Magszerkezet modellek. Folyadékcsepp modell
|
|
- Judit Kelemen
- 8 évvel ezelőtt
- Látták:
Átírás
1 Magszerkezet modellek Folyadékcsepp modell
2 Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus sebességek Az alkotórészek is összetettek Kvarkok (uud proton, udd neutron), elemi részek Gluonok az erős kölcsönhatás közvetítő bozonjai Kvark-antikvark párok mezonok nukleon
3 Alapvető kölcsönhatások (emlékeztető) alapvető kölcsönhatás = a pontszerű, szerkezet nélküli testek közötti kölcsönhatás gravitációs: minden részecske között hat, hosszú hatótávolságú: U~1/r, közvetítő bozon: graviton?, erőssége ~10-38 gyenge: minden részecske között hat, nagyon rövid hatótávolságú: ~ 10-3 fm, közvetítő bozonok: Z0, W-, W+, erőssége ~10-6 elektromágneses: elektromosan töltött részecskék között hat, hosszú hatótávolságú: U~1/r, közvetítő bozon: foton, erőssége: 1/137 erős: kvarkok között hat, rövid hatótávolságú: ~ 1 fm, közvetítő bozonok: gluonok, erőssége: 1
4 Nukleáris kölcsönhatás Van der Waals tipusú, effektív kh, A kvarkok közötti erős kh maradéka Jó közelítéssel pi mezonok cseréje Rövid hatótávolságú vonzás Taszító törzs Spin függő Töltés szimmetrikus Majdnem töltésfüggetlen Nem centrális tag Spin-pálya tag
5 Kötött kvantummechanikai rendszer jellemzése Állapot jellemzése hullámfüggvénnyel: Ψ(x1,y1,z1,,xn,yn,zn) Kötött rendszer hullámfüggvénye és energiája eleget tesz a A A ti + i= 1 i= 1 j= i+ 1Vij Ψ n ( r1,...rn ) = EnΨ n ( r1,...rn ) A Időtől független Schrődinger egyenletnek A lehetséges kötött állapotok diszkrét sorozatot alkotnak meghatározott energiával, impulzusmomentummal és paritással. Pl. a hidrogén atom
6 Az atommag hullámfüggvénye A A ti + i= 1 i= 1 j= i+ 1Vij Ψ n ( r1,...rn ) = EnΨ n ( r1,...rn ) A A Schrödinger egyenlet nem oldható meg az atommagra, mert: túl sok a részecske bonyolult és nem ismert a kölcsönhatás. Az egzakt megoldás helyett egyszerűbb modelleket vizsgálunk
7 Folyadékcsepp modell Rövid hatótávolságú vonzás Taszító törzs Töltés szimmetrikus Majdnem töltésfüggetlen összenyomhatatlan folyadék R=r0A1/3 ρ 1014 g/cm3 A kötési energia A -val arányos, nem A(A-1) -el Csökkenti egy felülettel (A2/3 -al) arányos tag A Z elektromos töltés miatt csökkenti egy Z2/R el, vagyis Z2/A1/3 al arányos tag Z2 2/3 W = α A β A γ 1/ 3 ζ A ( A / 2 Z ) 2 + δ A3 / 4 A
8 Kötési energia (emlékeztető) ( A / 2 Z ) 2 + δ A3 / 4 Z2 2/3 W = α A β A γ 1/ 3 ζ A He F Ca e 6 2N i 8 8S r 9 6 M o O 1 2C 1 1 7S n A 1 3 8B a 1 5 4D y 1 1B 7L i b Pb U < B / A > ~ k e V / n u k le o n 1 4N E g y n u k le o n r a j u t ó k ö t é s i e n e r g ia K í s é r le t i B / A E lm é le t i B / A Y A = N= Elmélet / kísérlet ( B/A) N -függés H 2000 e H Elmélet / kí sérlet (B / A ) A-f üg g és Neutronszám, N T ö m e g s zá ma,
9 Pauli elv és spin Z2 2/3 W = α A β A γ 1/ 3 ζ A ( A / 2 Z ) 2 + δ A3 / 4 A
10 Kis felületi rezgések (vibrációs állapotok)
11 Óriásrezonanciák Goldhaber Teller modell
12 Óriásrezonanciák osztályozása
13 A folyadékcsepp modell hiányosságai A kötési energia függvény finomszerkezete az atomhoz hasonlóan héjszerkezetre utal. Különösen stabilak a 2, 8, 20, 28, 50, 82, 126 protont vagy neutront tartalmazó atommagok (mágikus számok) A legtöbb atommag gerjesztési energiaspektruma nem vibrációs
14 A folyadékcsepp modell hiányosságai 2 deformált gömbszerű Léteznek deformált atommagok A töltött folyadékcsepp energiaminimuma a gömb alaknál van.
