Bevezetés a részecske fizikába

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bevezetés a részecske fizikába"

Átírás

1 Bevezetés a részecske fizikába

2 Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / Gyenge Gravitációs 10-44

3 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság: m Nukleonokat (p, n) tartja össze az atommagban A kvantum-színdinamika (QCD) írja le Olyan részecskékre hat, melyek színtöltés hordoznak: kvarok és gluonok Yukava- potenciál: 1 / r e- μr / r Források: Barionok

4 Elektromágneses és gravitációs k.h. Források: Töltött részecskék Közvetítő: Fotonok Források: tömeggel rendelkező részecskék Közvetítő: graviton? Hatótávolság: 1 / r, végtelen

5 Gyengekölcsönhatás Közvetítő részecskék: W- és Z-bozonok β- és a szabad n 0 valamint egyes atomokban a p+ és n 0 bomlását okozza. Ez az egyedüli kölcsönhatás, amelyben a neutrínó részt vesz

6 Részecskék jellemzése,osztályozása Fizika tulajdonságok: Tömeg, Spin, Mágneses dipólmomentum, Izospin, Hipertöltés, Bariontöltés, Lepton töltés Osztályozás: Foton, Leptonok, Hadronok (Mezonok, Nukleonok, Hiperonok, Mezon- és barion rezonanciák)

7 Fizikai tulajdonságok Tömeg: kg ev, E = mc 2, c=1, 1Mev = 1, J Spin: Saját impulzus-momentum Egész: Bozonok Szimmetrikus hullámfüggvény Feles: Fermion Antiszimmetrikus hullámfüggvény Mágneses dipól-momentum: μ = g μ 0 l / h, μ 0 = eh / 2mc g: giromágneses faktor : g 0: semleges részecske g ±1: töltött részecske

8 Ritkaság: Számos részecske csak gyenge kölcsönhatással tud bomlani, pedig látszólag semmi oka nincs annak, hogy ne tudjon er os kölcsönhatással bomlani. Az ilyen részecskék felfedezésük idejében ritkák voltak, innen ered a kvantumszám neve. A p + + π + Λ 0 + K 0 Erős k.h. p + + π + Λ 0 + π 0 Gyenge k.h., Ritka Jele: S példa S Λ = -1; S K =1; S π = S p = 0 Ha a ritkaság megmarad az erős kölcsönhatásban, akkor az első folyamatban megmarad a ritkaság, a másodikban azonban nem, azaz a gyenge kölcsönhatás sérti a ritkaságmegmaradást.

9 Izospin: Az erős kölcsönhatásban részt vevő részecskék (hadronok) érdekes csoportokat alkotnak, melyeknek tagjai igen hasonlítanak egymásra, és az erős kölcsönhatás szempontjából egyformán. viselkednek. Ilyen csoportok a (p; n), (π+; π 0; π-), (Σ +; Σ 0; Σ-). Ezek a csoportok a spin kvantumszámhoz hasonlóan jellemezhetők az I izospin kvantumszámmal, és annak 3. irányú komponensével (I3). Egy csoportban 2I + 1 elem található, és az I3 lehetséges értékei 1-el változnak. A (p; n) ennek alapján egy I = 1/2 csoportot alkotnak, I3 = ±1/2 értékkel.

10 Barion töltés: A proton nem bomlik el a tapasztalat szerint semmilyen kölcsönhatással, amiért valamilyen megmaradási tétel felelős. A hozzá tartozó megmaradó mennyiséget barion töltésnek (B) nevezték el, az erős kölcsönhatásban résztvevő anyagi fermionok rendelkeznek pozitív bariontöltéssel, antirészecskéig negatív töltéssel. Lepton töltés: A részecskék egy csoportja (a könnyű fermionok: elektron, müon, tau) minden kölcsönhatásban párosan vesznek részt, ami arra utal, hogy ezek rendelkeznek egy megmaradó kvantumszámmal, ez a leptonszám (L). Az antirészecskék negatív leptonszámmal rendelkeznek. Csak az e- családba tartozó részecskéknek van. Marx György fedezte fel 1952-ben. n p + + e - + v e B: 1 = L: 0 = Hiper töltés: Y = B + S = 2 (Q I 3 )

