás

1 Radioaktivitás 9.2 fejezet

2 A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag) más atommagokká válnak, bomlásnak nevezzük. A bomlás során tehát egy nagy tömegű atommag más atommagokká alakul át. A folyamatot radioaktív sugárzás kíséri. Ez a radioaktivitás. Értelmezés (anyaelem): A magfizikai bomlás során a kiinduló (nagy tömegszámú) magnak megfelelő kémiai elemet anyaelemnek nevezzük. Értelmezés (leányelem): A magfizikai bomlás végtermék magjainak megfelelő kémiai elemeket leányelemeknek nevezzük. Aktivitás: Értelmezés (aktivitás): Legyen N a bomlatlan atommagok száma (nagy szám), és t az idő. Ekkor az időegység alatt elbomló atommagok számát, vagyis formulával megfogalmazva az a = dn dt mennyiséget aktivitásnak nevezzük. (A negatív jel az elbomlásra, az anyag fogyására utal.) Mértékenysége: a = " db " = 1 =1 becquerel= 1Bq. s s

3 A bomlási törvény Az aktivitás tehát arányos a bomlatlan atommagok számával (is): a N Az arányosság feloldására, azaz egyenlőséggé alakítására egy arányossági tényezőt vezetünk be a folyamatra. Legyen λ az arányossági tényező. Ekkor tehát: a = λn dn dt = λn dn dt = λn Értelmezés (λ, bomlási állandó): A bomlási folyamatra bevezetett λ arányossági tényezőt bomlási állandónak nevezzük. Megadja annak az időre vonatkozó valószínűségét, hogy az atommag el fog-e bomlani. A dn dt = λn egyenlet egy differenciálegyenlet, mégpedig egy szétválasztható változójú differenciálegyenlet, amit egy átrendezéssel jól láttathatunk: dn = λdt. N Oldjuk meg ezt a szétválasztható változójú differenciálegyenletet: N 0 N 1 N dn = 0 t λdt

4 A bomlási törvény A negatív jelet és a λ konstanst kihozva az integrálás elé: Elvégezve az integrálásokat: Ebből: N 0 N 1 N dn = λ 0 t dt ln N ln N 0 = λt e lnn lnn 0 = e λt e lnn e lnn 0 = e λt N N 0 = e λt N = N 0 e λt Törvény (bomlási törvény): A bomlást leíró differenciálegyenlet megoldását, azaz az N = N 0 e λt összefüggést bomlási törvénynek nevezzük. A bomlási törvény megadja azt, hogy t idő alatt mennyi atommag maradt bomlatlan!

5 A bomlási törvény Ha ábrázoljuk a bomlási törvényt, azaz vesszük az N(t) függvényt, akkor kapjuk: A bomlások sebességét, vagy gyorsaságát, a gyakorlatban a felezési idővel mérjük. Értelmezés (felezési idő): Azt az időtartamot, ami alatt a mindenkor jelenlévő atommagok fele elbomlik - T1 2 felezési időnek nevezzük. -

6 A bomlási törvény Nézzük meg mit ad a felezési időre (t = T1) a bomlási törvény: 2 Az az időtartam hossz, ami alatt a magok fele elbomlik a magok fele meg is marad. Tehát a megmaradt magok száma a t = T1 Ezt megoldva T1-re: 2 2 idő után N = N 0 2. Így: N 0 2 = N 0e λt = e λt 1 2 ln 1 2 = ln e λt 1 2 = λt1 2 T 1 2 = ln 1 2 λ = ln2 λ Azaz így fejezhető ki a felezési idő a konstansokkal. Tehát a felezési idő tulajdonképpen csak a bomlási állandótól függ, de a bomlási állandó az adott kémiai elemre jellemző. Következésképpen a felezési idő az adott elemre jellemző érték.

7 A bomlások típusai Az alfa-bomlás: Értelmezés (alfa-bomlás): Nagy tömegszámú atommagoknál lép fel az alfa-bomlás, vagy az alfa-sugárzásnak nevezett bomlási folyamat. Ennek során az atommagból egy hélium atommag lép ki. A bomlás során az X nevű kiindulási elem (anyaelem) minősége megváltozik. Az új Y elem tömegszáma (A) néggyel, rendszáma (Z) pedig kettővel csökken. A folyamat leíró egyenlete: Az alfa-bomlás értelmezése: A He-mag alagúteffektussal juthat ki a potenciálgáton (Coulomb-vonzás) keresztül. W = mc 2 energia szabadul fel. Tömegük és energiájuk miatt az alfa-részecskék csak maximum néhány centimétert tesznek meg levegőben. Pl. egy papírlapon már nem hatolnak át. De pl. közvetlenül az emberi bőrt érve behatol a szövetekbe. Példa:

8 A béta-bomlásoknak 3 típusa van: Negatív béta-bomlás (β ) Pozitív béta-bomlás (β + ) Elektron-befogás A bomlások típusai A béta-bomlások 1. Negatív béta-bomlás: Értelmezés (negatív béta-bomlás (β )): Az atommagban egy neutron protonná alakul át, és az eközben keletkező elektron kilép az atommagból. Tehát ez egy elektron-sugárzás, vagy elektron-nyaláb. A folyamat során az elem tömegszáma nem változik, de a rendszáma eggyel nő, azaz az anyagi minőség megváltozik. Fontos megjegyzés: Kiderült, hogy így a folyamat nem teljes. A megmaradási törvények csak akkor teljesülnek a folyamatra, ha egy harmadik új részecske keletkezését is feltételezzük ben Pauli ötlete hozza a megoldást: kicsiny, zérus tömegű, töltés nélküli részecske keletkezésének ötlete. Antineutrinó ( ν e ). Ez a részecske viszi el a maradék energiát.

