τ Γ ħ (ahol ħ=6, evs) 2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) A Mössbauer-effektus

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "τ Γ ħ (ahol ħ=6,582 10-16 evs) 2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) 2.3.1. A Mössbauer-effektus"

Átírás

1 2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) A Mössbauer-effektus A Mössbauer-spektroszkópia igen nagy érzékenységű spektroszkópia módszer. Alapfolyamata a forrás egy gerjesztett állapotú atommagjának alapállapotba kerülése során kibocsátott γ-foton visszalökődésmentes magrezonancia-abszorpciója a minta egy ugyanolyan, alapállapotú atommagja által. Ezt a jelenséget használjuk fel az abszorbens (vagy éppen az emittáló) atommag közvetlen környezetében lejátszódó nagyon kis, nev-os energiájú, úgynevezett hiperfinom kölcsönhatások mérésére, ami által fizikai és kémiai mikroszerkezeti információkhoz jutunk. A módszer az effektus felfedezőjéről, Rudolf Mössbauer német fizikusról kapta nevét, aki első eredményeit 1958-ban publikálta, felfedezéséért 1961-ben Nobel-díjjal jutalmazták. Az optikai spektroszkópiai eljárásokkal (IR, UV, VIS) szemben nagy előny, hogy az atommagok esetében a gerjesztett állapot élettartama (τ) az atomi elektronokéhoz képest sokszor igen hosszú, így a kibocsátott (vagy éppen az elnyelt) sugárzás energiájának bizonytalansága, azaz a Lorentz-görbe alakú emissziós és az abszorpciós görbék félértékszélessége (Γ) a Heisenberg-féle határozatlansági relációból következően nagyon kicsi: τ Γ ħ (ahol ħ=6, evs) A leggyakrabban alkalmazott Mössbauer-nuklid, a 57 Fe esetében például a τ = 1, s-os élettartamhoz a fenti relációból becsülhető energia-bizonytalanság mindössze Γ evnak adódik. Tekintetbe véve, hogy a Mössbauer-spektroszkópiában felhasznált magátmenetek általában a kev tartományba esnek ( 57 Fe esetén 14,4 kev), az energiafebontás 13 nagyságrendet ölel fel, hiszen: ahol E0 a magátmenet energiája. Ennek analitikai célokra való kihasználását a visszalökődés jelensége korlátozza. Szabad atomok esetében (például gázban) az impulzusmegmaradás törvénye értelmében az

2 emisszió közben a magból távozó gamma fotonok energiát vesztenek. A mag visszalökődésére fordítódó energia: ahol ER a visszalökődési energia, Eγ a kibocsátott sugárzás energiája, M a tömeg és c a fénysebesség. Tehát a kilépő gamma foton energiája ER-értékkel csökken az azt emittáló mag alap és gerjesztett állapotának energiakülönbségéhez képest. Az abszorbens mag szintén ER energiával lökődik előre, így az abszorbens nuklidok gerjesztésére fordítódó Em maradék energia: A visszalökődési energia sajnálatos módon magátmenetek esetében az emissziós és abszorpciós sávok félérték-szélességénél nagyságrendekkel nagyobb. ( 57 Fe esetén ev) Így a két görbe alapesetben túl távol van egymástól, nincs közös részük, nem következik be rezonancia-abszorpció. A kezdeti próbálkozások a visszalökődési energia pótlására irányultak a hőmozgás által szolgáltatott Doppler-kiszélesedés jelenségét felhasználva. (A hőmérséklet emelésével, vagy mechanikus mozgatással, az abszorbenst ultracentrifugába helyezve.) Ez azonban a felbontást több nagyságrenddel rontotta. A problémára a megoldást végül Rudolf Mössbauer találta meg. 191 Ir mintákon, a folyékony nitrogén forráspontján végzett mérései során az általa előzetesen vártakkal ellentétben az effektus ugrásszerű növekedését tapasztalta. Ennek magyarázata, hogy szilárd testekben a kötött állapotban, kristályrácsban lévő magok erősen rögzítettek, a visszalökődési energia nem elegendő ahhoz, hogy az atomot a rácsból kilökje. (Ehhez átlagosan ~20 ev energiára lenne szükség.) Így ha a visszalökődési energia nem elegendő ahhoz sem, hogy a rács kvantált rezgési belső energiáját növelje (fononkeltéssel), akkor az energiát merev testként a kristályszemcse egésze fogja felvenni. Mivel a visszalökődési energia képletében a tömeg a nevezőben van, és a legkisebb kristályszemcse tömege is óriási egyetlen atoméhoz képest, így ilyen esetben a visszalökődési energia elhanyagolhatóan kicsi, létrejöhet a visszalökődésmentes magrezonanciaabszorpció.

3 A Mössbauer-Lamb faktor A Mössbauer-effektus bekövetkezésének valószínűsége, azaz annak a valószínűsége, hogy a rács rezgésállapota a γ-foton emissziója illetve abszorpciója során nem változik meg, hanem végig alapállapotban marad, a Mössbauer-Lamb-faktorral (f) jellemezhető, melynek klasszikus képlete: ahol (κ) a hullámszám. Az effektus tehát annál valószínűbb, minél kisebb a rezgő atom kitérése a sugárzás hullámhosszához képest. A Mössbauer-Lamb-faktor az egyatomos köbös kristályok leírására szolgáló Debyemodell segítségével kísérleti változókkal is közelíthető, ez esetben a Debye hőmérséklethez képest alacsony hőmérsékleten: ahol k a Boltzmann-állandó, ΘD a Debye-hőmérséklet, T pedig a mérési hőmérséklet. A Debye-hőmérséklet az a hőmérséklet, ahol a rácsrezgések kvantáltsága megszűnik, és a fenti közelítés miatt az adott mátrix és a Mösbauer-atom közötti kötésekre vonatkozó lokális tulajdonság. A képletből jól látható, hogy a visszalökődésmentes emisszió vagy abszorpció valószínűségének szempontjából kedvező a magas Debye-hőmérséklet melletti alacsony mérési hőmérséklet, illetve a viszonylag kis gammafoton-energiák. Fentiekből következően azt, hogy egy izotóp alkalmas-e Mössbauer-célra, a rá jellemző magátmenetek energiáinak, illetve a fononenergiák, és a visszalökődési energiák nagyságának egymáshoz való viszonya határozza meg. Az effektust ez idáig közel 50 elem több mint 100 izotópján sikerült kimutatni. Különösen szerencsés, hogy az egyik legkönnyebben mérhető Mössbauer-nuklid a 57 Fe, ugyanis 14,4 kev-es átmenete egyrészt kellően kis energiájú ahhoz, hogy már szobahőmérsékleten is elég nagy legyen az effektus valószínűsége, másrészt viszont ahhoz kellően nagy, hogy ne szenvedjen túl nagy mértékű elekronikus abszorpciót a forrás, illetve minta anyagában. A 57 Co bomlásának folyamatát, és a Mössbauer-effektus valószínűségét vasfóliára a hőmérséklet függvényében a 6. ábra szemlélteti.