11 Részecskék osztályozása

12 Foton A kvantált elektromágneses mező gerjesztésének kvantuma. Az elektromágneses jelenségekért felelős elemi részecske M nyug = 0, c = áll.?, Q = 0, nem bomlik spontán módon Keletkezése: Töltésgyorsítás, Gerjesztés, Részecske antirészecske találkozás Egy módon "bomlik": anyagban, belső konverzióval, részecske-antirészecske párra. Virtuális foton: Két e - kölcsön hat egymással, virtuális foton cserélődik ki közöttük. m vf 0. Rövid élettartamú. Minél rövidebb az élettartama, annál nagyobb lehet ez a tömeg. A mai nagy gyorsítókkal a p + tömegének százszorosánál nagyobb tömegű virtuális fotont is sikerült előállítani.

13 Leptonok 1. Olyan elemi részecskék, amelyek nem vesznek részt az erős kölcsönhatásban (kvarkok), és nem is közvetítenek kölcsönhatást Elektron neutrínó: ν e, m < 2.5 (7.5) ev, Q = 0, Spin: ½, stabil Müon neutrínó: ν μ, m < 170 KeV, Q = 0, Spin: ½, stabil Tau neutrínó: ν τ, m < 18 MeV, Q = 0, Spin: ½, stabil

14 Leptonok 2. Elektron: m= 0.51 MeV, Q = -1 1, C, Spin: ½, Stabil Müon: m = 105 MeV, τ = 2, s, cτ = 658,654 m Spin: ½ Bomlása: μ e + ν e + ν μ (100%) Tau: m = 1776 MeV, τ = 2, s, cτ = 87,11 μm Bomlása: τ μ + ν μ + ν τ (17,36%) és még sok

15 Hadronok Olyan összetett szubatomi részecskék, amelyeknek összetevői kvarkok és gluonok Az erős kölcsönhatás kötött állapotai A kvarkok kötött állapotai Mezonok: Kvark + antikvark, Egész spinűek Barionok: 3 kvark Nukleonok: Hiperonok: Rezonok

16 Mezonok

17 Pion 1. π-mezon, Legkönnyebb mezon, Spin: 0 π+ : u + d, m = 139,6 MeV, Q = +1 π- : d + u, m = 139,6 MeV, Q = -1 τ = s ; cτ = m Mind az u és u, mind a d és d, együtt semleges, de mivel az előbbi párok azonos kvantumszámokkal rendelkeznek, csak a két pár szuperpozíciójaként található meg. A legalacsonyabb energiájú szuperpozíció a π 0, amely saját antirészecskéje

18 Pion 2. Fő bomlási mód (99,9877%): π + μ + + ν μ ; π - μ - + ν μ 2. leggyakoribb bomlás (0,0123%) π + e + + ν e ; π - e - + ν e

19 Pion 3. π 0 m = 135 MeV, Élettartam: 8 x s ; cτ = 25.1 nm π 0 2γ (98,798%) ; π 0 γ + e + + e - (1,198%) Kvark összetétele: (uu dd) / 2 Az élettartamuk azért ennyire eltérő, mert a töltött pionok bomlását a gyenge kölcsönhatás, a semlegesét az elektromágneses kölcsönhatás hozza létre. A π 0 részecske sokkal nehezebben megfigyelhető, mint a π ± ; mivel elektromosan semleges nem hagy nyomot az emulzióban. A π 0 részecskét 1950-ben a bomlástermékei révén találták meg.

20 Kaon 1. K mezon m = 493,8 MeV, Spin = 0 K + = u + s ; τ = s; cτ = m, Q = +1 I = ½, S=1, J =0- Bomlási módok Hadron: K + π + + π 0 (20,66%); K + 2π + + π 0 (5,59%) Lepton: K + μ + + ν μ (63,55%); K + e + + ν e (1,58%) Lepton és semi lepton fotonnal : K + μ + + ν μ + γ Hadron fotonnal: K + π + + π 0 + γ

21 Kaon 2. K - = u + s τ = s; cτ = m, Q = -1 Bomlási módok: Hasonló a K- - hoz Hadron fotonnal: K ± π + + e + + e + γ K 0 = d + s Élettartam: 9 x s m = 497,614 MeV Bomlási mód: K 0 π - + π