9 A negatív béta-bomlás folyamata: A bomlások típusai Általánosságban a negatív béta-bomlás folyamatleíró egyenlete: 2. Pozitív béta bomlás: Értelmezés (pozitív béta-bomlás (β + )): Az atommagban egy proton neutronná alakul át, és eközben egy pozitron (e + ) és egy neutrínó (ν e ) keletkezik. A folyamat során az elem tömegszáma változatlan marad, de a rendszám eggyel csökken, így a kiindulási anyag minősége megváltozik. A pozitív béta-bomlás folyamata: Általánosságban a pozitív-béta bomlás folyamatleíró egyenlete:

10 A bomlások típusai 3. Az elektron-befogás: Értelmezés (elektron-befogás): Az elektron-befogás folyamatában a legnagyobb energiájú proton az elektronburokból befog egy elektront, és így neutronná alakul át és közben neutrínó keletkezik. Ebben a folyamatban az elektron bent marad az atommagban. A pozitív béta bomláshoz hasonlóan az elem rendszáma eggyel csökken, tehát az anyagi minőség megváltozik. Az elektron-befogás folyamata: Általánosságban az elektron-befogást leíró folyamategyenlet: Megjegyzés: A folyamatot egy igen jellemző, jellegzetes röntgensugárzás kibocsátása kíséri.

11 A bomlások típusai A gamma-sugárzás Értelmezés (gamma-bomlás vagy gamma-sugárzás): A gamma-sugárzás egy nagy áthatolóképességű, nagy energiájú elektromágneses sugárzás, amely az alfa- és/vagy béta-bomlások kísérőjelenségeként lép fel. A gammasugárzással a gerjesztett állapotú atommag alapállapotba jut. A folyamat sémája:

12 Fajans-Soddy-féle eltolódási szabály Törvény (Fajans-Soddy-féle eltolódási törvény): Soddy és Fajans mutatták ki, hogy az elbomló atomok rendszáma alfa bomlás esetén kettővel, tömegszáma pedig néggyel csökken. A béta bomlás esetében a tömegszám változatlan marad, ellenben az elem a periódusos rendszerben eggyel jobbra tolódik (rendszáma 1-gyel nő). Ez az úgynevezett Soddy Fajans-féle eltolódási szabály vagy izotóp-eltolódási szabály. Példa: Az urán bomlási sora:

13 MAGÁTALAKÍTÁSOK MAGHASADÁS MAGFÚZIÓ

14 Maghasadás

15 Értelmezés (bomlás): A maghasadás Egy magreakciót bomlásnak nevezünk, ha egy nagyobb tömegű atommag önmagától, avagy spontán módon új atommaggá alakul át radioaktív sugárzás kíséretében. Értelmezés (maghasadás, vagy indukált hasadás): Egy magreakciót maghasadásnak nevezünk, ha egy nagyobb tömegű atommag külső neutronnal való kölcsönhatás eredményeként két kisebb tömegű magra esik szét és a két kisebb tömegű keletkezett mag tömegei összemérhetők. BOMLÁS MAGHASADÁS!!! neutron alapmag fragmentek keletkezett neutronok

16 A maghasadás mechanizmusa Kr 235 U n 236 U 236 U 92 X n 141 Y n -, sugárzás Ba Neutron befogás Instabil mag Kritikus deformáció Neutron befogás: U-ban a befogott neutron kötési energiája ( 236 U lesz belőle) ~ 6.4 MeV. - a 235 U-t majdnem bármilyen energiájú neutron elhasítja, de a kisenergiájúaknak van erre nagy esélyük. Fragmentek (keletkezett magok) Gyors neutronok keletkeznek U által befogott urán kötési energiája ~ 5 MeV - a 238 U-t csak azok a neutronok hasítják, amelyek kinetikus energiája nagyobb 1 MeV nál. (gyors hasítás)

17 A maghasadáskor felszabaduló energia A maghasadáskor energia szabadul fel! A hasadás pillanatában felszabaduló energia: Q = m 235U + m n + m X + m Y c 2 Q teljes 210 MeV (1 ev = 1, J)

18 Története: Maghasadás rövid története 1938: Otto Hahn ( ) és Friedrich Wilhelm Strassmann ( ) első ízben valósította meg az urán atommag hasítását 1939: Lise Meitner ( ) és Otto Frisch ( ) értelmezte Otto Hahn-ék kísérletét és igazolják, hogy maghasadás történt. A tömegkülönbségként energia szabadul fel. Láncreakció: 1934: Szilárd Leó szabadalmaztatta (2 szabadalom energiatermelő reaktor +atombomba) Enrico Fermi: december 2.: divergens láncreakció első megvalósítása. Atomenergiából állandó teljesítményt (200 watt) nyer az emberiség Chicago atommáglya

19 Láncreakció feltételei A hasadás során neutronok lépnek ki a magból, amely neutronok egy része további hasadást indukálhat az őt körülvevő hasadóanyagban. Ha egy vagy egynél több neutron kelt újra hasadást, akkor a hasadás önfenntartó lesz és láncreakció következik be. Ha átlagosan egy neutron kelt újabb hasadást, akkor a felszabaduló energia állandó. Ez a helyzet a reaktorban. Ha egynél több neutron kelt újabb hasadást, akkor a felszabaduló energia exponenciálisan növekszik. Ez a helyzet az atomreaktorban az indítás után a megadott teljesítmény eléréséig. Továbbá, ez a helyzet ellenőrizhetetlenül az atombombában.

20 Láncreakció alkalmazásai Atomerőművek A láncreakció szabályozott és ellenőrzött módon zajlik. Atombomba A láncreakció ellenőrizetlenül szabadul el. Értelmezés (nukleáris reaktor): Nukleáris reaktornak (vagy kevésbe pontosan atomreaktornak) nevezzük azokat a berendezéseket, amelyekben neutron által kiváltott maghasadások mennek végbe, láncreakció zajlik és ennek során energia szabadul fel.