4 6. ábra: a 57 Co bomlása, és a Mössbauer-effektus valószínűsége (f) a hőmérséklet függvényében vasfóliára A Mössbauer-spektrum A spektrum felvételének elve a következő. Ha a forrásban és az abszorbensben levő Mössbauer-nuklidok kémiai környezete eltérő (más vegyületben, más kémiai kötésben vannak), akkor a magok eltérő környezettel való kölcsöhatásának eredményeképpen a gerjesztett és az alapállapotnak megfelelő nívók különbsége, azaz az átmenetek energiája a forrásban illetve az abszorbensben (E0f és E0a) eltérő lehet. A rezonancia-abszorpciót a forrás, vagy az abszorbens mozgatása révén hozzuk létre, hiszen ekkor a Doppler-elvnek megfelelően a γ-foton energiájának megváltozása adott v mozgatási sebességnél éppen kompenzálhatja a fennálló energiakülönbséget: A Mössbauer-spektrum ennek megfelelően egy diszkrét pontokból álló sebességbeütésszám függvény, melynél az intenzitás értékeket egy-egy kicsiny sebességintervallumhoz rendeljük hozzá. Kiértékeléskor a mérési pontokra az elméletileg várható függvényalakot illesztjük, ez ideálisan kis minta rétegvastagság esetén az emissziós és az abszorpciós Lorentz-görbék konvolúcióját jelenti, a vonalak szélessége pedig a két görbe vonalszélességének az összege lesz. (Az ideálisnál nagyobb rétegvastagság hatása egy vonalkiszélesedéssel jól közelíthető.) Az információt az abszorpciós vonalak helyzete (az intenzitás minimumokhoz tartozó sebességértékek), a vonalak félérték-szélessége, illetve a vonalak amplitudó értékei jelentik Hiperfinom kölcsönhatások a Mössbauer-spektrumban

5 Ahogy arról már korábban szó esett, a mag-energianívókra hatást gyakorol a mag kölcsönhatása a körülötte lévő elektronoktól illetve a környező magoktól származó elektromos és mágneses térrel. Az energiaváltozások az emisszós és az abszorpciós vonalak félérték-szélességeinek nagyságrendjébe esnek, így megjelennek a felvett spektrumokon. A vonalak helyzete, intenzitásai, félérték-szélességei ezen kölcsönhatások következtében megváltoznak, a vonalak bizonyos esetekben felhasadnak. A következőkben ezekről a Mössbauer-spektroszkópiával jól vizsgálható kis energiájú, úgynevezett hiperfinom kölcsönhatásokról lesz szó a) A z i z o m e r e l t o l ó d á s Az izomereltolódás oka az, hogy a mag mint monopólus kölcsönhat a körülötte levő (és a mag helyén el nem tűnő sűrűséggel rendelkező, elsősorban s-állapotú) elektronok elektromos terével. A kölcsönhatás az izomer átmenetekhez tartozó energiaértékeket a forrás illetve az abszorbens atomokban eltérő mértékben változtatja meg. Az elektronsűrűség a forrás és az abszorbens magok helyén az eltérő kémiai környezet miatt ugyanis nem azonos, továbbá az alap és gerjesztett állapotban eltérő nagyságú magsugár miatt más-más mértékben módosul. A mérés során így az emisszós és az abszorpciós görbe nem a 0 sebességnél kerül fedésbe, hanem egy v sebesség értéknél. Feltételezve, hogy az atommag egy olyan R sugarú gömb, melyben a Ze töltés homogénen oszlik el, a forrás és az abszorbens magok magátmeneteinek energiájának különbsége: ahol a magsugár alap illetve gerjesztett állapotban Ra és Rg, a mag helyén vett elektronsűrűség az abszorbensben illetve a forrásban pedig ψabsz(0) és ψf(0). A Mössbauer-technikában használt sebességértékekhez ebből a Doppler-formula felhasználásával jutunk. Az izomereltolódás lényegét és annak megjelenését a Mössbauer-spektrumban a 7. ábra szemlélteti.

6 7. ábra: az izomereltolódás lényege és megjelenése a Mössbauer-spektrumban (VÉRTES, A.- NAGY, S.- KLENCSÁR, Z. 2003) Az izomereltolódás másik komponense a hőmérsékleti, vagy másodrendű Dopplereltolódás. A rács rezgési energiája ugyanis a távozó γ-foton miatti csekély tömeghiány következtében kis mértékben, de mégis megváltozik. Az energiaváltozás a rácsrezgés sebességének négyzetátlagával (közvetve tehát a hőmérséklettel) arányos, nagysága: azaz a mérési hőmérsékletet csökkentve a negatív előjel miatt a spektrum vonalainak helyzete a magasabb sebességek felé tolódik. Az izomereltolódás értéke a mag helyén lévő elektronsűrűséggel korrelál. 57 Fe-nél gerjesztett állapotban a magsugár kisebb, így a képletnek megfelelően a növekvő elektronsűrűség csökkenő izomerteltolódásban nyilvánul meg. Az izomereltolódásra kapott értékek alapján megkülönböztethetők a mintában levő Mössbauer-nuklidok oxidációs állapotai, az l>0 mellékkvantumszámú pályák eltérő betöltöttségének hatása révén. Tájékoztat arról, hogy mennyire vesznek részt az s-elektronok a kötések kialakításában, illetve a kötésben lévő s-elektronokat mennyire vonzzák maguk felé a ligandumok, azaz a koordinációs és kötés viszonyokról. Jelzi a spinállapot-változásokat (vas esetén a 3d héj belső átrendeződése), és jól korrelál az elekronnegativitásbeli változásokkal is b ) K v a d r u p ó l u s f e l h a s a d á s Ha a mag kvadrupólusmomentuma nem zérus, azaz a mag töltéseloszlása eltér a gömbszimmetrikustól, és az atommagot körülvevő aszimmetrikus téreloszlású töltések (nem lezárt pályákon levő, vagy kémiai kötésben részt vevő elektronok, környező ionok) nullától eltérő elektromos térgradienst hoznak létre a mag helyén, akkor a kettő közötti kölcsönhatás a spektrum abszorpciós vonalainak kvadrupólus felhasadásához vezet. A kölcsönhatásból

