Mágnesség, spinszelepek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mágnesség, spinszelepek"

Átírás

1 Mágnesség, spinszelepek Bevezetés Az informatikai eszközök folyamatosan fejlődnek, ennek egyik legszembetűnőbb eredménye az adattárolás forradalma, hiszen az egy bit tárolására alkalmas fizikai terület egyre csökken: a vékonyréteg technika már olyan rétegek készítését is lehetővé teszi, melyek az elektron szabad úthosszával összehasonlítható méretűek. A hagyományos eszközökben használt technika az elektron töltését használja ki, így ezt elektronikának hívjuk. Az 1922-es Stern-Gerlach-kísérlet óta bizonyítottan tudjuk, hogy az elektronnak saját impulzusmomentuma, spinje is van. Az utóbbi években megjelentek olyan újfajta, nanotechnológiával készített eszközök is, amelyek működési elvét az elektron kétféle spinállapota biztosítja, megteremtve ezáltal egy új, perspektivikus iparág, a spintronika alapjait. A spintronika jelentőségét mutatja, hogy a évi fizikai Nobel-díjat egy ilyen elven működő jelenség, nevezetesen az óriás mágneses ellenállás (angolul: giant magnetoresistance = GMR) felfedezéséért ítélték oda. Az alapok Már a 19. század közepe óta ismert tény, hogy mágneses térbe helyezett ferromágneses fémek elektromos ellenállása mérhetően megváltozik a külső tér függvényében. A jelenség klasszikus magyarázata, hogy mágneses térben a Lorenz-erő hatására a töltéshordozók spirál pályán jutnak át a vezetőn, így hosszabb útra kényszerülnek, mint különben, ezáltal nő az ellenállás. Ebből következően az MR ellenállás általában 1

2 nagyobb az áram irányára merőleges tér esetén, mint azzal párhuzamosan. Az MR nagysága az alábbi képlet alapján adható meg: MR = R H R 0 R 0 (1) A képletben R 0 a külső tér nélküli, R H pedig az aktuális külső térben mérhető elektromos ellenállás. Ez a változás még nagy külső terek esetében sem jelentős, 1% alatt marad. Az MR csak a külső mágneses tér irányától és annak nagyságától függ. Ezzel szemben tapasztalható olyan változás is, melynél az ellenállás a mágnesezettség és az áram irányától való függést mutat, ezért ezt anizotrop mágneses ellenállásnak (AMR) nevezzük. Ennek nagysága általában 1-2%, de egyes anyagokban akár 5%-os is lehet. A jelenség elvi magyarázata a spin-pálya csatolás és a d sáv felhasadása. Az anizotrop mágneses ellenállás mértéke: ρ ρ = ρ pár ρ mer 1 3 ρ pár ρ mer A képletben a mer, pár indexek a mágnesezettség és az áram egymáshoz képesti állását (merőleges ill. párhuzamos) jelölik. Azokat a szendvicsszerű szerkezettel rendelkező struktúrákat, melyek egymásra váltakozva felvitt ferromágneses, ill. nemmágneses rétegekből állnak, a szilárdtestfizikai irodalomban multirétegeknek nevezik. Az elmúlt évtizedekben a vékonyréteg technológiák gyorsütemű fejlődésével lehetővé vált a rétegvastagsággal lemenni a nanométeres skálákig, ami ezen rétegek elektromos transzport tulajdonságaiban jelentős változást hozott. Ennek oka abban keresendő, hogy az egyes alkotórétegek kisebb távolságokon belül váltották egymást, mint amekkorák az elektron transzportra jellemző karakterisztikus távolságok (pl.: elektron közepes szabad úthossza). A vékonyréteg-technológiák közül különösen az epitaxiális rétegnövesztés terén elért haladás volt döntő jelentőségű. A kezdetben a félvezető-technológia számára kidolgozott molekulasugaras epitaxia (angolul: molecular beam epitaxy = MBE) segítségével az 1970-es évek végétől alkalmasan megválasztott egykristály- hordozóra már nagyon kevés hibahelyet tartalmazó fémes vékonyrétegeket lehetett növeszteni nanométeres vastagságban. Itt vegyük figyelembe, hogy fémeknél az 1 nm-es rétegvastagság körülbelül 5 atomi rétegnek felel meg, ahol már valóban várható, hogy a fizikai tulajdonságok lényegesen megváltozhatnak a tömbi anyagokhoz képest ben jelentek meg az első publikációk arról, hogy bizonyos multirétegekben a tömbi ferromágnesekben mérhető AMR nagyságát számottevően meghaladó mágneses ellenállás mérhető. Fert és csoportja Fe/Cr multirétegeket vizsgált, és azt tapasztalták, hogy 4,2 K hőmérsékleten mágneses térbe helyezve a mintát az elektromos ellenállás közel 50%-os (2) 2