15 Magszerkezet modellek Szférikus héjmodell
16 Héjszerkezet a hidrogén atomban (Bohr modell) Végtelen sok kötött állapot egyre csökkenő energiaközökkel
17 Héjszerkezet a hidrogén atomban (Sommerfeld modell) l az impulzusmomentum értékei: 0,,(n-1) m az impulzusmomentum vetülete a z tengelyre értékei: -l,,0,,l A Schrödinger egyenlet egzakt megoldása is ugyanezt adja Az energia ugyanaz mint a Bohr modellben. Csak az n-től függ.
18 Több elektronos atom Az egyes elektronokra hat az atommag Coulonb tere a többi elektron Coulonb tere A többi elektron hatása egy átlagos térrel közelíthető Kisebb mint a mag tere Nem rontja el nagyon a héjszerkezetet Az állapotok betöltődésénél a Pauli elv érvényesül.
19 Atommagok szférikus héjmodellje Nincs centrális Coulonb tér mint az atomban A nukleon erősen kölcsönhat a környezetében levő nukleonokkal A többi nukleon hatását mégis egy centrális átlagtérrel közelíthetjük, amiben a nukleon független mozgást végez. Oka: a Pauli elv miatt megnő a szabad úthossz Az átlagtérre kell meghatározni a lehetséges állapotokat, amik a Pauli elv érvényesülésével töltődnek be, mint az atomi elektronok esetén.
20 Az átlagtér megválasztása Kísérleti maganyag sűrűség: Realisztikus átlagpotenciál arányos a nukleon sűrűséggel: Woods-Saxon potenciál A Woods-Saxon potenciállal nem oldható meg analitikusan a Schrödinger egyenlet. A harmonikus oszcillátor és a derékszögű potenciál jó közelítésnek látszik.
21 Oszcillátor potenciál állapotok Bohr-tipusú megoldása m v2 r =Dr mvr=n és m 2 v2 r2 = D m r4 = n2 2 Bohr féle kvantálást alkalmazva Véges számú állapot egyenlő energiaközökkel r4 = E= -U+ m v2 2 n=3 n=2 = D r2 - U E = n $%%%%%%% - U = n w - U n=1 D m n=5 n=4 2 Dm 2 0 n r = Ź!!!!!!!! Dm n2 2 D r2 E -U n=0
22 Oszcillátor potenciál egzakt megoldása Schrödinger egyenlet radiális része: megoldás: Az energia ugyanaz plusz a nullponti energia Az első három kísérleti héjlezáródást jól adja, de a többit nem
23 Woods-Saxon potenciál E 0 n=5 W-S Nem egyezik a kísérlettel n=4 n=3 n= n=1 8 -U n=0 Ugyanazokat a héjlezáródásokat adja, mint az oszcillátor potenciál 2
24 Spin-pálya kölcsönhatás L S e du LS c2 m 2 r dr Elektron esetén a Dirac egyenlet következménye Az atommag esetén a spin-pálya kölcsönhatás nem vezethető le az elméletből. Az erősségét a kísérleti eredményekhez illesztjük.