7 származó energiaszintek (spektrum vonalak) száma a mágneses kvantumszámok számától függ, a köztük lévő energiakülönbség pedig (legfeljebb 3/2 1/2 átmenetre) az alábbi képlettel számítható: ahol eq a mag helyén érvényes V elektromos térgradiens tenzor zz komponense, Q a kvadrupólusmomentum, mi a mágneses kvantumszám I az atommag spinje, pedig az aszimmetria-paraméter. 57 Fe esetén például alapállapotban I=1/2, tehát Q=0. Gerjesztett állapotban I=3/2, ekkor mi lehetséges értékei: -3/2, -1/2, 1/2, és 3/2, ennek és a fenti képletnek megfelelően egy ±1/2 ±1/2 és egy ±3/2 ±1/2 átmenet lehetséges, azaz a felhasadás egy dublettet eredményez. A 57 Fe-mag nívóinak kvadrupólus felhasadása, és a dublett megjelenése a Mössbauerspektrumban a 8. ábrán látható. 8. ábra: a 57 Fe-mag nívóinak kvadrupólus felhasadása, és annak megjelenése a Mössbauer-spektrumban (VÉRTES, A.-NAGY, S.-KLENCSÁR, Z. 2003) A spektrum kvadrupólus felhasadás adataiból következtetéseket tehetünk az atommag körüli elektromos tér szimmetria viszonyaira, azaz a vizsgált molekulák szimmetriájára (pl.: cisz-transz jellegű helyzetek elkülönítése), illetve az izomereltolódáshoz hasonlóan információkat kapunk az oxidációs állapotról, a koordinációs viszonyokról és a spinállapotokról c ) M á g n e s e s f e l h a s a d á s

8 Mágneses hiperfinom kölcsönhatás alatt az atommag mágneses momentuma (µm) és a mag helyén lévő mágneses tér (B) közötti kölcsönhatást értjük. A mágneses tér nagyrészt az atom saját elektronjaitól származik, döntő mértékben a párosítatlan s-elektronok és az atommag közvetlen kölcsönhatásából. (Az ún. Fermi-kontakt kölcsönhatásból.) A pályamomentumból illetve az elektronok spinmomentumának maggal való dipólus kölcsönhatásából származó járulék is számottevő lehet. A kölcsönhatásból származó energiaszintekre teljesül, hogy: ahol g a giromágneses faktor, N a magmagneton, B pedig a mágneses tér nagysága a mag helyén. 57 Fe esetén a fenti képlet alapján a spektrum mágneses- vagy Zeeman-felhasadásakor 8 vonal megjelenését várnánk, ám az alap és gerjesztett állapot energianívói között a kiválasztási szabály értelmében csak olyan átmenetek lehetségesek, melyekre fennáll hogy ΔmI=0,±1. Ennek megfelelően a Zeeman-effektust mutató 57 Fe spektrumok 6 vonalra hasadnak fel. A 57 Fe-mag energiaszintjeinek mágneses felhasadását és a szextett kialakulását a spektrumban a 9. ábra szemlélteti. 9. ábra: a 57 Fe-mag nívóinak mágneses felhasadása és annak megjelenése a Mössbauer-spektrumban (VÉRTES, A.-NAGY, S.-KLENCSÁR, Z. 2003) Az atommag mágneses dipólus kölcsönhatása a minták mágneses tulajdonságainak (ferromágnesesség, ferrimágnesesség, szuper-paramágnesesség, kitüntetett mágnesezettségi irányok...stb.) vizsgálatát teszi lehetővé a Mössbauer-spektroszkópia segítségével d ) K v a d r u p ó l u s e l t o l ó d á s

9 Ha a mágneses kölcsönhatás a kvadrupólus kölcsönhatással együtt mutatkozik, akkor utóbbi kvadrupólus eltolódásként, azaz a szextett belső négy vonala súlypontjának a külső két vonal súlypontjához viszonyított eltolódásaként jelenik meg, értéke pedig: ahol Θ az elektromos térgradiens tenzor által meghatározott z irány és a γ-sugárzás iránya által bezárt szög nagysága Méréstechnika Forrásként standard sugárforrásokat használunk, melyekben a Mössbauer-nuklid stabil környezetben, többnyire valamilyen köbös rácsszerkezetű fém mátrixban, elektromos és mágneses hiperfinom kölcsönhatásoktól mentesen helyezkedik el. A 57 Fe magok vizsgálata kobalt forrással történik, a 57 Co ugyanis 9 hónapos felezési idővel gerjesztett állapotú 57 Fe-té alakul át. Detektorként általános esetben NaI szcintillációs detektort alkalmaznak. A mérések a statisztikus jelleg miatt általában 1-3 napot vesznek igénybe. A mérés legtöbbször transzmissziós elrendezésben, állandó gyorsulású üzemmódban zajlik. Ekkor a függvénygenerátor egy ciklikusan lineáris sebesség-idő függvény alapján (háromszög-jel) egyszerre vezérli a forrást mozgató egységet és a sokcsatornás analizátort, így ugyanahhoz a csatornához mindig ugyanaz a szűk sebességintervallum tartozik (multiscaler üzemmód). A transzmisszós elrendezés sémája a 10. ábrán látható. 10. ábra: Mössbauer-mérés transzmissziós elrendezésben

Mössbauer Spektroszkópia

Mössbauer Spektroszkópia Mössbauer Spektroszkópia Homa Gábor, Markó Gergely Mérés dátuma: 2008. 10. 15., 2008. 10. 22., 2008. 11. 05. Leadás dátuma: 2008. 11. 23. Figure 1: Rezonancia-abszorpció és szórás 1 Elméleti összefoglaló

Részletesebben

Vas-kelátok és peroxinitrit reakciójának tanulmányozása Mössbauer-spektroszkópiával

Vas-kelátok és peroxinitrit reakciójának tanulmányozása Mössbauer-spektroszkópiával Vas-kelátok és peroxinitrit reakciójának tanulmányozása Mössbauer-spektroszkópiával Készítette: BUSZLAI PÉTER környezettudomány szakos hallgató Témavezető: DR. HMNNAY ZLTÁN egyetemi tanár ELTE-TTK, Analitikai

Részletesebben

3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA

3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA 3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA 1. Az aktivitásmérés jelentosége Modern világunk mindennapi élete számtalan helyen felhasználja azokat az ismereteket, amelyekhez a fizika az atommagok

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Elektronspinrezonancia (ESR) - spektroszkópia

Elektronspinrezonancia (ESR) - spektroszkópia E m S Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben = µ

Részletesebben

A talliummal szennyezett NaI egykristály, mint gammasugárzás-detektor

A talliummal szennyezett NaI egykristály, mint gammasugárzás-detektor Bevezetés talliummal szennyezett NaI egykristály, mint gammasugárzás-detektor z ember már õsidõk óta ki van téve a radioaktív sugárzásoknak 1 1 ( α, β, γ, n, p, ν, ~,... ). Egy személy évi sugárterhelésének

Részletesebben

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica Radioaktív gyógyszerkészítmények Ph.Hg.VIII. Ph.Eur. 8.0. -1 01/2014:0125 RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK Radiopharmaceutica DEFINÍCIÓ Radioaktív gyógyszerkészítménynek vagy radiogyógyszereknek nevezünk

Részletesebben

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT.