3 változást mutatott a nulla külső terű állapothoz képest 1-2 T nagyságú térváltozásoknál, amit nem lehetett magyarázni az addigi elméletekkel. Ezt a jelenséget nevezték el GMR-nek. A jelenséget kezdetben kizárólag olyan multirétegekben sikerült megfigyelni, melyekben a szomszédos ferromágneses rétegek csatolása antiferromágneses volt. Antiferromágneses csatolás esetén külső tér nélkül az egymással szomszédos mágneses rétegek mágnesezettsége antiparallel beállású. Mágneses térbe helyezéskor amennyiben elérjük azt a határt, mely legyőzi az antiferromágneses csatolást a rétegek mágnesezettségét azonos irányba lehet állítani (parallel beállás). A GMR A GMR jelenség alapjául a vezetési elektronok spin-függő szóródása szolgál, amit az úgynevezett két-áram modell keretében lehet tárgyalni. Ez azt jelenti, hogy a vezetésért felelős elektronok között megkülönböztetjük a felfele ( ) és lefele ( ) mutató spinű állapotokat és azt mondjuk, hogy az elektromos vezetés egy felfele és egy lefele álló spinű elektronok által alkotott vezetési ágban történik, amelyek egymással párhuzamosan vannak kötve. 2. ábra. A vezetési elektronok GMR-ért felelős spin-függő szórásának szemléltetése A 2. ábrán látható kis nyilak az elektronok spin-irányát ábrázolják. FM : ferromágneses, 3

4 NM : nemmágneses rétegek. Alul az adott konfigurációval ekvivalens ellenállás-elrendezés látható. Az elektronok minden egyes ferromágneses rétegen áthaladva szóródnak. Ez a vezetési elektron spin és a mágnesezettség relatív irányától függően lehet erős (nagy ellenállás), illetve gyenge szóródás (kis ellenállás). Az egész struktúrát 4 db ellenállással reprezentálva könnyen belátható, hogy az eredő ellenállás parallel beállás esetén kisebb (bal oldali ábra), antiparallel esetben nagyobb (jobb oldali ábra) lesz. A spinszelep-rendszerek A GMR effektus felfedezése után erőteljes kutatás indult a gyakorlati felhasználási lehetőségek keresésének irányában ben már olyan Co/Cu multirétegeket készítettek, melyek közel 50%-os GMR-t mutattak szobahőmérsékleten ben született meg az első elképzelés olyan, a GMR effektuson alapuló rétegszerkezetek ún. spinszelepek készítéséről, melyek mágneses szenzorként alkalmazhatók ben kerültek piacra az első olyan merevlemezek, melyek olvasófejeiben már ilyen rendszerek működtek, mára pedig ez a kiolvasási technika egyeduralkodóvá vált. Előnyük a korábban alkalmazott szenzorokkal szemben, hogy sokkal nagyobb az érzékenységük, így a mágneses adathordozók tárolási bitsűrűségét a korábbi értékek többszörösére lehetett növelni. Ez forradalmi áttörést hozott a merevlemez technológiákban. A klasszikus spinszelep rendszer alapja olyan szendvicsszerkezet, melyben két, nemmágneses réteggel elválasztott ferromágneses réteg között antiferromágneses csatolás van (lásd 3. ábra). Az egyik réteg mágnesezettségét egy vele közvetlen kicserélődési kölcsönhatásban lévő antiferromágneses réteggel rögzítjük, míg a másik réteg (az ún. szabad réteg) mágnesezettségét a külső mágneses térrel (illetve mágneses adattárolásnál használt olvasófejekben az információtárolási egység szórt külső mágneses terével) változtathatjuk. A két ferromágneses réteg relatív beállási irányától függően változik a rendszer elektromos 4

5 ellenállása. Ha a szabad réteg mágnesezettsége a rögzített rétegével parallelállású, kisebb ellenállás értéket kapunk, mint az antiparallel beállás esetén. A GMR effektuson alapuló spinszelep szenzor rendszerek másik megvalósítási lehetősége az ún. pszeudo-spinszelep rendszerek családja. Ebben az esetben a ferromágneses rétegek között nincs csatolás, viszont úgy választják meg őket, hogy a koercitív erejük különböző legyen. Spin-függő alagúteffektus (TMR) A GMR effektus felfedezése után felerősödött a spin-polarizáció területén folyó kutatási tevékenyég ben megfigyelték, hogy szendvicsszerkezetű anyagba (Fe/Al 2 O 3 /Al) a ferromágneses Fe fémből spin-polarizált áram folyik alagúteffektussal az Al 2 O 3 szigetelőn keresztül a szupravezető Al fémbe. A harmadik rétegen kilépő elektronokból megállapítható volt a spin-polarizációjuk (P). A spinállapot definíciója: P = n n n + n (3) ahol n illetve n jelöli a kétféle spin iránynak megfelelő elektron állapotűrűségét. A TMR effektus lényege, hogy a FM/I/FM típusú szendvics szerkezetű anyagokban az elektronok legnagyobb valószínűséggel alagúteffektussal jutnak át az egyik ferromágneses rétegből a szigetelő rétegen keresztül a másik ferromágneses rétegbe, parallel beállásnál könnyebben mint az antiparallel beállás esetén, így a két esetre eltérő ellenállás értéket kapunk: R illetve R. A két ellenállás különbsége megadja az alagutazó mágneses ellenállást: TMR = R R = R R R = 2 P 1P P 1 P 2 (4) A képletben P 1 ill. P 2 a ferromágneses fémnél a két különböző spin-polarizáció. 5