21 Magfúzió

22 Energiatermelés magegyesítéssel Az atomerőművekben az anyagban rejlő hatalmas energia felszabadításához nagy tömegű atommagokat több részre hasítanak. Ez a hasadás, vagy más néven fisszió. Létezik egy ezzel ellentétes folyamat, amellyel szintén nagy mennyiségű energia termelhető. Az atommagok protonokból (piros golyók) és neutronokból (fehér golyók) állnak. Ha két kis tömegű atommag elegendően nagy sebességgel ütközik egymásnak, akkor egyesülhetnek, és energia szabadul fel. Ezt az energiát az új atommag gyors részecskék formájában kisugározza. A fúziós reakció

23 A fúziós reakció energiamérlege A fúzió végtermékeinek össztömege kisebb a kiinduló magok össztömegeinél. A tömegkülönbségnek megfelelő energia felszabadul a reakció során. Energia Értelmezés (magfúzió): Az atommagok egyesülésével járó folyamatot magfúziónak, röviden fúziónak nevezzük.

24 A fúzió, a barátságos energiaforrás Deutérium-trícium fúziós reakció D + T 4 He(3.52 MeV) + n(14.1 MeV) (1eV = 1, J)

25 Példák magfúzióra Csillagok az Univerzumban (Nap) Mágneses összetartású plazma berendezések (tokamak, sztellarátor) Lézerfúziós berendezések (NIF, Laser Megajoule, HiPer)

26 RÉSZECSKEFIZIKA

27

28 A Dirac-egyenletről A Dirac-egyenlet a Schrödinger-egyenlet relativisztikus általánosítása. Magával az általános Dirac-egyenlettel nem foglalkozunk, mert nagyon bonyolult. Egy speciális esetet említünk: A speciális relativitás elmélet szerint a teljes energia: W = mc 2 = m 0c 2 A speciális relativitás elmélet szerint az impulzus: p = mv = m 0v 1 v2 c 2 1 v2 c 2 Ebből a két egyenletből, ha egyenletrendszerként megoldva kiküszöböljük a v-t és kifejezzük a W-t, akkor kapjuk: W = ± (pc) 2 +(m 0 c 2 ) 2 Következmények: Adott p impulzusú, szabadon mozgó elektron energiája pozitív és negatív is lehet. Ha p = 0, akkor az egyenlet W 0 = ±m 0 c 2 -et ad. Azaz a nyugalmi energia negatív is lehet és ez pedig negatív tömeget feltételez.

29 Dirac lyukelméletéről a párkeltés Az összes negatív energiaállapot be van töltve. A vákuum tulajdonképpen negatív energiájú részecskék sokasága. A részecske-tengerben nincsen kitüntetett hely, vagy irány, és ezért nem tudunk tudomást szerezni a negatív energiájú és negatív tömegű részecskékről. A fennmaradó, többi elektron energiája csak pozitív lehet és ezek energiája minimum m 0 c 2. A pozitív és a negatív energiájú részecskék energiái közti különbség: W = m 0 c 2 m 0 c 2 = 2m 0 c 2 A két energiaállapot közti sáv tiltott az elektron számára. Ha egy W 2m 0 c 2 energiájú foton kiüt egy elektront a negatív energiájú térből, és így az elektron feljut a pozitív energiájú térbe, akkor a negatív energiájú helyen egy lyuk marad vissza. Ez a keletkezett lyuk már észlelhető! Azaz keletkezik egy pozitív tömegű, negatív töltésű közönséges elektron, és megjelenik ezzel egy időben a hiánya, azaz negatív tömegű és negatív töltésű elektron hiány. negatív tömegű és negatív töltésű elektron hiány = pozitív tömegű pozitív töltésű elektron az elektron antirészecskéje a POZITRON. A pozitron tehát nem más, mint a vákuumban keletkezett lyuk. Értelmezés (párkeltés): A fentebb vázolt folyamat neve: párkeltés.

30 Dirac lyukelméletének szemléltetése Elektron W Pozitron

31 Dirac lyukelméletéről a szétsugárzás vagy annihiláció Értelmezés (szétsugárzás vagy annihiláció): A párkeltés folyamatának ellentettjét, azaz, ha a párkeltés folyamata fordított irányban megy végbe, (tehát a lyuk betöltődik), szétsugárzásnak vagy annihilációnak nevezzük. A szétsugárzás folyamán a pozitron és az elektron eltűnik, és fotonok (mindig több foton) keletkeznek. Az anyag egy más megjelenési formába megy át. Párkeltés Szétsugárzás

32 AZ ELEMI RÉSZECSKÉK

33 Elemi részecskék csoportjai 1. Fotonok Tömege zérus Spinkvantumszáma =1 Nincs antirészecskéje Jele: γ 2. Leptonok (s=1/2) 3. Mezonok (s=0) 4. Barionok (s=1/2 vagy s=3/2) 5. Kvarkok

34 Leptonok

35 Mezonok

36 Barionok

37 Kvarkok u: up kvark d: down kvark c: charm kvark s: strange kvark t: top kvark b: bottom kvark

38 Az anyag alapvető építőelemei

39 Alapvető kölcsönhatások

40 Összefoglaló táblázat

41 A félév összefoglalása (Modern fizika)

42 A kvantummechanika elemei (7. fejezet) Heisenberg, Schrödinger A klasszikus fogalomrendszer határai (6. fejezet) Atomfizika, az atomelmélet fejlődése (6.2 fejezet) (Rutherford-modell, Bohr-modell, Zeeman-eff., Pauli-elv) A részecskék kettős természete (hullám, részecske kettősség) Atommagfizika (9. fejezet) Atommag tulajdonságai Magtömeg, sűrűség Mag összetétele Magmomentumok Magerők Magmodellek Speciális relativitáselmélet 4. fejezet Einstein és Lorentz elemei Kinematikai követk. Dinamikai követk. Töltött részecskék elektromágneses mezőben 5. fejezet Elektronok mozgása Protonok mozgása elektromágneses terekben Részecskefizika (10. fejezet) Elemi részecskék (fotonok, leptonok, barionok. mezonok) Az anyag alapvető építőkövei Kölcsönhatások Dirac-lyukelmélete Kondenzált anyagok fizikája - (8. fejezet) Kristályok Szilárdtestek tulajdonságai Áramvezetés fémekben Termoelektromos jelenségek Folyadékkristályok Szupravezetés Lézerek