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT. T&T tematika & tételek A magkémia alapjai, kv1n1mg1 (A) A magkémia alapjai tárgykiegészítés, kv1n1mgx (X) című, ill. kódú integrált előadáshoz http://www.chem.elte.hu/sandor.nagy/okt/amka/index.html Bevezető

Részletesebben

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat.

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat. Néhány szó a neutronról Különböző részecskék, úgymint fotonok, neutronok, elektronok és más, töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival

Részletesebben

Gamma-spektrometria HPGe detektorral

Gamma-spektrometria HPGe detektorral Gamma-spektrometria HPGe detektorral 1. Bevezetés A gamma-spektrometria az atommagból valamilyen magfolyamat következtében (radioaktív bomlás, mesterséges vagy természetes magreakció) kilépő gamma sugárzás

Részletesebben

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba BME NTI 1997 2 Tartalom 1. BEVEZETÉS... 3 2. ELMÉLETI ÖSSZEFOGLALÁS... 3 2.1. Töltéshordozók keletkezése (ionizáció) töltött részecskéknél...

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 12 A MODERN FIZIKa ELEMEI XII. MAGfIZIkA ÉS RADIOAkTIVITÁS 1. AZ ATOmmAG Rutherford (1911) arra a következtetésre jutott, hogy az atom pozitív töltését hordozó anyag

Részletesebben

1. Katalizátorok elemzése XRF módszerrel Bevezetés A nehézfémek okozta környezetterhelés a XX. század közepe óta egyre fontosabb problémává válik. Egyes nehézfémek esetében az emberi tevékenységekből eredő

Részletesebben

Szigetelők Félvezetők Vezetők

Szigetelők Félvezetők Vezetők Dr. Báder Imre: AZ ELEKTROMOS VEZETŐK Az anyagokat elektromos erőtérben tapasztalt viselkedésük alapján két alapvető csoportba soroljuk: szigetelők (vagy dielektrikumok) és vezetők (vagy konduktorok).

Részletesebben

Doktori munka. Solymosi József: NUKLEÁRIS KÖRNYEZETELLENŐRZŐ MÉRŐRENDSZEREK. Alkotás leírása

Doktori munka. Solymosi József: NUKLEÁRIS KÖRNYEZETELLENŐRZŐ MÉRŐRENDSZEREK. Alkotás leírása Doktori munka Solymosi József: NUKLEÁRIS KÖRNYEZETELLENŐRZŐ MÉRŐRENDSZEREK Alkotás leírása Budapest, 1990. 2 KÖSZÖNETNYILVÁNÍTÁS A doktori munka célja az egyéni eredmény bemutatása. Feltétlenül hangsúlyoznom

Részletesebben

Különböző fényforrások (UV,VIS, IR) működési alapjai, legújabb fejlesztések

Különböző fényforrások (UV,VIS, IR) működési alapjai, legújabb fejlesztések Különböző fényforrások (UV,VIS, IR) működési alapjai, legújabb fejlesztések Sugárzás kölcsönhatása az anyaggal Készítette: Fehértói Judit (Z0S8CG) Fábián Balázs (IT23JG) Budapest, 2014.04.15. 1 Bevezetés:

Részletesebben

Környezetvédelmi mérések fotoakusztikus FTIR műszerrel

Környezetvédelmi mérések fotoakusztikus FTIR műszerrel Környezetvédelmi mérések fotoakusztikus FTIR műszerrel A légszennyezés mérése nem könnyű méréstechnikai feladat. Az eszközök széles skáláját fejlesztették ki, hagyományosan az emissziómérésre, ezen belül

Részletesebben

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.)

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Atomok, atommodellek (tankönyv 82.o.-84.o.) Már az ókorban Démokritosz (i. e. 500) úgy gondolta, hogy minden anyag tovább nem osztható alapegységekből,

Részletesebben

SPEKTROFOTOMETRIAI MÉRÉSEK

SPEKTROFOTOMETRIAI MÉRÉSEK SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), elsı kérdésünk valószínőleg az lesz, hogy mi ez az anyag, milyen

Részletesebben

Konfokális mikroszkópia elméleti bevezetõ

Konfokális mikroszkópia elméleti bevezetõ Konfokális mikroszkópia elméleti bevezetõ A konfokális mikroszkóp fluoreszcensen jelölt minták vizsgálatára alkalmas. Jobb felbontású képeket ad, mint a hagyományos fluoreszcens mikroszkópok, és képes

Részletesebben

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója?

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója? 1. Prefix jelentések. 10 1 deka 10-1 deci 10 2 hektó 10-2 centi 10 3 kiló 10-3 milli 10 6 mega 10-6 mikró 10 9 giga 10-9 nano 10 12 tera 10-12 piko 10 15 peta 10-15 fento 10 18 exa 10-18 atto 2. Mi alapján

Részletesebben

Részecske- és magfizikai detektorok. Atommag és részecskefizika 9. előadás 2011. május 3.

Részecske- és magfizikai detektorok. Atommag és részecskefizika 9. előadás 2011. május 3. Részecske- és magfizikai detektorok Atommag és részecskefizika 9. előadás 2011. május 3. Detektorok csoportosítása Tematika Gáztöltésű detektorok, ionizációs kamra, proporcionális kamra, GM-cső működése,

Részletesebben

Az infravörös spektroszkópia analitikai alkalmazása

Az infravörös spektroszkópia analitikai alkalmazása Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai

Részletesebben

1. Atomspektroszkópia

1. Atomspektroszkópia 1. Atomspektroszkópia 1.1. Bevezetés Az atomspektroszkópia az optikai spektroszkópiai módszerek csoportjába tartozó olyan analitikai eljárás, mellyel az anyagok elemi összetételét határozhatjuk meg. Az

Részletesebben

PhD értekezés A MÁGNESEZETTSÉG IRÁNYÁNAK MEGHATÁROZÁSA ELLIPTIKUSAN POLÁROS REZONÁNS FOTONOKKAL. Tanczikó Ferenc

PhD értekezés A MÁGNESEZETTSÉG IRÁNYÁNAK MEGHATÁROZÁSA ELLIPTIKUSAN POLÁROS REZONÁNS FOTONOKKAL. Tanczikó Ferenc PhD értekezés A MÁGNESEZETTSÉG IRÁNYÁNAK MEGHATÁROZÁSA ELLIPTIKUSAN POLÁROS REZONÁNS FOTONOKKAL Tanczikó Ferenc MTA KFKI Részecske- és Magfizikai Kutatóintézet Témavezet : Dr. Bottyán László, a fizikai