6 Megfelelő anyagokból előállított multirétegekben már szobahőmérsékleten is megfigyeltek 10%-nál nagyobb TMR-t. Ez, illetve az a tény, hogy nagyon kis mágneses terekre is érzékeny a jelenség vonzóvá teszi a TMR szerkezetű anyagokat szenzorként és memóriaelemként történő alkalmazásra. Kolosszális mágneses ellenállás (CMR) További ígéretes lépést jelentett az úgy nevezet kolosszális mágneses ellenállás változást (CMR) mutató anyagok felfedezése 1993-ban. A kolosszális elnevezés arra utal, hogy a detektált ellenállás változás nagyságrendekkel nagyobb, mint a korábbi anyagoknál (MR, GMR). A jelenséget a magas hőmérsékletű szupravezető kerámia anyagoknál detektálták. Tulajdonképpen ezek is réteges szerkezetűek, de a rétegek vastagsága nem néhány nm, mint a GMR eseté, hanem néhány tized nanométer. Perovszkit szerkezetű Mn-O alapú rétegek alkotják, amelyeket Cn-O rétegek választanak el egymástól (5. ábra). A Mn atomokat részlegesen lantánnal (Ln) és stronciummal (Sr) helyettesítik. 5. ábra. A CMR tulajdonságával rendelkező anyag szerkezete. Perovszkit szerkezetű Mn-O rétegek (tetraéderek) Cu-O atomsíkokkal elválasztva. Ezek az anyagok alacsony hőmérsékleten fémes tulajdonságúak, majd magasabb hőmérsékleten szigetelőként viselkednek. Mágneses tér hatására az ellenállásuk jelentősen csökken egy széles hőmérséklettartományban, az átmenet környékén (6. ábra). 6

7 6. ábra. Az ellenállás különböző mágneses tereknél a hőmérséklet függvényében. A jelenség értelmezésére több elmélet született. Dessan és Chuuang nagyfelbontású, szög-felbontású fotoemissziós spektroszkópiával (ARPES) meghatározták a CMR jelenséget mutató mangán-oxid elektronszerkezetét. Azt találták, hogy a mintában kétféle elektronszerkezetű tartomány váltogatja egymást nanométeres skálán Arra a következtetésre jutottak, hogy az eredendően kétdimenziós Mn-O síkokban a vezetési elektronok egy része csupán 1 dimenziós áramot mutat. A mágneses tér bekapcsolásával periodikus torzulás keletkezik a kristályszerkezetben, ami a molekuláris pályákat egyes helyeken közelebb hozza egymáshoz, máshol viszont távolabb kerülnek. Így szigetelő és vezető tartományok, az utóbbi esetén 1 dimenziós elektronáramok váltogatják egymást, és az áram hopping mechanizmussal (atomról atomra ugorva) folyik a szigetelő tartományokon át a kedvezően orientált területek között. Ez az elmélet megmagyarázza azt is, hogy a vezetési elektronoknak miért csak a 10%-a veszt részt a vezetésben. A spintronika jelene és jövője Visszatekintve a GMR felfedezése óta eltelt közel húsz évre, megállapítható, hogy ez az eredmény jóval nagyobb hatással volt a mágneses nanoszerkezetek elektromos és mágneses tulajdonságainak kutatására, mint csupán a merevlemez-kiolvasófej érzékenységének jelentős megjavítása, ami persze azután a tárolási sűrűség korábban elképzelhetetlen mértékű megnövelését vonta maga után. Nyilvánvaló, hogy a GMR felfedezése katalizált sok egyéb, ma már spintronikainak nevezett egyéb kutatást is, illetve teljesen új spintronikai kutatási területek is megjelentek. Az előbbiekre példa a TMR vizsgálata FM-fém/szigetelő/FM-fém heterostruktúrákban, a spintranzisztor kidolgozása, a mágneses félvezetők kutatása. 7

8 Utóbbiakra példa a GMR-szerkezetek és félvezetők kombinálásából álló hibrid eszközök létrehozása, vagy az áramindukálta átmágnesezési folyamatok vizsgálata. Mindezek tulajdonképpen egy spintronikai iparág megalapozását jelentik, az alagutazó mágneses ellenállásra alapozott mágneses (magnetorezisztív) RAM-memóriák (MRAM) fejlesztése például már nagy intenzitással folyik világszerte. Ez komoly kihívást jelent a hagyományos félvezető RAM-memóriák számára az MRAM-ok jobbnak ígérkező paraméterei és kisebb energiaigénye miatt, ami egyúttal a miniatürizálhatóság irányában is komoly előrelépést biztosíthat. 7. ábra. Az MRAM. Befejezés Végezetül egy mondat a Nobel Alapítvány honlapjáról: A GMR-effektus története nagyon jó példája annak, amikor egy teljesen váratlan tudományos felfedezés vadonatúj technológiákhoz és ipari termékekhez vezet. A GMR felfedezéséért most Nobel- díjjal jutalmazott kutatók annak idején kifejezetten alapkutatási célokra kaptak támogatást, bármiféle konkrét alkalmazási célkitűzés nélkül. Ez ráadásul igen költséges alapkutatás volt: drága minta-előállító berendezésre (MBE) volt szükség a hozzá tartozó különleges in-situ mintaminősítő eszközökkel és extrém körülmények között (alacsony hőmérsékleteken és nagy mágneses terekben) végzendő kísérletekkel. A jó felszereltség, párosulva a korábbi tapasztalatokra épülő gondos kísérleti munkával és megfelelő intellektuális teljesítménnyel végül nagy hatású eredményre vezetett ebben a konkrét esetben, de világos, hogy sok korábbi, szintén csak alapkutatási céllal végzett kutatómunka eredménye is hozzájárult ehhez a felfedezéshez. Ebből nyilvánvalóan azt a következtetést kell levonni, hogy a tiszta alapkutatás támogatása nem köthető közvetlenül alkalmazási elvárásokhoz, mert csak színvonalas 8