22 Kaon 3. K Short: τ = 8,9 x s, cτ = cm m = 497, 614 MeV KS = (ds sd )/ 2 Bomlások Hadron 2π 0 (30,69%); π + + π - (69,2%); π + + π - + π 0 Foton: π + + π - + γ K Long: τ = 5,116 x 10-8 s, cτ = m m = 497, 614 MeV KL = (ds + sd )/ 2 Bomlások : K L π + + π - + π 0

23 D - mezonok D + = cd, D 0 = cu, D 0 = cu, D - = cd D± : m = 1869 MeV τ = 1, s ; cτ = μm D0: m = 1864 MeV τ = s ; cτ = μm D+ bomlások: Lepton: e + + ν e, μ + + ν μ ; τ + + ν τ Hadron: K S 0 + π + (1,5%); K L 0 + π + (1,5%) Pion: π + + π - ; 2π + + π -

24 J/ψ(1S) m = MeV cc Full width Γ = 92.9 ± 2.8 kev Bomlása: hadronokra (87.7%) virtuális γ (13,5%), ggg (64.1%), γ g g (8,8%) hadron rezonanciákra (1,69%) ρπ,

25 η (Éta) m = MeV Bomlása: Természetes: (71,9%)η 2γ(39,91%), 3π 0 (32,57%) Töltött: (28,1%) η π + + π + π 0 (22,74%), π + π γ (4,6%) ρ (700) részecske m = Élettartam 125 s Bomlása: ρ π + π (100%)

26 ω(782) omega mezon m = 782 MeV Élettartam: 11,4s Bomlása: ω π + + π + π 0 (89,2%), π 0 + γ (8.28%), π + + π (1,53%)

27 Barionok

28 Proton m = 938 MeV, Stabil, Q = +1 (1,602 x C) Spin: ½ (fermion), p = uud I = ½ P+ = uud, ezen kívül gluonok és tovább rövid élettartamú kvarok. Tömege jóval nagyobb, mint a vegyértékkvarkok össztömege. Bomlások?: Antilepton és mezon: p e + + π ; e + + η; μ + + η Lepton és mezon: p e + 2π + Antilepton és foton: e + + γ 3 lepton: e + + e + + e -

29 Neutron m = 939 MeV, Spin = ½, I = ½ (fermion), Q=0 n 0 = udd Élettartam atommagon kívül: 886s (15 perc) n 0 p + + e - + ν e + 0,78 MeV τ = ± 0.8 s, cτ = km Bomlását a gyenge kölcsönhatás okozza

30 Delta barionok m = 1232 MeV, τ = 6 x s, S=0, I = 3/2 Δ++ = uuu, Bomlása: π + + p Δ+ = uud, Bomlása: π + + n vagy π 0 + p Δ0 = udd, Bomlása: π 0 + n vagy π - + p Δ = ddd, Bomlása: π - + n

31 Λ barion m = 1115 MeV, S = -1, I =0 τ = x s, cτ = 7.89 cm uds Bomlásai: p + π - (63,9%) n + π 0 (35.8%) n + γ ; p + π - + γ ; p + e + ν e (<0.001%)

32 Σ barionok 1. S = -1, I = 1 Σ+ : m = 1189 MeV τ = s, cτ = cm uus Σ0 : m = 1192 MeV τ = s, cτ = m uds Σ : m = 1197 MeV τ = s, cτ = cm dds

33 Σ barionok 2. Bomlások: Σ + p + π 0 (51.57%), n + π + (48,31%) p + γ, n + π +, Λ + e + + ν e (<0.001%) Σ 0 Λ 0 + γ (100%) Σ n + π (99.8%), n + π + γ (<0.001%)

34 Ξ (Xi) barionok S = 2, I = ½ Ξ 0 : m = 1314 MeV, τ = s, cτ = 8.71 cm Ξ 0 =uss Bomlása: Ξ 0 Λ 0 + π 0 (99,5%), Λγ (0.001%) Ξ - : Ξ - =dss m = 1321MeV, τ = s, cτ = 4.91 cm Bomlása: Ξ - Λ 0 + π 0 (99,887 %), Σ γ (0.0001%)