Részletesebben

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása Az ionizáló sugárzások kölcsönhatása anyaggal, nehéz és könnyű töltött részek kölcsönhatása, röntgen és γ-sugárzás kölcsönhatása Az ionizáló sugárzások mérése, gáztöltésű detektorok (ionizációs kamra,

Részletesebben

ö ö ö ö ő ö ö ő ö ő ő ő ö ö ő ő ö ö ő ő ű ű ő ő ö ű ő ö ö ő ö ő ö ú ő ö ű ű ő ő ö ű ő ö ö ű ű ő ö ű ő ö ö ű ű ű ű ű ű ű ö ű ő É ö ú ö ö ö ö Ő ö ö ö ö ő ö ö ő ö ö ő ö ö ő ű ö ö ö ö ö ö ő Ö ő ö ö ő ö ő ö

Részletesebben

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997 NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb

Részletesebben

Mágneses alapjelenségek

Mágneses alapjelenségek Mágneses alapjelenségek Bizonyos vasércek képesek apró vasdarabokat magukhoz vonzani: permanens mágnes Az acélrúd felmágnesezhető ilyen ércek segítségével. Rúd két vége: pólusok (a vasreszelék csak ide

Részletesebben

RONCSOLÁSMENTES VIZSGÁLATTECHNIKA

RONCSOLÁSMENTES VIZSGÁLATTECHNIKA RONCSOLÁSMENTES VIZSGÁLATTECHNIKA NDT TECHNICS FÉMLEMEZEK VASTAGSÁGÁNAK MÉRÉSE RÖNTGENSUGÁRZÁS SEGÍTSÉGÉVEL THICKNESS MEASURING OF METAL SHEETS WITH X-RAY METHODDS BOROMISZA LÁSZLÓ Kulcsszavak: vastagság

Részletesebben

Ph 11 1. 2. Mozgás mágneses térben

Ph 11 1. 2. Mozgás mágneses térben Bajor fizika érettségi feladatok (Tervezet G8 2011-től) Munkaidő: 180 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia. A két feladatsor nem származhat azonos témakörből.)

Részletesebben

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás 9/1/014 Röntgen Röntgen keletkezése Tulajdonságok Anyaggal való kölcsönhatás Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken on December 1895 and presented

Részletesebben

ő Ö ő ó ő ó ő ő ó ő ő ő ó ő ú ó ő ú ő ú ő ő ú ó ő ő ú ő ő ő ú ú ű ú ő ó ő ű ó ő ő ú ő ő ő ú ú ő ó ű ő ő Ö úú ő ó ú Ö ó ó ő ő Ö ó ú ő ő ő ú ő ó ő ó Ö ó ú Ű ő ő ó ő ő ó ő ú Ö ú Ö ő ő ú ú ő ő ú ú ó ó ő ó

Részletesebben

OTKA 43585 tematikus pályázat beszámolója. Neutronban gazdag egzotikus könnyű atommagok reakcióinak vizsgálata

OTKA 43585 tematikus pályázat beszámolója. Neutronban gazdag egzotikus könnyű atommagok reakcióinak vizsgálata OTKA 43585 tematikus pályázat beszámolója Neutronban gazdag egzotikus könnyű atommagok reakcióinak vizsgálata 1. A kutatási célok A pályázatban tervezett kutatási célok a neutronban gazdag könnyű atommagok

Részletesebben

Haladó Szilárdtestfizikai Laboratórium

Haladó Szilárdtestfizikai Laboratórium Haladó Szilárdtestfizikai Laboratórium Fémüvegek vizsgálata Mérést végezte: Hagymási Imre és Tábori Kristóf IV. éves fizikusok Mérésvezető: Vincze Imre Mérés dátuma: 2008. október-november 1. Bevezetés

Részletesebben

Elektromágneses hullámok, a fény

Elektromágneses hullámok, a fény Elektromágneses hullámok, a fény Az elektromos töltéssel rendelkező testeknek a töltésük miatt fellépő kölcsönhatását az elektromos és mágneses tér segítségével írhatjuk le. A kölcsönhatás úgy működik,

Részletesebben

Ú Ó ö Ő ö Ú Ú Ó Á Á ü ő ö Ú Ú Ó ű ő ő ő ő ü Á ö ü ö ö ő Ó Á Á ő Á Ú ö Ó Ű Ú Ó ű Á ő ő ő ö Ú ö ű ö ö ö ő Ó Á Á ű ű ö ü ű ü Á Á ű ű ö ü ű ü ü ö ü ő ü Ó Ó ő ő ő ő ű ö ő ű ü Á Á ő ü ő Ú Ó ü ö ő ő ö ő ö ö ő

Részletesebben

ESR színképek értékelése és molekulaszerkezeti értelmezése

ESR színképek értékelése és molekulaszerkezeti értelmezése ESR színképek értékelése és molekulaszerkezeti értelmezése Elméleti alap: Atkins: Fizikai Kémia II, 187-188, 146, 1410, 152 158 fejezetek A gyakorlat során egy párosítatlan elektronnal rendelkező benzoszemikinon

Részletesebben

ő ő Ü ü Á ú ú ü ú ú ü ú ü ú ú ü ő ú Á ü ú Á ü ü ü ú Á Á Ó Ü ő ü ú ú ú ü ű ú Ü ü ű Ü ú Á ú Ó ő ü Ú ú Á ő ő ú ű Á ú ü ő Á ú ú Á ú Á ú Ü Á Ö ú ú ő ő ú ű ü ő Á ő Ú ü Ö Á Á Á Á ő Ü Ö ü Ú Ö Á Á ú ő Ú Á Á ü

Részletesebben

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos.

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos. Az alábbi kiskérdéseket a korábbi Pacher-féle vizsgasorokból és zh-kból gyűjtöttük ki. A többségnek a lefényképezett hivatalos megoldás volt a forrása (néha még ezt is óvatosan kellett kezelni, mert egy

Részletesebben

ú ú ú Ú ú ú ő ő ú ű ú ő ő ú ő ú ő ő Ó Ó ő ű ő ő ú ő Ó Ó ú ú ú Ú ü ú ú ő Ü ü ő ü ő ő ú ú ő ő ú ő ő ü ü ú ő ű ü ő ő Ü ű ű ű ű ú ü ü ő ú Ö ű ű ő ú Ü ú ü ő ú ő ü ő ű Á Ü Ó Ó ű ü Ü ü ú Ü ő ő ő ő ő ő ő ü Ü ü

Részletesebben

ű ú ü ö ö ü ö ö ö ú ü ü ö ö ö ú ö ö ü ű ö ö ö ö ü ö ö ü ö ö ú ö ü ö ü ü ü ú ö ö ü ö ü ü ö Ó ü ű ö ö ü ö ü ö ú ö ö ö ö ű ú ú ű ö ö ü ö ö ö ö ü ú ö ü ö ü ü ö ú ü ü ü ű ú ö ü ö ö ö ü ö ü ú ö ö ö ü Ú ű ü ö