9 alapkutatási eredmények alapján születhetnek a későbbiekben gyakorlati felhasználást eredményező felismerések. Források GMR: Óriás mágneses ellenállás változás, Fogarassy Zsolt, 2006 Az óriás mágneses ellenállás felfedezése (1988) a spintronika nyitánya, Bakonyi Imre et al., Fizikai Szemle 2008/2. Kísérletek elektrolitikusan előállított spinszelep rendszer létrehozására (diplomamunka), Bartók András,

ÓRIÁS MÁGNESES ELLENÁLLÁS

ÓRIÁS MÁGNESES ELLENÁLLÁS ÓRIÁS MÁGNESES ELLENÁLLÁS Modern fizikai kísérletek szemináriúm Ariunbold Kherlenzaya Tartalomjegyzék Mágneses ellenállás Óriás mágneses ellenállás FM/NM multirétegek elektromos transzportja Kísérleti

Részletesebben

Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT

Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT A Mathematikai és Természettudományi Értesítõt az Akadémia 1882-ben indította A Mathematikai és Physikai Lapokat Eötvös Loránd 1891-ben alapította LVIII. évfolyam

Részletesebben

Kísérletek elektrolitikusan előállított spinszelep rendszer létrehozására

Kísérletek elektrolitikusan előállított spinszelep rendszer létrehozására Kísérletek elektrolitikusan előállított spinszelep rendszer létrehozására diplomamunka Készítette : Témavezetők : Bartók András Dr. Bakonyi Imre ELTE TTK tud. tanácsadó Informatikus fizikus szak és Dr.

Részletesebben

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)

Részletesebben

Magnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben

Magnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben Magnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben Jól ismert, hogy az elektronok az elektromos töltés mellett spinnel is rendelkeznek, mely számos érdekes jelenséget, többek között bizonyos

Részletesebben

2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György

2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György Hidrosztatikus nyomással kiváltott elektronszerkezeti változások szilárd testekben A kutatás célkitűzései: A szilárd testek elektromos és mágneses tulajdonságait az alkotó atomok elektronhullámfüggvényeinek

Részletesebben

ADATTÁROLÁS: LÁGY- ÉS MEREVLEMEZEK KOVÁCS MÁTÉ

ADATTÁROLÁS: LÁGY- ÉS MEREVLEMEZEK KOVÁCS MÁTÉ ADATTÁROLÁS: LÁGY- ÉS MEREVLEMEZEK KOVÁCS MÁTÉ 2017. 05. 10. HAJLÉKONYLEMEZ 2 TÖRTÉNETE 8 inch floppy Fejlesztés: 1967 IBM Megjelenés: 1971, 80kB (Shugart) Első írható floppy: Memorex 650, 1972, 175 kb

Részletesebben

MÁGNESES ELLENÁLLÁS FERROMÁGNESES FÉMEKBEN ÉS MÁGNESES NANOSZERKEZETEKBEN

MÁGNESES ELLENÁLLÁS FERROMÁGNESES FÉMEKBEN ÉS MÁGNESES NANOSZERKEZETEKBEN MÁGNESES ELLENÁLLÁS FERROMÁGNESES FÉMEKBEN ÉS MÁGNESES NANOSZERKEZETEKBEN Bakonyi Imre, Simon Eszter, Péter László MTA Szilárdtestfizikai és Optikai Kutatóintézet Ferromágneses (FM) fémek elektromos ellenállásának

Részletesebben

Egzotikus elektromágneses jelenségek alacsony hőmérsékleten Mihály György BME Fizikai Intézet Hall effektus Edwin Hall és az összenyomhatatlan elektromosság Kvantum Hall effektus Mágneses áram anomális

Részletesebben

A két Fizikai Szemle cikk egybeszerkesztett vátozata, részletes hivatkozáslistával (2008. febr. 11.)

A két Fizikai Szemle cikk egybeszerkesztett vátozata, részletes hivatkozáslistával (2008. febr. 11.) A két Fizikai Szemle cikk egybeszerkesztett vátozata, részletes hivatkozáslistával (2008. febr. 11.) Az óriás mágneses ellenállás felfedezésétől (1988) a 2007. évi fizikai Nobel-díjig és a spintronikáig

Részletesebben

Szupravezetés. Mágneses tér mérő szenzorok (DC, AC) BME, Anyagtudomány és Technológia Tanszék. Dr. Mészáros István. Előadásvázlat 2013.