35 Ω barion S = -3, I = 0 sss m = MeV ; τ = 8, s cτ = cm Bomlása: Ω Λ 0 + K (67.8%), Ξ 0 + π (23,6%) Ξ + π 0 (8,6%) Ξ + π + + π (<0.001%)

36 Barion-oktett

37 Mezon -nonett

38 VÉGE

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai Belső szimmetriacsoportok: SU(), SU() és a részecskék rendszerezése, a kvarkmodell alapjai Izospin Heisenberg, 9: a proton és a neutron nagyon hasonlít egymásra, csak a töltésük különbözik. Ekkor, -ben

Részletesebben

JÁTSSZUNK RÉSZECSKEFIZIKÁT!

JÁTSSZUNK RÉSZECSKEFIZIKÁT! JÁTSSZUNK RÉSZECSKEFIZIKÁT! Dr. Oláh Éva Mária Bálint Márton Általános Iskola és Középiskola, Törökbálint MTA Wigner FK, RMI, NFO ELTE, Fizikatanári Doktori Iskola, Fizika Tanítása Program PhD olaheva@hotmail.com

Részletesebben

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2.

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2. Elemi részecskék, kölcsönhatások Atommag és részecskefizika 4. előadás 2010. március 2. Az elektron proton szóródás E=1MeVλ=hc/(sqrt(E 2 -mc 2 )) 200fm Rutherford-szórás relativisztikusan Mott-szórás E=10MeVλ

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

Kvarkok. Mag és részecskefizika 2. előadás Február 24. MRF2 Kvarkok, neutrínók

Kvarkok. Mag és részecskefizika 2. előadás Február 24. MRF2 Kvarkok, neutrínók Kvarkok Mag és részecskefizika. előadás 017. Február 4. V-részecskék 1. A15 felfedezés 1946, Rochester, Butler ezen a képen egy semleges részecske bomlásakor két töltött részecske (pionok) nyoma villa

Részletesebben

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók Kvarkok Mag és részecskefizika. előadás 018. Február 3. A pozitron felfedezése A1 193 Anderson (Cal Tech) ködkamra kozmikus sugárzás 1300 db fénykép pozitrónium PET Antihidrogén Kozmikus sugárzás antirészecske:

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Kölcsönhatások Az atommag felépítése Az atommag pozitív töltésű protonokból (p) és semleges neutronokból (n) áll. A protonok és neutronok kvarkokból + gluonokból állnak. A

Részletesebben

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest 1 Papp Gábor, Németh Judit Magfizika egyetemi jegyzet fizika tanár szakos hallgatóknak 2003, ELTE, Budapest 2 Tartalomjegyzék 1. Atommagok tulajdonságai 7 1.1. Az atommag alkotórészei......................

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Horváth Dezső: Bevezetés a részecskefizikába I: SM CERN, 2014. augusztus 18. p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére CERN, 2014. aug. 18-22. (Pásztor Gabriella helyett)

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Horváth Dezső: Bevezetés a részecskefizikába I CERN, 2009. augusztus 18. 1. fólia p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2009. aug. 17-21.) Horváth Dezső horvath@rmki.kfki.hu

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2007) Horváth Dezső horvath@rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth

Részletesebben

Határtalan neutrínók

Határtalan neutrínók Határtalan neutrínók Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport HTP utótalálkozó Budapest 218. december 8 Mottó A tudománynak azonban, hogy el ne satnyuljon,

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Magszerkezet modellek. Folyadékcsepp modell

Magszerkezet modellek. Folyadékcsepp modell Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus

Részletesebben

Atommagok alapvető tulajdonságai

Atommagok alapvető tulajdonságai Atommagok alapvető tulajdonságai Mag és részecskefizika 5. előadás 017. március 17. Áttekintés Atommagok szerkezete a kvarkképben proton szerkezete, atommagok szerkezete, magerő Atommagok összetétele izotópok,

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Részecske- és magfizika vizsgakérdések

Részecske- és magfizika vizsgakérdések Részecske- és magfizika vizsgakérdések Az alábbi kérdések (vagy ezek kombinációi) fognak az írásbeli és szóbeli vizsgán is szerepelni. A vastag betűs kérdések egyszerűbb, beugró-kérdések, ezeknek kb. 90%-át

Részletesebben

Sinkovicz Péter. ELTE, MSc II november 8.