Részletesebben

Fény kölcsönhatása az anyaggal:

Fény kölcsönhatása az anyaggal: Fény kölcsönhatása az Fény kölcsönhatása az : szórás, abszorpció, emisszió Kellermayer Miklós Fényszórás A fényszórás mérése, orvosi alkalmazásai Lord Rayleigh (1842-1919) J 0 Light Fényforrás source Rayleigh

Részletesebben

Rutherford-féle atommodell

Rutherford-féle atommodell Rutherfordféle atommodell Manchesteri Egyetem 1909 1911 Hans Geiger, Ernest Marsden Ernest Rutherford vezetésével Az arany szerkezetének felderítésére irányuló szóráskísérletek Alfarészecskékkel bombáztak

Részletesebben

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: 2005.11.30. A röntgenfluoreszcencia analízis és a Moseley-törvény

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: 2005.11.30. A röntgenfluoreszcencia analízis és a Moseley-törvény Modern Fizika Labor A mérés dátuma: 2005.11.30. A mérés száma és címe: 9. A röntgenfluoreszcencia analízis és a Moseley-törvény Értékelés: A beadás dátuma: 2005.12.14. A mérést végezte: Orosz Katalin Tóth

Részletesebben

lásd: enantiotóp, diasztereotóp

lásd: enantiotóp, diasztereotóp anizokrón anisochronous árnyékolási állandó shielding constant árnyékolási járulékok és empirikus értelmezésük shielding contributions diamágneses és paramágneses árnyékolás diamagnetic and paramagnetic

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Feladatok haladóknak

Feladatok haladóknak Feladatok haladóknak Szerkesztő: Magyarfalvi Gábor és Varga Szilárd (gmagyarf@chem.elte.hu, szilard.varga@bolyai.elte.hu) Feladatok A formai követelményeknek megfelelő dolgozatokat a nevezési lappal együtt

Részletesebben

Pannon Egyetem Környezetmérnöki Tudástár Sorozatszerkesztő: Környezetmérnöki Szak XXVIII. kötet Dr. Domokos Endre

Pannon Egyetem Környezetmérnöki Tudástár Sorozatszerkesztő: Környezetmérnöki Szak XXVIII. kötet Dr. Domokos Endre Az anyag a TÁMOP- 4.1.2.A/1-11/1-2011-0089 téma keretében készült a Pannon Egyetemen. Környezetmérnöki Tudástár Sorozat szerkesztő: Dr. Domokos Endre XXVIII. kötet Nukleáris mérési technológia környezetmérnököknek

Részletesebben

RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II:

RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II: RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II: Üveg és PMMA struktúrák CO 2 és Nd:YAG lézeres megmunkálással Készítette: Nagy Péter dr. és Varga Máté A mérés célja: CO 2 és Nd:YAG lézerek fontosabb tulajdonságainak

Részletesebben

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)

Részletesebben

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert:

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert: 1 / 12 A TételWiki wikiből 1 Ritka gázok állapotegyenlete 2 Viriál sorfejtés 3 Van der Waals gázok 4 Ising-modell 4.1 Az Ising-modell megoldása 1 dimenzióban(*) 4.2 Az Ising-modell átlagtérelmélete 2 dimenzióban(**)

Részletesebben

kapillárisok vizsgálatából szerzett felületfizikai információk széleskörűen alkalmazhatók az anyagvizsgálatban, vékonyrétegek analízisében.

kapillárisok vizsgálatából szerzett felületfizikai információk széleskörűen alkalmazhatók az anyagvizsgálatban, vékonyrétegek analízisében. Fiatal kutatói témák az Atomkiban 2009 1. ÚJ RÉSZECSKÉK KERESÉSE A CERN CMS DETEKTORÁVAL Új részecskék keresése a CERN CMS detektorával (Témavezető: Trócsányi Zoltán, zoltant@atomki.hu) Az új fiatal kutatói

Részletesebben

Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált

Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált Síkban polarizált hullámok Tekintsünk egy z-tengely irányában haladó fénysugarat. Ha a tér egy adott pontjában az idő függvényeként figyeljük az elektromos (ill. mágneses) térerősség vektorokat, akkor

Részletesebben

Lumineszcencia alapjelenségek

Lumineszcencia alapjelenségek Lumineszcencia alapjelenségek (Nyitrai Miklós; 211 február 7.) Lumineszcencia Definíció: Egyes anyagok spontán fénykibocsátása, a termikus fényemissziótól függetlenül, elektrongerjesztést követően. Lumineszcens

Részletesebben

A ROBBANÓANYAGOK KEZELÉSBIZTOSSÁGÁRÓL

A ROBBANÓANYAGOK KEZELÉSBIZTOSSÁGÁRÓL A ROBBANÓANYAGOK KEZELÉSBIZTOSSÁGÁRÓL Dr. BOHUS Géza*, BŐHM Szilvia* * Miskolci Egyetem, Bányászati és Geotechnikai Tanszék ABSTRACT By emitted blasting materials, treatment-safeness is required. These

Részletesebben

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA SPF UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Szalicilsav meghatározása egy vizes

Részletesebben

AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA

AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA Bevezető AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA A műanyagok felhasználási területe egyre bővül, így mennyiségük is rohamosan növekszik. Elhasználódás után csekély hányaduk kerül csak újrahasznosításra,

Részletesebben

Á Á É É É ö É Ó ú Á ú Á Á Á Á ö Á ő ű ú ö ö ú ű ú É ő ö ú ú ű ö ű ő Ú Ú ú ő ö ö ő ö ö Á ö Á ö ú ű ö ö ö ö ö ö ö ö ö ő ö ö ö ö ő ö Á ö ő ö ö ő ú ú ö ö ő ö ö ö ö ú ö ú ö ő ú ö ö ö ö ö ú ö ú ú ö Ú ő ű ő ö

Részletesebben

Fizika 2 (Modern fizika szemlélete) feladatsor

Fizika 2 (Modern fizika szemlélete) feladatsor Fizika 2 (Modern fizika szemlélete) feladatsor 1. Speciális relativitáselmélet 1. A Majmok bolygója című mozifilm és könyv szerint hibernált asztronauták a Föld távoli jövőjébe utaznak, amikorra az emberi

Részletesebben

Diagnosztikai röntgen képalkotás, CT

Diagnosztikai röntgen képalkotás, CT Diagnosztikai röntgen képalkotás, CT ALAPELVEK A röntgenkép a röntgensugárzással átvilágított test árnyéka. A detektor vagy film az áthaladó, azaz nem elnyelt sugarakat érzékeli. A képen az elnyelő tárgyaknak