Szupravezetés. Mágneses tér mérő szenzorok (DC, AC) BME, Anyagtudomány és Technológia Tanszék. Dr. Mészáros István. Előadásvázlat 2013. BME, Anyagtudomány és Technológia Tanszék Dr. Mészáros István Szupravezetés Előadásvázlat 2013. Mágneses tér mérő szenzorok (DC, AC) Erő ill. nyomaték mérésen alapuló eszközök Tekercs (induktív) Magnetorezisztív

Részletesebben

Magyarkuti András. Nanofizika szeminárium JC Március 29. 1

Magyarkuti András. Nanofizika szeminárium JC Március 29. 1 Magyarkuti András Nanofizika szeminárium - JC 2012. Március 29. Nanofizika szeminárium JC 2012. Március 29. 1 Abstract Az áram jelentős részéhez a grafén csík szélén lokalizált állapotok járulnak hozzá

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

Nanoelektronikai eszközök III.

Nanoelektronikai eszközök III. Nanoelektronikai eszközök III. Dr. Berta Miklós bertam@sze.hu 2017. november 23. 1 / 10 Kvantumkaszkád lézer Tekintsünk egy olyan, sok vékony rétegbõl kialakított rendszert, amelyre ha külsõ feszültséget

Részletesebben

MAGYAR TUDOMÁNYOS AKADÉMIA SZILÁRDTESTFIZIKAI ÉS OPTIKAI KUTATÓINTÉZET (MTA SZFKI)

MAGYAR TUDOMÁNYOS AKADÉMIA SZILÁRDTESTFIZIKAI ÉS OPTIKAI KUTATÓINTÉZET (MTA SZFKI) MTA SZFKI Fémkutatási Osztály (1972: Fémfizikai O.) Tudományos osztályvezető (1995 óta): BAKONYI Imre (MTA Doktora) Fő tevékenység: szilárdtestfizikai és anyagtudományi kísérleti alapkutatás fémek, fémhidridek,

Részletesebben

Miért vonzza a vegyészt a mágnes? Németh Zoltán, Magkémiai Laboratórium, ELTE Alkímia ma - 2011.03.31.

Miért vonzza a vegyészt a mágnes? Németh Zoltán, Magkémiai Laboratórium, ELTE Alkímia ma - 2011.03.31. Miért vonzza a vegyészt a mágnes? Németh Zoltán, Magkémiai Laboratórium, ELTE Alkímia ma - 2011.03.31. Mítosz Magnesz görög pásztor az Ida-hegyen sétálgatva odatapadt a földhöz vastalpú szandáljával /

Részletesebben

Tervezte és készítette Géczy LászlL. szló 1999-2008

Tervezte és készítette Géczy LászlL. szló 1999-2008 Tervezte és készítette Géczy LászlL szló 1999-2008 ADATHORDOZÓ Különböző ADATHORDOZÓK LEMEZ hajlékonylemez MO lemez merevlemez CDROM, DVDROM lemez CDRAM, DVDRAM lemez ADATHORDOZÓ SZALAG Különböző ADATHORDOZÓK

Részletesebben

IEFA Mágneses adattárolás

IEFA Mágneses adattárolás Mágneses adattárolás Hajlékony- és merevlemez, spinszelepek 2015.04.29. Section 1 Hajlékonylemez Szerkezet Történeti áttekintés 8 inch oppy fejlesztés: 1967 IBM, System/370-hez virtuális memória, frissítések

Részletesebben

SZENZOROK ÉS MIKROÁRAMKÖRÖK

SZENZOROK ÉS MIKROÁRAMKÖRÖK SZENZOROK ÉS MIKROÁRAMKÖRÖK 12. ELŐADÁS: MÁGNESES ÉRZÉKELŐK II 2014/2015 tanév 2. félév 1 1. Hall érzékelő alkalmazások. 2. Félvezető magnetorezisztor-érzékelők. 3. Ferromágneses alapú érzékelők: aniztróp

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek. III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.

Részletesebben

Tervezte és készítette Géczy László 1999-2002

Tervezte és készítette Géczy László 1999-2002 Tervezte és készítette Géczy László 1999-2002 ADATHORDOZÓ Különböző ADATHORDOZÓK LEMEZ hajlékonylemez MO lemez merevlemez CDROM, DVDROM lemez CDRAM, DVDRAM lemez ADATHORDOZÓ SZALAG Különböző ADATHORDOZÓK

Részletesebben

Vezetési jelenségek, vezetőanyagok. Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék:

Vezetési jelenségek, vezetőanyagok. Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: nyagtudomány 2014/15 Vezetési jelenségek, vezetőanyagok Dr. Szabó Péter János szpj@eik.bme.hu Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: Vezetők fémek ötvözetek elektrolitok

Részletesebben

különböző mértékben (y = 0..0,3) tartalmazó kobalt perovszkitokat 57 Fe transzmissziós Mössbauer-spektroszkópiával,

különböző mértékben (y = 0..0,3) tartalmazó kobalt perovszkitokat 57 Fe transzmissziós Mössbauer-spektroszkópiával, Zárójelentés I. A mágneses ellenállás (vagyis egy anyag elektromos ellenállásának megváltozása külső mágneses tér hatására) kutatása napjainkra mind a tudományos alapkutatás, mind a gyakorlati felhasználás