Sinkovicz Péter. ELTE, MSc II november 8. Út az elemi részecskék felfedezéséhez és az e e + ütközések ELTE, MSc II. 2011. november 8. Bevezető c kvark τ lepton b kvark Gyenge kölcsönhatás Áttekintés 1 Bevezető 2 c kvark V-A elmélet GIM mechanizmus

Részletesebben

CERN: a szubatomi részecskék kutatásának európai központja

CERN: a szubatomi részecskék kutatásának európai központja CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az

Részletesebben

Legújabb eredmények a részecskefizikában. I. rész

Legújabb eredmények a részecskefizikában. I. rész ismerd meg! Legújabb eredmények a részecskefizikában I. rész 1. A részecskék osztályozása Jelenlegi tudásunk szerint az anyag fermion típusú építkövekbl és bozon típusú ragasztóanyagból épül fel. (A világegyetem

Részletesebben

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL tartozó valószínûség -hez, a többi nullához tart. A most vizsgált esetben (M M = 0) a (0) szerint valóban ennekkell történnie. Teljesen hasonlóan igazolható (0) helyessége akkor is, amikor k = n. A közbensô

Részletesebben

Magfizika szeminárium

Magfizika szeminárium Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos

Részletesebben

Részecskefizika kérdések

Részecskefizika kérdések Részecskefizika kérdések Hogyan ad a Higgs- tér tömeget a Higgs- bozonnak? Milyen távla= következménye lesznek annak, ha bebizonyosodik a Higgs- bozon létezése? Egyszerre létezhet- e a H- bozon és a H-

Részletesebben

A tau lepton felfedezése

A tau lepton felfedezése A tau lepton felfedezése Szabó Attila András ELTE TTK Kísérleti mag- és részecskefizikai szeminárium 2014.12.04. Tartalom 1 Előzmények(-1973) e-μ probléma e+e- annihiláció kísérletekhez vezető út 2 Felfedezés(1973-1976)

Részletesebben

Kvarkok 1. R. P. Feynman

Kvarkok 1. R. P. Feynman Kvarkok 1 R. P. Feynman Az anyag atomokból épül fel. Maguk az atomok kétféle építőkőből tehetők össze: elektronokból és atommagból. Nézzük, miből épülnek fel az elektronok. Mai tudásunk szerint az elektronok

Részletesebben

BEVEZETÉS A RÉSZECSKEFIZIKÁBA

BEVEZETÉS A RÉSZECSKEFIZIKÁBA BEVEZETÉS A RÉSZECSKEFIZIKÁBA Pásztor Gabriella Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme 2011. augusztus 15 10. 1. RÉSZ Mit vizsgál a részecskefizika és milyen eszközökkel? Elemi részecskék

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 1 / 18

2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 1 / 18 Az erős és az elektrogyenge kölcsönhatás elmélet Csanád Máté ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai

Részletesebben

BEVEZETÉS A RÉSZECSKEFIZIKÁBA

BEVEZETÉS A RÉSZECSKEFIZIKÁBA BEVEZETÉS A RÉSZECSKEFIZIKÁBA Pásztor Gabriella University of Geneva & MTA Wigner FK Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme. PROGRAM HéOő Részecskefizika célja, eszközei Elemi részecskék

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

Mese a Standard Modellről 2*2 órában, 1. rész

Mese a Standard Modellről 2*2 órában, 1. rész Mese a Standard Modellről 2*2 órában, 1. rész Előadás a magyar CMS-csoport számára (RMKI-ATOMKI-CERN, 2008. június 6.) Horváth Dezső horvath rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet,

Részletesebben

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet Modern zikai ks erletek szemin arium Kincses D aniel E otv os Lor and Tudom anyegyetem 2017. február 21. Kincses Dániel (ELTE) A két neutrínó

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 12. Biofizika, Nyitrai Miklós Miért hiszi mindenki azt, hogy az atomfizika egyszerű, szép és szerethető? A korábbiakban tárgyaltuk Az atom szerkezete

Részletesebben

Úton a kvarkok felé. Atommag- és részecskefizika 3. előadás március 1.