43 Vége

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 12 A MODERN FIZIKa ELEMEI XII. MAGfIZIkA ÉS RADIOAkTIVITÁS 1. AZ ATOmmAG Rutherford (1911) arra a következtetésre jutott, hogy az atom pozitív töltését hordozó anyag

Részletesebben

Atommag, atommag átalakulások, radioaktivitás

Atommag, atommag átalakulások, radioaktivitás Atommag, atommag átalakulások, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica Radioaktív gyógyszerkészítmények Ph.Hg.VIII. Ph.Eur. 8.0. -1 01/2014:0125 RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK Radiopharmaceutica DEFINÍCIÓ Radioaktív gyógyszerkészítménynek vagy radiogyógyszereknek nevezünk

Részletesebben

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat.

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat. Néhány szó a neutronról Különböző részecskék, úgymint fotonok, neutronok, elektronok és más, töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival

Részletesebben

Az atommag története

Az atommag története Az atommag története Polcz Péter PPKE Információs Technológiai Kar 1083 Budapest, Práter utca 50/a 2010. december 6. Az atommag felfedezése Az első atommag szerkezetének első kutatói, Ernest Rutherford,

Részletesebben

Részecske- és magfizika vizsgakérdések

Részecske- és magfizika vizsgakérdések Részecske- és magfizika vizsgakérdések Az alábbi kérdések (vagy ezek kombinációi) fognak az írásbeli és szóbeli vizsgán is szerepelni. A vastag betűs kérdések egyszerűbb, beugró-kérdések, ezeknek kb. 90%-át

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

F1404 ATOMMAG- és RÉSZECSKEFIZIKA

F1404 ATOMMAG- és RÉSZECSKEFIZIKA F1404 ATOMMAG- és RÉSZECSKEFIZIKA Dr. Raics Péter DE TTK Kísérleti Fizikai Tanszék, Debrecen, Bem tér 18/A RAICS@TIGRIS.KLTE.HU Ajánlott irodalom Raics P.: Atommag- és részecskefizika. Jegyzet. DE Kísérleti

Részletesebben

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete Magfizika (Vázlat) 1. Az atommaggal kapcsolatos ismeretek kialakulásának történeti áttekintése a) A természetes radioaktivitás felfedezése b) Mesterséges atommag-átalakítás Proton felfedezése Neutron felfedezése

Részletesebben

Félnünk kell-e a nukleáris energiától?

Félnünk kell-e a nukleáris energiától? BENCZE GYULA Félnünk kell-e a nukleáris energiától? Bencze Gyula fizikus egyetemi tanár Bevezetés az energia Mi az energia? A hétköznapi beszéd fordulataiban gyakran szerepel az energia szó valamilyen

Részletesebben

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest 1 Papp Gábor, Németh Judit Magfizika egyetemi jegyzet fizika tanár szakos hallgatóknak 2003, ELTE, Budapest 2 Tartalomjegyzék 1. Atommagok tulajdonságai 7 1.1. Az atommag alkotórészei......................

Részletesebben

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997 NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK - 1 - A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK 1. Newton törvényei Newton I. törvénye Kölcsönhatás, mozgásállapot, mozgásállapot-változás, tehetetlenség,

Részletesebben

Fizika 2 (Modern fizika szemlélete) feladatsor

Fizika 2 (Modern fizika szemlélete) feladatsor Fizika 2 (Modern fizika szemlélete) feladatsor 1. Speciális relativitáselmélet 1. A Majmok bolygója című mozifilm és könyv szerint hibernált asztronauták a Föld távoli jövőjébe utaznak, amikorra az emberi

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója?

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója? 1. Prefix jelentések. 10 1 deka 10-1 deci 10 2 hektó 10-2 centi 10 3 kiló 10-3 milli 10 6 mega 10-6 mikró 10 9 giga 10-9 nano 10 12 tera 10-12 piko 10 15 peta 10-15 fento 10 18 exa 10-18 atto 2. Mi alapján

Részletesebben

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8.

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. 1. feladat: Az elszökő hélium Több helyen hallhattuk, olvashattuk az alábbit: A hélium kis móltömege miatt elszökik a Föld gravitációs teréből. Ennek

Részletesebben

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció A 2008-as bajor fizika érettségi feladatok (Leistungskurs) Munkaidő: 240 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia) L Ph 1 1. Kozmikus részecskék mozgása

Részletesebben

6. RADIOAKTIVITÁS ÉS GEOTERMIKA

6. RADIOAKTIVITÁS ÉS GEOTERMIKA 6. RADIOAKTIVITÁS ÉS GEOTERMIKA Radioaktivitás A tapasztalat szerint a természetben előforduló néhány elem bizonyos izotópjai nem stabilak, hanem minden külső beavatkozástól mentesen radioaktív sugárzás

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT.