Részletesebben

ö É ö ö ő ő ö ó ó ú ő ó ö ö ő ő ö ö ó ű ű ó ú ó ő ő ö ű ó ő ö ö ű ű ó ú ő ó ó ö ű ó ő ö ö ű ű ó ő ő ö Ü Ü ö ű ó ő ö ö ű ű ó ő ó Ü Ü ó ő ő ű ö ö ű ű ű ű ő ö ó ű ó ö ű ö ó ö ó ö ő ó ö ö ő ó ö ö ö ű Ö ö ö

Részletesebben

É É Á É É ó ó ö ű ó ó ó ű ó ö ö ű ó ó ő ö ű ó ó ű ú ö ű ó ó ó ó ö ű ó ó ó ö ű ő ő ő ó ö ű ú ö ó ó ó ú ő ő ü ó ó ó ö ű ű ö ő ó ú ó ö ü ö ű ó ó ö ő ö ó ö ö ő ő ö ó ő ö ő ó ő ó ő ú ú ö ű ó ú ö ő ű ö ó ó ó

Részletesebben

ü Ü ö ö ö Á ő ö ö ö ü ú ö ő Á ő ö ő ü ú ő ő ő ö ö ö ő ú ő ő ő ö ő ö ű ő ő ő Ú ö ü ő ő ú ú ö ő ö ő ú ú ő ú ö ö ő ú ő ü Ü ö ő É ő ő ü ö ő ú ő ö ű ő ő ü ő Ú ű Ö ü ő ú ő ő ő ú Ú ü ö ő ő ú ő ű ő ö ö ü ö ö ő

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis. 2008. április 22.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis. 2008. április 22. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. április 22. A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis Értékelés: A beadás dátuma: 28. május 5. A mérést végezte: Puszta Adrián,

Részletesebben

ő Á ú ő ú ő ú ú ú ő ő ő ű ú ű ő ő ú ő ő ő ú Á ő ú ő ő ú ő ő É É ú ő ő Ú ő É ú ú ő ő ő ő ő É ő ő ú É ű ű ű ú ő ő É ő ű ő ő É ú É ú ő ő ű ú ű ő ő ú ú Ú ú Ü ő ű ú ő ű ő ő ú ő ő ő ő ú ő ő ú ú ő ú ő ú ű ű É

Részletesebben

ö ő ö Ö ö ó ő ő ő ú ö ö ő ó ü ö ö ő ő ő ő ő ö ő ö ő ó ő ö ő ő ő ú ó ő ö ó ö ő ó ö ő ő ő ó ő ő ő ő ö ö ő ö ő ó ú ö ö ő ő ó ő ő ú ő ü ő ó ö ö ő ő ő ü ö ö ő ó ó ö ő ő ö ő ö ö ö ö ő ő ő ü ű ö ö ő ő ó ö ö ö

Részletesebben

Á Á ó ő ő ó Ő ó ó ó Ó Ó Ó ó Ó Ó Ó Ó ó ő ó ó Ő Ó Ó Ó Ó ó Ó Ó Ó Á Ó ó Ó ó Ó Ó Ó ó Ó ó Ó Ó Ó Ó Ó Ó ó Ó ó Ó Ó Ó Ó Ó Ó ó Á Ó ó ó Ő ó ó ó Ó ó Ú ó Ó Ó ó Ó Ó Ő ó Ó ó ó Ó ó Ó Ó Ó ó ó ó Ó ó ó ó Ó Ú Ó Ó ó ó ő ö Ó

Részletesebben

Á Ó Ö Á É É É É Ő ű Á Ó ű Ö ű ű ű Ó ű Ö Ú Ö Ú ű ű ű ű Ö ű ű ű ű ű Ü Á ű ű ű ű ű ű ű ű Ö Ó ű Ö ű ű Ü ű ű ű Ö ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű Á Á ű É ű ű ű ű ű Ö ű ű ű ű ű Ó Ü Á É Ű ű ű ű ű Á ű ű ű Á É ű Ú Ó

Részletesebben

ú Ö ó ú ó ú Ö ő ü ú ő ó ü ú ő ü ú ő ó ó ó ó Ö ő ü ü ü ü ő ú ű ü ú Ö ő ü ő ó ü ü ü ő ő ő ü ó ő ü ú ő ü ő ő ő ó ó ő ó ó ü ő ó ü ó ó ü ú ó ó ő ú Ö ó ü ó ő ó ő ó ő ó ó ü ó ó ó ó ú ő ü ó ü ú ó ő ü ó ő ő ő ü

Részletesebben

Á ő ő ő ö ö Ó ő ú ö Á É É ü Ö ő ö ő ő ö Ó ö Ú Ó ő ő ő ö Ö Ú Ú ő Ö ú ö ő ú ú ú Ó ö Ó Ó Ú Ú Ú Ú Ö Ó ő ő ú ő ű ü ő ö ö ö ő ü Ó Ó ő ő Ó ö Ó Ó ü ő ő Ó ő ö ő ő Ó ő ő ő Ú ö ő Ó Ó ő Ó ő Ö ő ö ő ü ü ű ö ö ö Ó ö

Részletesebben

ó á á á á á ó á ó Á ö é á ó Ú á á á ó Á ö é á á á ó ó ó á á ó á ó Ú á é á ó ü é ü é á á á á ó é é á ú á ó á é ó á ó Ó é á ó é á ó ó á Ó Ö é á ó á ó é é é ü é ó á Ó é é é ó ó ó á ó é é ó á ü ó é á ó é é

Részletesebben

ű É ű Á Ü É É ű ű Ű ÓÓ Ü É Ü Ú Ú ű Ú Ö Ö Ü ű ű Ű Ú Ö Ü Ö Ú Ó Ó Á É Ú Ű Ú Ú Ú Ú Ú ű Ú Ű Ú ű ű Ú ű ű Ú Ú É Á Ú Ú É É ű ű ű Ú ű ű Ú ű Ú Ó É Ű Ó ű Ú ű ű ű Á ű ű Ú ű ű É ű ű ű ű Ó Ú Á Ú ű Á ű Á Ú Ó ű ű Á ű

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

É Ó Ö Á ú Á ú ú ú ú Ó ú ú ú ú ű ú Á ÁÉ Á ű ű ú ú É ú É É ű ű É ű Ú ű Ü ú ű ú Ö Ú ű Ö Ö ú Ő ú ű Ö ú ú Ú Ó ú ú ű ú Ö Ú Ü Á Á Á É Ü ű Ü Ö É Á Ü Ó É Ö É ű Ü Á Á Á ú Ü Ö Á É Ü Á ú Ö Ö ú Ö Á ú É É Ö É Á Á Á

Részletesebben

Ú ő É ő ű ő ű Á É ő Ó Á Á ő ű ű Á ű Ú É ő É Ú Ö ő ő Á ő ő Á É É Á ő ő ő ő ő ő Á Ó Á É Ú Á Á Á ő Á Á Á Á Á É ő ő ű ő ő É ő ő Á Á Ó Ü Á É Á ő Á ő ő ő Á É Ü ő Á Á ő Ö ő ő Á É ő ő ű ő Ö Á Á Ú Á Á Á É É ő ű