Úton a kvarkok felé. Atommag- és részecskefizika 3. előadás március 1. Úton a kvarkok felé Atommag- és részecskefizika 3. előadás 2010. március 1. A béta-bomlás energiaspektruma 1. béta-bomló atommagok: 40 K, 14 C, 3 H, 214 Bi 2. e/m meghatározás a keletkező részecske egy

Részletesebben

A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen

A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses

Részletesebben

Részecskefizika. Ujvári Balázs Debreceni Egyetem, Fizika Intézet HTP2017

Részecskefizika. Ujvári Balázs Debreceni Egyetem, Fizika Intézet HTP2017 Részecskefizika Ujvári Balázs Debreceni Egyetem, Fizika Intézet HTP2017 Oláh Éva előadása Atom, nukleon, kvarkok méretei Hogy rakunk össze egy protont? Színek, antiszínek (a hadronok legyenek fehérek)

Részletesebben

Mikrokozmosz világunk építôköveinek kutatása

Mikrokozmosz világunk építôköveinek kutatása HORVÁTH ZALÁN Mikrokozmosz világunk építôköveinek kutatása Horváth Zalán fizikus, az MTA rendes tagja Az anyagi világ szerkezetének megismerése több mint kétezer éve foglalkoztatja az emberiséget. A 20.

Részletesebben

BEVEZETÉS A RÉSZECSKEFIZIKÁBA

BEVEZETÉS A RÉSZECSKEFIZIKÁBA BEVEZETÉS A RÉSZECSKEFIZIKÁBA Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme 2015. augusztus 17-21. Pásztor: Bevezetés a részecskefizikába 1 PROGRAM Részecskefizika célja, eszközei Elemi részecskék

Részletesebben

Részecskék osztályozása, kölcsönhatások, Standard Modell?

Részecskék osztályozása, kölcsönhatások, Standard Modell? Részecskék osztályozása, kölcsönhatások, Standard Modell? Mag-, részecskefizika és asztrofizika 4. előadás 2018. október 2. Köszönet Pásztor Gabriellának http://gpasztor.web.cern.ch/gpasztor/mrf2017 Részecskefizika4,.htmlSzimmetriák,

Részletesebben

Részecskefizika. Ujvári Balázs HTP2016

Részecskefizika. Ujvári Balázs HTP2016 Részecskefizika Ujvári Balázs HTP2016 Oláh Éva előadása Atom, nukleon, kvarkok méretei Hogy rakunk össze egy protont? Színek, antiszínek (a hadronok legyenek fehérek) Bomlási szabályok, megmaradó mennyiségek

Részletesebben

Repetitio est mater studiorum

Repetitio est mater studiorum Repetitio est mater studiorum Anyagi részecskék Kvarkok: A mai nap főszereplői Közvetítő részecskék Leptonok: Ők mind Fermionok (s=1/2) Ők mind Bozonok (s=1) 2. Kölcsönhatások Milyen kölcsönhatásokra utalnak

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat.

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat. Néhány szó a neutronról Különböző részecskék, úgymint fotonok, neutronok, elektronok és más, töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival

Részletesebben

A testek részecskéinek szerkezete

A testek részecskéinek szerkezete A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok

Részletesebben

Trócsányi Zoltán. Az eltőnt szimmetria nyomában - a évi fizikai Nobel-díj

Trócsányi Zoltán. Az eltőnt szimmetria nyomában - a évi fizikai Nobel-díj Trócsányi Zoltán Az eltőnt szimmetria nyomában - a 2008. évi fizikai Nobel-díj A Fizikai Nobel-díj érme: Inventas vitam juvat excoluisse per artes Kik felfedezéseikkel jobbítják a világot Fizikai Nobel-díj

Részletesebben

NAGY Elemér Centre de Physique des Particules de Marseille

NAGY Elemér Centre de Physique des Particules de Marseille Korai CERN együtműködéseink a kísérleti részecskefizika terén Az EMC és L3 kísérletek NAGY Elemér Centre de Physique des Particules de Marseille Előzmények A 70-es évektől kezdve a CERN meghatározó szerephez