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT. T&T tematika & tételek A magkémia alapjai, kv1n1mg1 (A) A magkémia alapjai tárgykiegészítés, kv1n1mgx (X) című, ill. kódú integrált előadáshoz http://www.chem.elte.hu/sandor.nagy/okt/amka/index.html Bevezető

Részletesebben

A nukleáris fizika története, a nukleáris energetika születése

A nukleáris fizika története, a nukleáris energetika születése Tematika 1. Az atommagfizika elemei 2. A nukleáris fizika története, a nukleáris energetika születése 3. Magsugárzások detektálása és detektorai 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja

Részletesebben

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

Marx György (1927-2002)

Marx György (1927-2002) Marx György (1927-2002) 2002) Egy tanítvány visszaemlékezései (Dr. Sükösd Csaba, Budapest) Tartalom Korai évek A leptontöltés megmaradása Az Univerzum keletkezése és fejlıdése Neutrínófizika Híd Kelet

Részletesebben

11 osztály. Osztályozó vizsga témakörei

11 osztály. Osztályozó vizsga témakörei 11 osztály Osztályozó vizsga témakörei (Keret tanterv) I. Félév I. Rezgések és hullámok Egyenletes körmozgás (Ismétlés) Frekvencia, periódusidő, szögsebesség 2. Harmonikus rezgőmozgás leírása Kitérés,

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK

FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK FIZIKA KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban meghatározott módon az alábbi kompetenciák meglétét kell bizonyítania: - ismeretei összekapcsolása a mindennapokban tapasztalt

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

A Geiger-Müller számlálócső és alkalmazásai Engárd Ferenc okl.villamosmérnök - blackbox@engard.hu

A Geiger-Müller számlálócső és alkalmazásai Engárd Ferenc okl.villamosmérnök - blackbox@engard.hu A Geiger-Müller számlálócső és alkalmazásai Engárd Ferenc okl.villamosmérnök - blackbox@engard.hu A pár évtizeddel ezelőtti gyakorlattal ellentétben, mérőműszereink gépkönyveiben csak a legritkább esetben

Részletesebben

3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA

3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA 3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA 1. Az aktivitásmérés jelentosége Modern világunk mindennapi élete számtalan helyen felhasználja azokat az ismereteket, amelyekhez a fizika az atommagok

Részletesebben

A CERN, az LHC és a vadászat a Higgs bozon után. Genf

A CERN, az LHC és a vadászat a Higgs bozon után. Genf A CERN, az LHC és a vadászat a Higgs bozon után Genf European Organization for Nuclear Research 20 tagállam (Magyarország 1992 óta) CERN küldetése: on ati uc Ed on Alapítva 1954-ben Inn ov ati CERN uniting

Részletesebben

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL tartozó valószínûség -hez, a többi nullához tart. A most vizsgált esetben (M M = 0) a (0) szerint valóban ennekkell történnie. Teljesen hasonlóan igazolható (0) helyessége akkor is, amikor k = n. A közbensô

Részletesebben

Tamás Ferenc: Természetes radioaktivitás és hatásai

Tamás Ferenc: Természetes radioaktivitás és hatásai Tamás Ferenc: Természetes radioaktivitás és hatásai A radioaktivitás a nem stabil magú atomok (más néven: radioaktív) természetes úton való elbomlása. Ez a bomlás igen nagy energiájú ionizáló sugárzást

Részletesebben

JÉKI LÁSZLÓ. A radioaktív sugárzások forrásai: az atomok

JÉKI LÁSZLÓ. A radioaktív sugárzások forrásai: az atomok JÉKI LÁSZLÓ Sugárözönben élünk Jéki László fizikus az MTA KFKI RMKI tudományos fômunkatársa A radioaktivitással kapcsolatos ismereteink még csak száz éve gyûlnek, ezért hajlamosak vagyunk azt gondolni,

Részletesebben

Gamma-spektrometria HPGe detektorral

Gamma-spektrometria HPGe detektorral Gamma-spektrometria HPGe detektorral 1. Bevezetés A gamma-spektrometria az atommagból valamilyen magfolyamat következtében (radioaktív bomlás, mesterséges vagy természetes magreakció) kilépő gamma sugárzás

Részletesebben

Ph 11 1. 2. Mozgás mágneses térben

Ph 11 1. 2. Mozgás mágneses térben Bajor fizika érettségi feladatok (Tervezet G8 2011-től) Munkaidő: 180 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia. A két feladatsor nem származhat azonos témakörből.)

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása Az ionizáló sugárzások kölcsönhatása anyaggal, nehéz és könnyű töltött részek kölcsönhatása, röntgen és γ-sugárzás kölcsönhatása Az ionizáló sugárzások mérése, gáztöltésű detektorok (ionizációs kamra,

Részletesebben

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám Egy nukleonra jutó kötési energia Atomfizikai összefoglaló: radioaktív bomlás Varga József Debreceni Egyetem OEC Nukleáris Medicina Intézet Kötési energia (MeV) Tömegszám 1. 1. Áttekintés: atomfizika Varga

Részletesebben

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés.

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés. 9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. ktivitás mérés. MÉRÉS CÉLJ: Megismerkedni a radioaktív sugárzás jellemzésére szolgáló mértékegységekkel, és a sugárzás

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN

XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN 2007. február 6. 1 Pálinkás József: Fizika 2. XXV. ELEKTROMOS VEZETÉS SZILÁRD TESTEKBEN Bevezetés: Az előző fejezetekben megismertük, hogy a kvantumelmélet milyen jól leírja az atomok és a molekulák felépítését.

Részletesebben

laboratóriumban - Mágneses Nap a Zoletnik Sándor Magyar Euratom Fúziós Szövetség mki.kfki.hu zoletnik@rm KFKI-RMKI Magyar Euratom Fúziós Szövetség

laboratóriumban - Mágneses Nap a Zoletnik Sándor Magyar Euratom Fúziós Szövetség mki.kfki.hu zoletnik@rm KFKI-RMKI Magyar Euratom Fúziós Szövetség Mágneses Nap a laboratóriumban - szabályozott mag gfúziós kutatások Zoletnik Sándor KFKI-Részecske- és Magfizikai Kutatóintézet Magyar Euratom Fúziós Szövetség zoletnik@rm mki.kfki.hu KFKI-RMKI Magyar

Részletesebben

Szupernova avagy a felrobbanó hűtőgép

Szupernova avagy a felrobbanó hűtőgép Szupernova avagy a felrobbanó hűtőgép (a csillagok termodinamikája 3.) Az atomoktól a csillagokig Dávid Gyula 2013. 09. 19. 1 Szupernova avagy a felrobbanó hűtőgép (a csillagok termodinamikája 3.) Az atomoktól

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

Paksi Atomerőmű üzemidő hosszabbítása. Meghatározások 2006.02.20.