Részletesebben

Vezetési jelenségek, vezetőanyagok

Vezetési jelenségek, vezetőanyagok Anyagszerkezettan és anyagvizsgálat 2015/16 Vezetési jelenségek, vezetőanyagok Dr. Szabó Péter János szpj@eik.bme.hu Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: Vezetők

Részletesebben

ADATHORDOZÓ LEMEZ. Különböző ADATHORDOZÓK. MO lemez. hajlékonylemez CDROM, DVDROM. lemez. merevlemez CDRAM, DVDRAM. lemez

ADATHORDOZÓ LEMEZ. Különböző ADATHORDOZÓK. MO lemez. hajlékonylemez CDROM, DVDROM. lemez. merevlemez CDRAM, DVDRAM. lemez ADATHORDOZÓ Különböző ADATHORDOZÓK LEMEZ hajlékonylemez MO lemez merevlemez CDROM, DVDROM lemez CDRAM, DVDRAM lemez ADATHORDOZÓ SZALAG Különböző ADATHORDOZÓK DAT, DATA DATA CARTRIDGE TAPE 1/2 SZALAG A

Részletesebben

Spin és elektron transzport különböző félvezető heterostruktúrákban mágneses és elektromos tér jelenlétében

Spin és elektron transzport különböző félvezető heterostruktúrákban mágneses és elektromos tér jelenlétében Spin és elektron transzport különböző félvezető heterostruktúrákban mágneses és elektromos tér jelenlétében Doktori értekezés tézisei Borza Sándor NymE SKK Fizika és Elektrotechnika Intézet Témavezető:

Részletesebben

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával. ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz Programajánlatok november 11. 19:30 ELTE TTK Konferenciaterem Dr. Ahmed Hassan Zewail: Science

Részletesebben

Óriás mágneses ellenállás multirétegekben

Óriás mágneses ellenállás multirétegekben Óriás mágneses ellenállás multirétegekben munkabeszámoló Tóth Bence MTA SZFKI Fémkutatási Osztály 2011.05.17. PhD-témám Óriás mágneses ellenállás (GMR) multirétegekben Co/Cu kezdeti rétegnövekedés tulajdonságai

Részletesebben

Stern Gerlach kísérlet. Készítette: Kiss Éva

Stern Gerlach kísérlet. Készítette: Kiss Éva Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet

Részletesebben

DIPLOMAMUNKA. Óriás mágneses ellenállás Ni-Cu/Cu multirétegekben. Becsei Tamás V. fizikushallgató (ELTE TTK)

DIPLOMAMUNKA. Óriás mágneses ellenállás Ni-Cu/Cu multirétegekben. Becsei Tamás V. fizikushallgató (ELTE TTK) DIPLOMAMUNKA Óriás mágneses ellenállás Ni-Cu/Cu multirétegekben Becsei Tamás V. fizikushallgató (ELTE TTK) Témavezető: Dr.Bakonyi Imre tud. osztályvezető Hely: MTA SZFKI Fémkutatási Osztály Budapest, 1996.

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

Anyagos rész: Lásd: állapotábrás pdf. Ha többet akarsz tudni a metallográfiai vizsgálatok csodáiról, akkor: http://testorg.eu/editor_up/up/egyeb/2012_01/16/132671554730168934/metallografia.pdf

Részletesebben

fizikai szemle 2008/2

fizikai szemle 2008/2 fizikai szemle 2008/2 Az Eötvös Loránd Fizikai Társulat havonta megjelenô folyóirata. Támogatók: A Magyar Tudományos Akadémia Fizikai Tudományok Osztálya, az Oktatási és Kulturális Minisztérium, a Magyar

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Rétegződés, domének és atomi mozgás ultravékony rétegszerkezetekben

Rétegződés, domének és atomi mozgás ultravékony rétegszerkezetekben Rétegződés, domének és atomi mozgás ultravékony rétegszerkezetekben Sajti Szilárd NAO, Funkcionális Nanostruktúrák Kutatócsoport MTA Wigner FK Simonyi-nap 2014. október 16. Vékonyréteg rendszerek Félvezető

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion 06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Újabb eredmények a grafén kutatásában

Újabb eredmények a grafén kutatásában Újabb eredmények a grafén kutatásában Magda Gábor Zsolt Atomoktól a csillagokig 2014. március 13. Új anyag, új kor A kőkortól kezdve egy új anyag felfedezésekor új lehetőségek nyíltak meg, amik akár teljesen

Részletesebben

Elektronspinrezonancia (ESR) - spektroszkópia

Elektronspinrezonancia (ESR) - spektroszkópia Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben E m S μ z

Részletesebben

Pályázat Györgyi Géza-díjra

Pályázat Györgyi Géza-díjra Pályázat Györgyi Géza-díjra beadó: Dr. Németh Zoltán, tudományos munkatárs MTA Wigner FK RMI Femtoszekundumos spektroszkópia és röntgenspektroszkópiai kutatócsoport 1. Témafelvetés: nanoméretű fázisszétválás

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

Modern Fizika Labor. 17. Folyadékkristályok

Modern Fizika Labor. 17. Folyadékkristályok Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