Részletesebben

Á É ö ö ő ő ő Ú Ü ö ö ő ő ö ú ő ö ő ö ú ü ö Ü Ó ö ö ö ö ö ő ö ú ú ö ü Ü ö ö ö ö ö ö ő ö ö ő ö ü ő ö ő ü Ü Ó Ó ö ö ő Ü Ó ö ő ő ő ő Á ő ő Ü ő ö ő ő ő ő ő ő ő ő ő ő ő ő ő É ü É ö ö É Ó ő ő ő ő Ü É ő Ó ő ő

Részletesebben

Ú ű Ú ű ű ű Á ű Ö Á ű ű ű ű ű ű Ö ű Á ű ű Á ű ű ű ű ű Á ű Ú Ü Ü ű ű Ü Ü Ö ű ű ű ű ű Ú Ü ű ű ű ű ű Ú Ó ű ű ű Á É ű ű ű Ű ű ű ű É Á Á Á Á Ó Ó ű Ü Ú Ú Ö Ú ű Ö Ő Ú Ú ű Ó Ő Ú Ö Ö Ő Ű É ű Ó É Á Á ű ű Ú Á É É

Részletesebben

Á ú ő ú Ú ü Ö ú Á Ó ú ü ő ő ő ú Ö ú É ú ű ü É ü ú ő ő ő ú ú ü ü Ö Ö ú ő ő ű É ü ü ü ú ő ő ú ü ü ő ő ő ú ü ő Ö ű ő ü ő ü ő ő Á É ő ü ő ü ú ú ő ü ü ü ő ü ő Ó ü ü ü ü ú É ő ü ü ü ú ő ü Ó ü ü ő ú ő ő ü ü ú

Részletesebben

É É É É É Ö Á Á É Ő ű ű ű Ü ű ű ű Ú Á ű Ö ű Ú Á Ú ű Ó Ú Ú Ú Ú ű Ú Ú ű É ű ű É É É ű É É Ü ű ű É Á ű Á Á Ü Á Ü É Ú Á Ú Ó Ü Ü Ú ű ű Ú Ü Ü ű Ú É Ö ű ű Ü Ó Á Ö Ö ű Ö É É ű ű É ű ű ű Ú ű Ö É Ó ű Ú Ú Ú É Ú Ú

Részletesebben

Ó Ú Ö Ú É Ö É Á ű ű ű ű ű ű ű ű Á ű Á Ú ű Ü ű ű Ü ű Ó ű ű Ú ű Ö Ö ű ű ű ű Á É Ó ű ű Ü Ö ű ű Ü Ú É ű ű ű ű É Ü Ü Ü É Ü Ü Ü Ü ű ű ű ű ű ű ű Ú É ű ű ű ű É Ü ű ű ű ű ű ű ű ű ű Ú ű Ö ű Ü ű ű ű ű É ű Ó ű ű É

Részletesebben

Ó Á É Ő É ő ő ő ó ó ó ó ó ő Ö ó ő ó ü ő ó ő ű ó ó ó ő ő ő ő ő ű ő ó ü ó ő ő ő ő ó ü ó ó ó ű ő ó ő ó ő ú ő ő ü ő ó ü ó ő ő ő ü ó ó ő ő ü ő ó ő ó ő ű ő ő ű ő ó ó ó ó ó ó ő ő ó ó ó ő ó ő ü ó ű ő ő Á ó ó Ó

Részletesebben

ú ú ű ú ú Ú É É Ó ű ű ü ú ü ű ü ú ú ü ü ü ú ü ú ü ü ü ü ú ű ü ü ú ű ü ü ü Á ű ű ú ű ü ü ú ű ü ű ú ü ü ü ú ű ü ü ü ű ú ü ú ü ü ü ű ű ú ü ú ű Ö ú ü ü ü ü ü ú ű Ö ü Ú É ú ú ü ü ü ü ü ü ü ü ü ú ü ú ü ú ü ü

Részletesebben

ö ű ö ö ö ö ü ö ö ü ö ö ö ö ö ö ű ö ü ú ö ö ö ö ű ü ü Ö ü ö ű ű ű ö ú Ü Á Á Á ö ö ú ü ú Ü ö ö ö ö ö ú Ü Ü ö ö Ü ö ü ö ú ö ü ö ü ü Ü ü ű ö ü ö Ü Ú Ü ü Ü ü Ü ú Ü ö ö ü ö ö ű ű ü ö ű Á ö ü ö ö ú ö Ü Á Ü Ő

Részletesebben

ATTOSZEKUNDUMOS IMPULZUSOK

ATTOSZEKUNDUMOS IMPULZUSOK ATTOSZEKUNDUMOS IMPULZUSOK Varjú Katalin Szegedi Tudományegyetem Optikai és Kvantumelektronikai Tanszék Generating high-order harmonics is experimentally simple. Anne L Huillier 1 Mivel a Fizikai Szemlében

Részletesebben

É ú ú ú ú ú ú ú ú ú É É ú ű ú ű ú Ú Ü ú ú ú ú ű ú ú ű ú ú ú ú ú ú ű ú ú ű Ü ű ű ú É É ű É ű É ú ú ú ű É ú ú ú ú ú ú ú ú ú ú ú ű ú ú ű Á ú É ű ű ú ú ú ú ű ű ű ú ű ú ú ú ú ú ú ű ú ú Ú ű ú ű ű ú ú ű Ü ú ű

Részletesebben

ö Á É É ö ö Ö ö ű ö ő ö ő ö ú ü ö Ü ö ö ö ö ü ö ú ö ő ü ö Ú ü ü ö Ü ö ö ö ö ö ö ö ö ö ö ö ö ü ő ö ú ö ö ü ö ö ö ö ő ő ö ű ö ö ű ö ö ő Ü ö Ü ö ü Ü ö ö ö ú Ó ö ö ö ö ö ő ö ö ú ö ő ö ö ő ő ö ö ö ü ö ö É ö

Részletesebben

Á Á é é ő ö ó é é é é é ő é é é ő ő ő é ü ő ó ó ó ö ö é é ő é ő é ő ö é é é é é é é ő é ű ő é é é é é ó ő ö é ú ö é ö é é ö ő ó ő ó é ő é ő ő é ő ó ó é ő ő é é ü ő é ó é ö ő é ő é ó ő é é ő é é ő é é é

Részletesebben

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám Egy nukleonra jutó kötési energia Atomfizikai összefoglaló: radioaktív bomlás Varga József Debreceni Egyetem OEC Nukleáris Medicina Intézet Kötési energia (MeV) Tömegszám 1. 1. Áttekintés: atomfizika Varga

Részletesebben