Paksi Atomerőmű üzemidő hosszabbítása. Meghatározások 2006.02.20. Meghatározások 2006.02.20. MEGHATÁROZÁSOK Aktivitás Aktivitás-koncentráció Atomerőmű Baleset Baleset elhárítás Baleseti sugárterhelés Beavatkozás Beavatkozási szint Belső sugárterhelés Besugárzás Biztonsági

Részletesebben

MAGFIZIKA. a 11.B-nek

MAGFIZIKA. a 11.B-nek MAGFIZIKA a 11.B-nek ATOMMAG Pozitív töltésű, rendkívül kicsi ATOMMAG Töltése Z e, ahol Z a rendszám 10 átmérő Tömege az atom 99,9%-a Sűrűsége: 10 rendkívül nagy! PROTON Jelentése: első (ld. prototípus,

Részletesebben

GAMMA-SPEKTROSZKÓPIAI GYAKORLAT ALACSONY-HÁTTERŰ MÉRŐHELYEN

GAMMA-SPEKTROSZKÓPIAI GYAKORLAT ALACSONY-HÁTTERŰ MÉRŐHELYEN Magyar Tudományos Akadémia Energiatudományi Kutatóközpont 111 Budapest, Konkoly Thege Miklós út 9-33. Postacím: 155 Bp. 114, Pf.: 49. Telefon: 39 GAMMA-SPEKTROSZKÓPIAI GYAKORLAT ALACSONY-HÁTTERŰ MÉRŐHELYEN

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Részecskés-lecsapós játék

Részecskés-lecsapós játék Részecskés-lecsapós játék Sveiczer András 1 és Csörgő Tamás 2,3 1 ELTE, 1117 Budapest XI., Pázmány Péter sétány 1/A 2 MTA Wigner FK, 1121 Budapest XII., Konkoly-Thege út 29-33 3 KRF, 3200 Gyöngyös, Mátrai

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.)

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Atomok, atommodellek (tankönyv 82.o.-84.o.) Már az ókorban Démokritosz (i. e. 500) úgy gondolta, hogy minden anyag tovább nem osztható alapegységekből,

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei?

Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei? Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei? Veres Gábor ELTE Fizikai Intézet Atomfizikai Tanszék e-mail: vg@ludens.elte.hu Az atomoktól a csillagokig előadássorozat nem csak középiskolásoknak

Részletesebben

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos.

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos. Az alábbi kiskérdéseket a korábbi Pacher-féle vizsgasorokból és zh-kból gyűjtöttük ki. A többségnek a lefényképezett hivatalos megoldás volt a forrása (néha még ezt is óvatosan kellett kezelni, mert egy

Részletesebben

Hidrogéntől az aranyig

Hidrogéntől az aranyig Hidrogéntől az aranyig Hogyan keletkezett az Univerzum? Hogyan jöttek létre a periódusos rendszert benépesítő elemek? Számos könyv és híres tudós foglalkozik és foglalkozott vele a múlt évszázadban és

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 13. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 13. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Kémia

Részletesebben

OTKA 43585 tematikus pályázat beszámolója. Neutronban gazdag egzotikus könnyű atommagok reakcióinak vizsgálata

OTKA 43585 tematikus pályázat beszámolója. Neutronban gazdag egzotikus könnyű atommagok reakcióinak vizsgálata OTKA 43585 tematikus pályázat beszámolója Neutronban gazdag egzotikus könnyű atommagok reakcióinak vizsgálata 1. A kutatási célok A pályázatban tervezett kutatási célok a neutronban gazdag könnyű atommagok

Részletesebben

KÉMIA. Kémia a gimnáziumok 9 10. évfolyama számára

KÉMIA. Kémia a gimnáziumok 9 10. évfolyama számára KÉMIA Kémia a gimnáziumok 9 10. évfolyama számára A kémia tanításának célja és feladatai Az iskolai tanulmányok célja a gyakorlatban hasznosítható ismeretek megszerzése, valamint az általános képességek

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Nehézion ütközések az európai Szupergyorsítóban

Nehézion ütközések az európai Szupergyorsítóban Nehézion ütközések az európai Szupergyorsítóban Lévai Péter MTA KFKI RMKI Részecske- és Magfizikai Kutatóintézet Az atomoktól a csillagokig ELTE, 2008. márc. 27. 17.00 Tartalomjegyzék: 1. Mik azok a nehézionok?

Részletesebben

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba BME NTI 1997 2 Tartalom 1. BEVEZETÉS... 3 2. ELMÉLETI ÖSSZEFOGLALÁS... 3 2.1. Töltéshordozók keletkezése (ionizáció) töltött részecskéknél...

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Mikrostruktúrás gáztöltésű detektorok vizsgálata. Szakdolgozat

Mikrostruktúrás gáztöltésű detektorok vizsgálata. Szakdolgozat Mikrostruktúrás gáztöltésű detektorok vizsgálata Szakdolgozat Készítette: Bódog Ferenc Fizika BSc. szakos hallgató Témavezetők: dr. Varga Dezső egyetemi adjunktus ELTE TTK Komplex Rendszerek Fizikája Tanszék

Részletesebben

2. Melyik az, az elem, amelynek harmadik leggyakoribb izotópjában kétszer annyi neutron van, mint proton?

2. Melyik az, az elem, amelynek harmadik leggyakoribb izotópjában kétszer annyi neutron van, mint proton? GYAKORLÓ FELADATOK 1. Számítsd ki egyetlen szénatom tömegét! 2. Melyik az, az elem, amelynek harmadik leggyakoribb izotópjában kétszer annyi neutron van, mint proton? 3. Mi történik, ha megváltozik egy

Részletesebben

ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET.

ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET. Dr. Takáts Ágoston ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET. A TUDOMÁNYOS GONDOLKODÁSRÓL ÉS A MEGISMERÉS HÁRMAS ABSZTRAKCIÓS SZINTJÉRŐL 2007. Tartalom 1. AZ ENERGETIKAI AXIÓMARENDSZER

Részletesebben

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.)

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.) A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla 7. Előadás (2015.10.29.) Az atomelmélet fejlődése (folyt.) 1, az anyag atomos szerkezetének bizonyítása

Részletesebben

Nagy Sándor: Magkémia

Nagy Sándor: Magkémia Nagy Sándor: Magkémia (kv1c1mg1) 07. Stabilitás & instabilitás, magmodellek, tömegparabolák Nagy Sándor honlapja ismeretterjesztő anyagokkal: http://nagysandor.eu/ A Magkémia tantárgy weboldala: http://nagysandor.eu/magkemia/

Részletesebben

A DIFFÚZIÓS KÖDKAMRA ALKALMAZÁSI LEHETŐSÉGEI A KÖZÉPISKOLAI MAGFIZIKA OKTATÁSBAN

A DIFFÚZIÓS KÖDKAMRA ALKALMAZÁSI LEHETŐSÉGEI A KÖZÉPISKOLAI MAGFIZIKA OKTATÁSBAN A DIFFÚZIÓS KÖDKAMRA ALKALMAZÁSI LEHETŐSÉGEI A KÖZÉPISKOLAI MAGFIZIKA OKTATÁSBAN USING DIFFUSION CLOUD CHAMBER IN THE TEACHING OF NUCLEAR PHYSICS AT SECONDARY SCHOOLS Győrfi Tamás Eötvös József Főiskola,

Részletesebben

FIZIKA PRÓBAÉRETTSÉGI 2004. EMELT SZINT. 240 perc

FIZIKA PRÓBAÉRETTSÉGI 2004. EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. FIZIKA EMELT SZINT 240 perc A feladatlap megoldásához 240 perc áll rendelkezésére. Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét! A feladatokat

Részletesebben

Gamma-kamera SPECT PET

Gamma-kamera SPECT PET Gamma-kamera SPECT PET 2012.04.16. Gamma sugárzás Elektromágneses sugárzás (f>10 19 Hz, E>100keV (1.6*10-14 J), λ

Részletesebben

Fukusima: mi történt és mi várható? Kulacsy Katalin MTA KFKI Atomenergia Kutatóintézet

Fukusima: mi történt és mi várható? Kulacsy Katalin MTA KFKI Atomenergia Kutatóintézet Fukusima: mi történt és mi várható? Kulacsy Katalin MTA KFKI Atomenergia Kutatóintézet Áldozatok és áldozatkészek A cunami tízezerszám szedett áldozatokat. 185 000 kitelepített él tábori körülmények között.

Részletesebben

Cserenkov-sugárzás, sugárzás,

Cserenkov-sugárzás, sugárzás, A Szilárd Leó Fizikaverseny kísérleti feladatai A verseny felépítése Selejtező (3 órás feladatsor, 10 feladat, a tanárok javítják, a továbbküldött dolgozatokat a versenybizottság felüljavítja) 350-400

Részletesebben

Reál osztály. Kémia a gimnáziumok 9 11. évfolyama számára. B változat

Reál osztály. Kémia a gimnáziumok 9 11. évfolyama számára. B változat Reál osztály Kémia a gimnáziumok 9 11. évfolyama számára B változat A kémia tanításának célja és feladatai Az iskolai tanulmányok célja a gyakorlatban hasznosítható ismeretek megszerzése, valamint az általános

Részletesebben

Rutherford-féle atommodell

Rutherford-féle atommodell Rutherfordféle atommodell Manchesteri Egyetem 1909 1911 Hans Geiger, Ernest Marsden Ernest Rutherford vezetésével Az arany szerkezetének felderítésére irányuló szóráskísérletek Alfarészecskékkel bombáztak

Részletesebben

Miből áll a világunk? Honnan származik? Miért olyan, mint amilyennek látjuk?

Miből áll a világunk? Honnan származik? Miért olyan, mint amilyennek látjuk? Miből áll a világunk? Honnan származik? Miért olyan, mint amilyennek látjuk? Jóllehet ezeket a kérdéseket még nem tudjuk teljes bizonyossággal megválaszolni, ám az utóbbi években nagyon sokmindent felfedeztünk

Részletesebben

Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől

Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől 1. A szigorlat menete A szigorlatot a Fizikus MSc orvosi fizika szakirányos hallgatók a második vagy harmadik szemeszterük folyamán tehetik le. A szigorlat

Részletesebben

A MODERN FIZIKA ÖSSZEHANGOLT

A MODERN FIZIKA ÖSSZEHANGOLT A MODERN FIZIKA ÖSSZEHANGOLT KÍSÉRLETES TANÍTÁSA A KÖZOKTATÁSBAN raics.peter@science.unideb.hu http://www.unideb.hu; http://falcon.phys.unideb.hu; http://falcon.phys.unideb.hu/kisfiz/raics http://falcon.phys.klte.hu/~raics/public/2016nyh

Részletesebben

OSZTÁLYOZÓ VIZSGA TÉMAKÖREI

OSZTÁLYOZÓ VIZSGA TÉMAKÖREI OSZTÁLYOZÓ VIZSGA TÉMAKÖREI Az anyag néhány tulajdonsága, kölcsönhatások Fizika - 7. évfolyam 1. Az anyag belső szerkezete légnemű, folyékony és szilárd halmazállapotban 2. A testek mérhető tulajdonságai

Részletesebben

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2010. október 28. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 28. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM

Részletesebben

A fizika története (GEFIT555B, 2+0, 2 kredit) 2009/2010. tanév, 1. félév

A fizika története (GEFIT555B, 2+0, 2 kredit) 2009/2010. tanév, 1. félév A fizika története (GEFIT555B, 2+0, 2 kredit) 2009/2010. tanév, 1. félév Dr. Paripás Béla 8. Előadás (2010.11.10.) Tudnivalók a zárthelyikkel kapcsolatban A 2. zárthelyi időpontja 2010. november 24. az

Részletesebben

BMEEOVKAI09 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

BMEEOVKAI09 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése 1 EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése HEFOP/2004/3.3.1/0001.01 V Í Z É S K Ö R N Y E Z E T I BMEEOVKAI09 segédlet a BME Építőmérnöki

Részletesebben

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv?