SZENZOROK ÉS MIKROÁRAMKÖRÖK 12. ELŐADÁS: MÁGNESES ÉRZÉKELŐK II

SZENZOROK ÉS MIKROÁRAMKÖRÖK 12. ELŐADÁS: MÁGNESES ÉRZÉKELŐK II SZENZOROK ÉS MIKROÁRAMKÖRÖK 12. ELŐADÁS: MÁGNESES ÉRZÉKELŐK II 2015/2016 tanév 2. félév 1 1. Hall érzékelő alkalmazások. 2. Félvezető magnetorezisztor-érzékelők. 3. Ferromágneses alapú érzékelők: aniztróp

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Mágnesség és elektromos vezetés kétdimenziós

Mágnesség és elektromos vezetés kétdimenziós Mágnesség és elektromos vezetés kétdimenziós molekulakristályokban Jánossy András Budapesti Műszaki és Gazdaságtudományi Egyetem Fizikai Intézet, Fizika Tanszék Kondenzált Anyagok MTA-BME Kutatócsoport

Részletesebben

Spin Hall effect. Egy kis spintronika Spin-pálya kölcsönhatás. Miért szeretjük mégis? A spin-injektálás buktatói

Spin Hall effect. Egy kis spintronika Spin-pálya kölcsönhatás. Miért szeretjük mégis? A spin-injektálás buktatói Spin Hall effect Egy kis spintronika Spin-pálya kölcsönhatás Miért nem szeretjük a spin-pálya pálya kölcsönhatást? Miért szeretjük mégis? A spin-injektálás buktatói Spin Hall effect: a kezdetek Dyakonov

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben 06.08.. Fizikai kémia. 3. Részecskék mágneses térben, ESR spektroszkópia Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Részecskék mágneses térben A részecskék mágneses térben ugyanúgy

Részletesebben

XII. előadás április 29. tromos

XII. előadás április 29. tromos Bevezetés s az anyagtudományba nyba XII. előadás 2010. április 29. Ferroelektr tromos kerámi miák Ferroelektromosság: elektromos tér hiányában spontán polarizáltak (a ferromágneses viselkedés elektromos

Részletesebben

Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás

Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás Pásztázó elektronmikroszkóp Scanning Electron Microscope (SEM) Rasterelektronenmikroskope (REM) Alapelv Egy elektronágyúval vékony elektronnyalábot állítunk elő. Ezzel pásztázzuk (eltérítő tekercsek segítségével)

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

Koherens lézerspektroszkópia adalékolt optikai egykristályokban

Koherens lézerspektroszkópia adalékolt optikai egykristályokban Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes

Részletesebben

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás

Részletesebben

Normális, szimmetriasértő és szimmetriát nem sértő, mégsem normális elektronrendszerek szilárd testekben Sólyom Jenő MTA Wigner FK és ELTE

Normális, szimmetriasértő és szimmetriát nem sértő, mégsem normális elektronrendszerek szilárd testekben Sólyom Jenő MTA Wigner FK és ELTE Normális, szimmetriasértő és szimmetriát nem sértő, mégsem normális elektronrendszerek szilárd testekben Sólyom Jenő MTA Wigner FK és ELTE Ortvay-kollokvium, Budapest, 2011. szeptember 22. SZFKI szeminárium,

Részletesebben

Speciális passzív eszközök

Speciális passzív eszközök Varisztorok Voltage Dependent Resistor VDR Variable resistor - varistor Speciális passzív eszközök Feszültségfüggő ellenállás, az áram erősen függ a feszültségtől: I=CU α ahol C konstans, α értéke 3 és

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált

Részletesebben

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket)

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket) Mágnesség Schay G. Magnesia Μαγνησία Itt találtak már az ókorban mágneses köveket (valószínű villámok áramának a tere mágnesezi fel őket) maghemit Köbös Fe 2 O 3 magnetit Fe 2 +Fe 3 +2O 4 mágnesvasérc

Részletesebben

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel Készítette: Jakusch Pál Környezettudós Célkitűzés MR készülék növényélettani célú alkalmazása Kontroll

Részletesebben

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra

Részletesebben

Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ

Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ 20/3. sz. mérés Villamos mennyiségek mérése Mágneses mennyiségek Hall

Részletesebben

Elektron mozgása kristályrácsban Drude - féle elektrongáz

Elektron mozgása kristályrácsban Drude - féle elektrongáz Elektron mozgása kristályrácsban Drude - féle elektrongáz Dr. Berta Miklós bertam@sze.hu 2017. október 13. 1 / 24 Drude - féle elektrongáz Tapasztalat alapján a fémekben vannak szabad töltéshordozók. Szintén

Részletesebben

Magfizika szeminárium

Magfizika szeminárium Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos

Részletesebben

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Anyagtudomány MÁGNESES ANYAGOK GERZSON MIKLÓS

Anyagtudomány MÁGNESES ANYAGOK GERZSON MIKLÓS Anyagtudomány MÁGNESES ANYAGOK GERZSON MIKLÓS 1 mágneses pólusok (Föld, állandó mágnesek) pólusok nem szétválaszthatók történetük: Magnetosz Kréta Ókori Kína iránytű Gilbert: On the Magnet (1600) Oersted:

Részletesebben

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -

Részletesebben

FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás

FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK A leggyakrabban használt félvezető anyagok a germánium (Ge), és a szilícium (Si). Félvezető tulajdonsággal rendelkező elemek: szén (C),