25 Energiaspektrum spin-pálya kölcsönhatással W-S + LS Reprodukálja a kísérleti héjlezáródásokat. A stabilitási sávtól távol mások lehetnek a mágikus számok. Pl. nagyon neutrondús magokban 8 és 20 helyett 6 és 16
26 Zárt héj + egy nukleon (energia) 1/23/2-3/ /2 5/2+ 5/2 3/2-7/217 O 1/2-41 Ca 57 Ni 57 Cu 3/2+ 3/2-1/2+ 5/2+ 2 1/ /2-7/217 F Z=8, N=8 3/241 Sc Z=20, N=20 Z=28, N=28
27 Zárt héj + egy nukleon (mágneses dipol momentum) Schmidt görbék
28 Zárt héj + több nukleon A Pauli elv figyelembevételével a legkisebb energiájú állapotok töltődnek be. Figyelembe kell venni a nukleonok közti maradékkölcsönhatást. J lehetséges értékei: J = J2-J1,,J2+J1 Két nukleon különböző J A különböző J értékekhez tartozó energiák héjmodell pályán: J2 a kölcsönhatás miatt különbözőek lesznek pl. proton-neutron J1 Multiplett állapotok Párkölcsönhatás: két egyforma nukleon ugyanazon a héjmodell pályán: J lehetséges értékei: J = 0, 2, 4,,(2J-1) Páros-páros magok alapállapota mindig Ha sok valencianukleon-pár van a zárt héjon kívül, akkor deformálja az átlagpotenciált. Eltér a gömb alaktól.
29 Magszerkezet modellek Deformált héjmodell, Kollektív modell
30 Mag deformáció jellemzése Kvadrupol deformáció Általános alak ha
31 A héjmodell általánosítása deformált átlagtérrel Nilsson modell: az oszcillátor potenciál általánosítása. tengelyesen szimmetrikus esetben: Nem oldható meg analitikusan Az állapotok energiái az impulzusmomentum z komponensének abszolút értéke szerint szétválnak. Asszimptotikus kvantumszámok
32 Nagy deformációk 2:1 szuperdeformáció (Nyakó Barna ATOMKI) 3:1 hiperdeformáció (Krasznahorkay Attila ATOMKI)
33 Elméleti deformációk
34 Deformált atommagok forgása A gömbszerű atommag a kvantummechanika szerint nem foroghat a, de a deformált már igen. Páros-páros magok esetén J=0 és K=0 J a valencia nukleonok impulzusmomentuma, K ennek a z irányú vetülete Forgási sáv ahol
35 Forgó atommag energiaállapotai (egyesített magmodell) A Nilsson modellel kiszámítjuk a valencia nukleon energiáját és K értékét. Hozzáadjuk a forgási energiaspektrumot. A deformált páratlan atommagok forgási állapotai azonosíthatók.
36 A forgás és a vibráció kölcsönhatása A deformált atommag egyszerre végezhet vibrációs és forgó mozgást. A vibrációhoz tartozó forgási sáv lehetséges spin és paritás értékei a vibráció formájától függnek. d a b c d a b c
37 Magszerkezet modellek További speciális modellek
38 Forgatott (kurblis) héjmodell A deformált atommaggal együtt forgó vonatkoztatási rendszerben oldja meg a Schrödinger egyenletet. Routh operátor a Hamilton operátor helyett Előnye: figyelembe tudja venni a magalak változását a forgás szögsebességének változása során. Hátránya: a kísérleti értékeket nem a forgó, hanem a laboratóriumi vonatkoztatási rendszerben kapjuk, ezért nehézkes az összehasonlítás. Pl. a kurblis modellben az impulzusmomentum nem jo kvantumszám.
39 Kölcsönható bozon modell (IBM) Sok valencianukleon esetén a héjmodellben nagyon sok lehetséges állapotot kellene figyelembe venni. Páros-páros atommagok alacsonyan gerjesztett állapotaiban a héjmodell Szerint a nukleonok 0 vagy 2 impulzusmomentumú párokba rendeződnek. Ezek az S és D bozonok. A modell csak az ilyen állapotokat veszi figyelembe. Ez sokkal kevesebb mint a héjmodell állapotok száma. Pl. a 154 Sm-nak állapota van a héjmodellben, míg az IBM-ben csak 26. Ez már kezelhető a numerikus számításokban. Kevés paraméterrel jól le tudja írni a sok valencianukleont tartalmazó atommagok alacsony energiájú gerjesztett állapotait. Hátránya: nem szemléletes.
40 Csomómodellek Bizonyos atommagoknak vannak olyan állapotai, amikben az atommag alfa részecskékből áll össze különböző elrendezésben.
Bevezetés a részecske fizikába
Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe
8. AZ ATOMMAG FIZIKÁJA
8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának
A spin. November 28, 2006
A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 12. Biofizika, Nyitrai Miklós Miért hiszi mindenki azt, hogy az atomfizika egyszerű, szép és szerethető? A korábbiakban tárgyaltuk Az atom szerkezete
Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.
Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege
Atommagok alapvető tulajdonságai
Atommagok alapvető tulajdonságai Mag és részecskefizika 5. előadás 017. március 17. Áttekintés Atommagok szerkezete a kvarkképben proton szerkezete, atommagok szerkezete, magerő Atommagok összetétele izotópok,
Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
A testek részecskéinek szerkezete
A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok
AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.
AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus
Stern Gerlach kísérlet. Készítette: Kiss Éva
Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet
Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.
MGFIZIK z atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. Z TOMMG SZERKEZETE, RDIOKTIVITÁS PTE ÁOK Biofizikai Intézet Futó Kinga magfizika azonban még nem lezárt tudomány,
alapvető tulajdonságai
A z a to m m a g o k alapvető tulajdonságai Mérhető mennyiségek Az atommagok mérete, tömege, töltése, spinje, mágneses momentuma, elektromos kvadrupól momentuma Az atommag töltés- és nukleon-eloszlása
JÁTSSZUNK RÉSZECSKEFIZIKÁT!
JÁTSSZUNK RÉSZECSKEFIZIKÁT! Dr. Oláh Éva Mária Bálint Márton Általános Iskola és Középiskola, Törökbálint MTA Wigner FK, RMI, NFO ELTE, Fizikatanári Doktori Iskola, Fizika Tanítása Program PhD olaheva@hotmail.com
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók
Kvarkok Mag és részecskefizika. előadás 018. Február 3. A pozitron felfedezése A1 193 Anderson (Cal Tech) ködkamra kozmikus sugárzás 1300 db fénykép pozitrónium PET Antihidrogén Kozmikus sugárzás antirészecske:
Az atommag szerkezete
Az atommag szerkezete Biofizika előadások 2013 november Orbán József PTE ÁOK Biofzikai Intézet Filozófusok / tudósok Történelem Aristoteles Dalton J.J.Thomson Bohr Schrödinger Pauli Curie házaspár Teller
Az atom felépítése Alapfogalmak
Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet
2015/16/1 Kvantummechanika B 2.ZH
2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék
Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature
Hadronok, atommagok, kvarkok
Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford
Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t
Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj
Magfizika szeminárium
Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos
Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai
Belső szimmetriacsoportok: SU(), SU() és a részecskék rendszerezése, a kvarkmodell alapjai Izospin Heisenberg, 9: a proton és a neutron nagyon hasonlít egymásra, csak a töltésük különbözik. Ekkor, -ben
Mag- és neutronfizika
Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
Thomson-modell (puding-modell)
Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja
Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu
Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag
Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek
Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati
January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,
Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61
Elektronok, atomok 2-1 Elektromágneses sugárzás 2-2 Atomi Spektrum 2-3 Kvantumelmélet 2-4 A Bohr Atom 2-5 Az új Kvantummechanika 2-6 Hullámmechanika 2-7 Kvantumszámok Dia 1/61 Tartalom 2-8 Elektronsűrűség
Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje
Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Atomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
Kifejtendő kérdések június 13. Gyakorló feladatok
Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest
1 Papp Gábor, Németh Judit Magfizika egyetemi jegyzet fizika tanár szakos hallgatóknak 2003, ELTE, Budapest 2 Tartalomjegyzék 1. Atommagok tulajdonságai 7 1.1. Az atommag alkotórészei......................
Bevezetés a részecskefizikába
Horváth Dezső: Bevezetés a részecskefizikába I CERN, 2009. augusztus 18. 1. fólia p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2009. aug. 17-21.) Horváth Dezső horvath@rmki.kfki.hu
Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK
Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?
I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését!
I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! Az atom az anyagok legkisebb, kémiai módszerekkel tovább már nem bontható része. Az atomok atommagból és
Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport. Fizikus Vándorgyűlés Szeged,
Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport Fizikus Vándorgyűlés Szeged, 2016.08.25 Vázlat Mértékelméletek Tulajdonságaik Milyen fizikát írnak le? Perturbációszámítás
Kvarkok. Mag és részecskefizika 2. előadás Február 24. MRF2 Kvarkok, neutrínók
Kvarkok Mag és részecskefizika. előadás 017. Február 4. V-részecskék 1. A15 felfedezés 1946, Rochester, Butler ezen a képen egy semleges részecske bomlásakor két töltött részecske (pionok) nyoma villa
2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.
Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból
Radioaktivitás. 9.2 fejezet
Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)
ATOMFIZIKA, RADIOAKTIVITÁS
ATOMFIZIKA, RADIOAKTIVITÁS 2013. 11. 08. A biofizika fizikai alapjai Magfizika Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. A magfizika azonban még nem lezárt
Két 1/2-es spinből álló rendszer teljes spinje (spinek összeadása)
Két /-es spinből álló rendszer teljes spinje spinek összeadása Két darab / spinű részecskéből álló rendszert írunk le. Ezek lehetnek elektronok, vagy protonok, vagy akármilyen elemi vagy nem elemi részecskék.
Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján
Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra
Sugárzások kölcsönhatása az anyaggal
Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag
Bevezetés a részecskefizikába
Bevezetés a részecskefizikába Kölcsönhatások Az atommag felépítése Az atommag pozitív töltésű protonokból (p) és semleges neutronokból (n) áll. A protonok és neutronok kvarkokból + gluonokból állnak. A
A Relativisztikus kvantummechanika alapjai
A Relativisztikus kvantummechanika alapjai January 25, 2005 A kvantummechanika Schrödinger egyenletének a felírása után azonnal kiderül, hogy ez az egyenlet nem relativisztikusan kovariáns. (Aránylag könnyen
A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen
A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses
Legújabb eredmények a részecskefizikában. I. rész
ismerd meg! Legújabb eredmények a részecskefizikában I. rész 1. A részecskék osztályozása Jelenlegi tudásunk szerint az anyag fermion típusú építkövekbl és bozon típusú ragasztóanyagból épül fel. (A világegyetem
Bevezetés a magfizikába
a magfizikába Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Bevezetés Kötési energia Magmodellek Magpotenciál Bevezetés 2 / 35 Bevezetés Bevezetés Kötési energia Magmodellek Magpotenciál Rutherford
http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését
F1404 ATOMMAG- és RÉSZECSKEFIZIKA
F1404 ATOMMAG- és RÉSZECSKEFIZIKA Dr. Raics Péter DE TTK Kísérleti Fizikai Tanszék, Debrecen, Bem tér 18/A RAICS@TIGRIS.KLTE.HU Ajánlott irodalom Raics P.: Atommag- és részecskefizika. Jegyzet. DE Kísérleti
Kémiai alapismeretek 2. hét
Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 14. 1/15 2011/2012 II. félév, Horváth Attila c XIX sz. vége,
Bevezetés a részecskefizikába
Horváth Dezső: Bevezetés a részecskefizikába I: SM CERN, 2014. augusztus 18. p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére CERN, 2014. aug. 18-22. (Pásztor Gabriella helyett)
ELEMI RÉSZECSKÉK ATOMMODELLEK
ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60
Elektronok, atomok 10-1 Elektromágneses sugárzás 10- Atomi Spektrum 10-3 Kvantumelmélet 10-4 A Bohr Atom 10-5 Az új Kvantummechanika 10-6 Hullámmechanika 10-7 Kvantumszámok Slide 1 of 60 Tartalom 10-8
Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369
arxiv:1604.01717 [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Motiváció FRG módszer bemutatása Kölcsönható Fermi-gáz
Mágneses monopólusok?
1 Mágneses monopólusok? (Atomcsill 2015 február) Palla László ELTE Elméleti Fizikai Tanszék 2 Maxwell egyenletek potenciálok, mértéktranszformáció legegyszerűbb e.m. mezők A klasszikus e g rendszer A monopólus
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-
egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására
Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.
Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding
Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2.
Elemi részecskék, kölcsönhatások Atommag és részecskefizika 4. előadás 2010. március 2. Az elektron proton szóródás E=1MeVλ=hc/(sqrt(E 2 -mc 2 )) 200fm Rutherford-szórás relativisztikusan Mott-szórás E=10MeVλ
Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben
Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),
Részecske- és magfizika vizsgakérdések
Részecske- és magfizika vizsgakérdések Az alábbi kérdések (vagy ezek kombinációi) fognak az írásbeli és szóbeli vizsgán is szerepelni. A vastag betűs kérdések egyszerűbb, beugró-kérdések, ezeknek kb. 90%-át
Az ionizáló sugárzások fajtái, forrásai
Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,
A kémiai kötés eredete; viriál tétel 1
A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra
Kvantumos jelenségek lézertérben
Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi
FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!