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv? Ismertesse az optika fejlődésének legjelentősebb mérföldköveit! - Ókor: korai megfigyelések - Euklidész (i.e. 280) A fény homogén közegben egyenes vonalban terjed. Legrövidebb út elve (!) Tulajdonképpen

Részletesebben

Lavoisier (1743 1794) és Dalton

Lavoisier (1743 1794) és Dalton TVFizika59-66.qxd 2006. 01. 24. 12:58 Page 59 HRASKÓ PÉTER Epizódok a maghasadás felfedezésének történetébõl 1 Lavoisier (1743 1794) és Dalton (1766 1844) óta a tudósok abban a meggyõzõdésben éltek, hogy

Részletesebben

3. gyakorlat. Félvezető eszközök jellemzőinek vizsgálata a hőmérséklet függvényében

3. gyakorlat. Félvezető eszközök jellemzőinek vizsgálata a hőmérséklet függvényében 3. gyakorlat Félvezető eszközök jellemzőinek vizsgálata a hőmérséklet függvényében A gyakorlat során a hallgatók 2 mérési feladatot végeznek el: 1. A félvezetők vezetési- és valenciasávja között elhelyezkedő

Részletesebben

TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika

TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika BEVEZETÉS TANMENET Óra Tananyag Tevékenység, megjegyzések I. Mechanikai rezgések és hullámok 1. Bevezetés Emlékeztet : A fejezet feldolgozásához

Részletesebben

Feladatok haladóknak

Feladatok haladóknak Feladatok haladóknak Szerkesztő: Magyarfalvi Gábor és Varga Szilárd (gmagyarf@chem.elte.hu, szilard.varga@bolyai.elte.hu) Feladatok A formai követelményeknek megfelelő dolgozatokat a nevezési lappal együtt

Részletesebben

3 He ionokat pedig elektron-sokszorozóval számlálja. A héliummérést ismert mennyiségű

3 He ionokat pedig elektron-sokszorozóval számlálja. A héliummérést ismert mennyiségű Nagytisztaságú 4 He-es izotóphígítás alkalmazása vízminták tríciumkoncentrációjának meghatározására a 3 He leányelem tömegspektrométeres mérésén alapuló módszerhez Az édesvízkészletek felmérésében, a rétegvizek

Részletesebben

ATOMFIZIKA, RADIOAKTIVITÁS

ATOMFIZIKA, RADIOAKTIVITÁS ATOMFIZIKA, RADIOAKTIVITÁS 2013. 11. 08. A biofizika fizikai alapjai Magfizika Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. A magfizika azonban még nem lezárt

Részletesebben

Bevezetés; Anyag és Energia; Az atomok szerkezete I.

Bevezetés; Anyag és Energia; Az atomok szerkezete I. Bevezetés; Anyag és Energia; Az atomok szerkezete I. Műszaki kémia, Anyagtan I. 1-2. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Az általános kémia tárgya az anyag tulajdonságainak

Részletesebben

Kémia kerettanterve a Német Nemzetiségi Gimnázium és Kollégium 9 10. évfolyama számára

Kémia kerettanterve a Német Nemzetiségi Gimnázium és Kollégium 9 10. évfolyama számára Kémia kerettanterve a Német Nemzetiségi Gimnázium és Kollégium 9 10. évfolyama számára (az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.09.2 (B) változata alapján) A kémia tanításának

Részletesebben

Kémia a gimnáziumok 9 10. évfolyama számára. B változat

Kémia a gimnáziumok 9 10. évfolyama számára. B változat Kémia a gimnáziumok 9 10. évfolyama számára B változat A kémia tanításának célja és feladatai Az iskolai tanulmányok célja a gyakorlatban hasznosítható ismeretek megszerzése, valamint az általános képességek

Részletesebben

A Tömegspektrométer elve AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve. Az atommag komponensei:

A Tömegspektrométer elve AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve. Az atommag komponensei: AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának tényezői

Részletesebben

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás 9/1/014 Röntgen Röntgen keletkezése Tulajdonságok Anyaggal való kölcsönhatás Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken on December 1895 and presented

Részletesebben

Részecskék hullámtermészete

Részecskék hullámtermészete Részecskék ullámtermészete Bevezetés A sugárzás és az anyag egyaránt mutat részecskejellegű és ullámjellegű tulajdonságokat. Atommodellek A Tomson modell J.J. Tomson 1898 A negatív töltésű elektronok pozitív

Részletesebben

KÖSZÖNTJÜK HALLGATÓINKAT!

KÖSZÖNTJÜK HALLGATÓINKAT! KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth András: Az Univerzum keletkezése Amit tudunk a kezdetekről és amit nem c. előadását hallhatják! 2010. február 10. 1 Az Univerzum keletkezése Amit tudunk a kezdetekről,

Részletesebben

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés MÁGNESESSÉG A mágneses sajátságok, az elektromossághoz hasonlóan, régóta megfigyelt tapasztalatok voltak, a két jelenségkör szoros kapcsolatának felismerése azonban csak mintegy két évszázaddal ezelőtt

Részletesebben

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert:

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert: 1 / 12 A TételWiki wikiből 1 Ritka gázok állapotegyenlete 2 Viriál sorfejtés 3 Van der Waals gázok 4 Ising-modell 4.1 Az Ising-modell megoldása 1 dimenzióban(*) 4.2 Az Ising-modell átlagtérelmélete 2 dimenzióban(**)

Részletesebben