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

A mágneses térerő mérése roncsolásmentes hibavizsgálat céljából

A mágneses térerő mérése roncsolásmentes hibavizsgálat céljából A TERMELÉSI FOLYAMAT MINÕSÉGKÉRDÉSEI, VIZSGÁLATOK 2.5 A mágneses térerő mérése roncsolásmentes hibavizsgálat céljából Tárgyszavak: elektronikus (integrált) áramkörök vizsgálata; vezetékstruktúra ellenőrzése;

Részletesebben

Nanofizika, nanotechnológia és anyagtudomány

Nanofizika, nanotechnológia és anyagtudomány Nanofizika, nanotechnológia és anyagtudomány Magyarázó feliratok Nanofizika, nanotechnológia és anyagtudomány Növekvő ütemű fejlődés Helyzetelemzés Technológia és minősítés Nanoszekezetek fabrikált építkező

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

Vezetési jelenségek, vezetőanyagok

Vezetési jelenségek, vezetőanyagok Anyagtudomány 2018/19 Vezetési jelenségek, vezetőanyagok Dr. Szabó Péter János szpj@eik.bme.hu Elektromos vezetési folyamatban töltést továbbító (elmozdulni képes) részecskék: Vezetők fémek szabad elektron

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic

Részletesebben

NÉHÁNY KÜLÖNLEGES FÉMES NANOSZERKEZET ELŐÁLLÍTÁSA ELEKTROKÉMIAI LEVÁLASZTÁSSAL. Neuróhr Katalin. Témavezető: Péter László. SZFKI Fémkutatási Osztály

NÉHÁNY KÜLÖNLEGES FÉMES NANOSZERKEZET ELŐÁLLÍTÁSA ELEKTROKÉMIAI LEVÁLASZTÁSSAL. Neuróhr Katalin. Témavezető: Péter László. SZFKI Fémkutatási Osztály NÉHÁNY KÜLÖNLEGES FÉMES NANOSZERKEZET ELŐÁLLÍTÁSA ELEKTROKÉMIAI LEVÁLASZTÁSSAL Neuróhr Katalin Témavezető: Péter László SZFKI Fémkutatási Osztály 2011. május 31. PhD témám: Fémes nanoszerkezetek elektrokémiai

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

Elektrosztatikai alapismeretek

Elektrosztatikai alapismeretek Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba

Részletesebben

Elektromosság, áram, feszültség

Elektromosság, áram, feszültség Elektromosság, áram, feszültség Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok

Részletesebben

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez 1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

MAGNETIC PHASE AND DOMAIN EVOLUTION OF

MAGNETIC PHASE AND DOMAIN EVOLUTION OF Doktori értekezés tézisei MAGNETIC PHASE AND DOMAIN EVOLUTION OF ANTIFERROMAGNETICALLY COUPLED MULTILAYERS Major Márton Eötvös Loránd Tudományegyetem Természettudományi Kar Fizika Doktori Iskola Anyagtudomány

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR)

A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR) 4. előadás A kovalens kötés elmélete Vegyértékelektronpár taszítási elmélet (VSEPR) az atomok kötő és nemkötő elektronpárjai úgy helyezkednek el a térben, hogy egymástól minél távolabb legyenek A központi

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben

3. A kémiai kötés. Kémiai kölcsönhatás

3. A kémiai kötés. Kémiai kölcsönhatás 3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

Doktori értekezés tézisei A MÁGNESEZETTSÉG IRÁNYÁNAK MEGHATÁROZÁSA ELLIPTIKUSAN POLÁROS REZONÁNS FOTONOKKAL. Tanczikó Ferenc

Doktori értekezés tézisei A MÁGNESEZETTSÉG IRÁNYÁNAK MEGHATÁROZÁSA ELLIPTIKUSAN POLÁROS REZONÁNS FOTONOKKAL. Tanczikó Ferenc Doktori értekezés tézisei A MÁGNESEZETTSÉG IRÁNYÁNAK MEGHATÁROZÁSA ELLIPTIKUSAN POLÁROS REZONÁNS FOTONOKKAL Tanczikó Ferenc Eötvös Loránd Tudományegyetem Természettudományi Kar Fizika Doktori Iskola Anyagtudomány

Részletesebben

Mágneses tér anyag kölcsönhatás leírása

Mágneses tér anyag kölcsönhatás leírása Anyagszerkezettan és anyagvizsgálat 2014/15 Mágneses anyagok Dr. Szabó Péter János szpj@eik.bme.hu Mágneses tér anyag kölcsönhatás leírása B H B H H M ) 0 1 M H V 1 r r 0 ( 1 Pi P V H : az anyagra ható

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 4 ELeKTROMOSSÁG, MÁGNeSeSSÉG IV. MÁGNeSeSSÉG AZ ANYAGbAN 1. AZ alapvető mágneses mennyiségek A mágneses polarizáció, a mágnesezettség vektora A nukleonok (proton,

Részletesebben

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,

Részletesebben

Elektromos töltés, áram, áramkörök

Elektromos töltés, áram, áramkörök Elektromos töltés, áram, áramkörök Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú

Részletesebben