FELADATMEGOLDÁS Tesztfeladat: Válaszd ki a helyes megoldást! 1. Melyik sorozatban található jelölések fejeznek ki 4-4 g anyagot? a) 2 H 2 ; 0,25 C b) O; 4 H; 4 H 2 c) 0,25 O; 4 H; 2 H 2 ; 1/3 C d) 2 H;
Z bozonok az LHC nehézion programjában
Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60
Elektronok, atomok -1 Elektromágneses sugárzás - Atomi Spektrum -3 Kvantumelmélet -4 A Bohr Atom -5 Az új Kvantummechanika -6 Hullámmechanika -7 A hidrogénatom hullámfüggvényei Slide 1 of 60 Tartalom -8
Fizikai mennyiségek, állapotok
Fizikai mennyiségek, állapotok Atomok és molekulák zikai mennyiségeihez rendelt operátorok A kvantummechanika mint matematikai modell alapvet épít elemei a rendszer leírására szolgáló zikai mennyiségekhez
Részecskefizika kérdések
Részecskefizika kérdések Hogyan ad a Higgs- tér tömeget a Higgs- bozonnak? Milyen távla= következménye lesznek annak, ha bebizonyosodik a Higgs- bozon létezése? Egyszerre létezhet- e a H- bozon és a H-
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.
Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
Atommodellek. Készítette: Sellei László
Atommodellek Készítette: Sellei László Démokritosz Kr. e. V. sz. Az egyik legnehezebb kérdés, amire már az ókori görög tudomány is megpróbált választ adni: miből áll a világ? A világot homogén szubsztanciájú
Fizika 2 - Gyakorló feladatok
2015. június 19. ε o =8.85 10-12 AsV -1 m -1 μ o =4π10-7 VsA -1 m -1 e=1,6 10-19 C m e =9,11 10-31 kg m p =1,67 10-27 kg h=6,63 10-34 Js 1. Egy R sugarú gömbben -ρ állandó töltéssűrűség van. a. Határozza
Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek
Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)
Maghasadás (fisszió)
http://www.etsy.com Maghasadás (fisszió) 1939. Hahn, Strassmann, Meitner neutronbesugárzásos kísérletei U magon új reakciótípus (maghasadás) Azóta U, Th, Pu (7 izotópja) hasadási sajátságait vizsgálták
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Energiaminimum- elve
Energiaminimum- elve Minden rendszer arra törekszi, hogy stabil állapotba kerüljön. Milyen kapcsolat van a stabil állapot, és az adott állapot energiája között? Energiaminimum elve Energiaminimum- elve
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
Az atom felépítése Alapfogalmak
Anyagszerkezeti vizsgálatok 2018/2019. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet
Szuperszimmetria atommagok klaszterállapotaiban
Szuperszimmetria atommagok klaszterállapotaiban Lévai Géza MTA Atomki, Debrecen XVl. Magfizikus Találkozó, Jávorkút, 2018 Áttekintés Szuperszimmetria a fizikában - Impresszív elméletek, de mi van a kísérleti
Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.
Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Rádl Attila december 11. Rádl Attila Spalláció december / 21
Spalláció Rádl Attila 2018. december 11. Rádl Attila Spalláció 2018. december 11. 1 / 21 Definíció Atommagok nagyenergiás részecskével történő ütközése során másodlagos részecskéket létrehozó rugalmatlan
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
Van-e a vákuumnak energiája? A Casimir effektus és azon túl
Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?
A kvantummechanikai atommodell
A kvantummechanikai atommodell A kvantummechanika alapjai A Heinsenberg-féle határozatlansági reláció A kvantummechanikai atommodell A kvantumszámok értelmezése A Stern-Gerlach kísérlet Az Einstein-de
Atomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61
, elektronok 2-1 Elektromágneses sugárzás 2-2 Atomi spektrum 2-3 Kvantumelmélet 2-4 Bohr-atom 2-5 Az új kvantummechanika 2-6 Hullámmechanika 2-7 A hidrogénatom hullámfüggvényei Dia 1/61 , elektronok 2-8
13. A magzika alapjai
13. A magzika alapjai Zsigmond Anna 2010 Tartalomjegyzék 1. Történeti áttekintés 2 2. Elemi részecskék és alapvet kölcsönhatások 3 2.1. Kvarkmodell................................... 3 2.2. A Standard