Részletesebben

Útban a Standard Modell felé

Útban a Standard Modell felé Útban a Standard Modell felé Mag és részecskefizika 4. előadás 2017. március 10. Amiről eddig tanultunk Hadronok: kvarkok kötött állapotai Barionok (qqq), anti-barionok (qqq), mezonok (qq) Rezonanciák

Részletesebben

13. A magzika alapjai

13. A magzika alapjai 13. A magzika alapjai Zsigmond Anna 2010 Tartalomjegyzék 1. Történeti áttekintés 2 2. Elemi részecskék és alapvet kölcsönhatások 3 2.1. Kvarkmodell................................... 3 2.2. A Standard

Részletesebben

Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.

Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. MGFIZIK z atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. Z TOMMG SZERKEZETE, RDIOKTIVITÁS PTE ÁOK Biofizikai Intézet Futó Kinga magfizika azonban még nem lezárt tudomány,

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

Antirészecskék. I. rész

Antirészecskék. I. rész ismerd meg! Antirészecskék I. rész A XX. század fizikájának két korszakalkotó eredménye a kvantumelmélet és a relativitáselmélet volt. Természetes módon merült fel e két elmélet összekapcsolásának az igénye.

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

A magkémia alapjai. Standard modell, szubatomi részecskék, fundamentális & nukleáris kölcsönhatások, spontaneitás & tömeg

A magkémia alapjai. Standard modell, szubatomi részecskék, fundamentális & nukleáris kölcsönhatások, spontaneitás & tömeg A magkémia alapjai Standard modell, szubatomi részecskék, fundamentális & nukleáris kölcsönhatások, spontaneitás & tömeg Nagy Sándor ELTE, Kémiai Intézet 01 Részecsketörténeti összefoglaló (kivezetés az

Részletesebben

Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport. Fizikus Vándorgyűlés Szeged,

Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport. Fizikus Vándorgyűlés Szeged, Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport Fizikus Vándorgyűlés Szeged, 2016.08.25 Vázlat Mértékelméletek Tulajdonságaik Milyen fizikát írnak le? Perturbációszámítás

Részletesebben

A CERN, az LHC és a vadászat a Higgs bozon után. Genf

A CERN, az LHC és a vadászat a Higgs bozon után. Genf A CERN, az LHC és a vadászat a Higgs bozon után Genf European Organization for Nuclear Research 20 tagállam (Magyarország 1992 óta) CERN küldetése: on ati uc Ed on Alapítva 1954-ben Inn ov ati CERN uniting

Részletesebben

Radioaktivitás és mikrorészecskék felfedezése

Radioaktivitás és mikrorészecskék felfedezése Radioaktivitás és mikrorészecskék felfedezése Mag és részecskefizika 1. előadás 2017. Február 17. A félév tematikája 1. Mikrorészecskék felfedezése 2. Kvark gondolat bevezetése, béta-bomlás, neutrínóhipotézis

Részletesebben

A Standard Modellen túl. Cynolter Gábor

A Standard Modellen túl. Cynolter Gábor A Standard Modellen túl Cynolter Gábor MTA Elméleti Fizikai Tanszéki Kutatócsoportja Budapest, 1117 Pázmány Péter sétány 1/A Kivonat Az elemi részecskék kölcsönhatásait leíró Standard Modell hihetetlenül

Részletesebben

Magyar Tanárprogram, CERN, 2010

Magyar Tanárprogram, CERN, 2010 Horváth Dezső: Válaszok a kérdésekre CERN, 2010. augusztus 20. 1. fólia p. 1 Magyar Tanárprogram, CERN, 2010 Válaszok a kérdésekre (2010. aug. 20.) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Rádl Attila december 11. Rádl Attila Spalláció december / 21

Rádl Attila december 11. Rádl Attila Spalláció december / 21 Spalláció Rádl Attila 2018. december 11. Rádl Attila Spalláció 2018. december 11. 1 / 21 Definíció Atommagok nagyenergiás részecskével történő ütközése során másodlagos részecskéket létrehozó rugalmatlan

Részletesebben

F1404 ATOMMAG- és RÉSZECSKEFIZIKA

F1404 ATOMMAG- és RÉSZECSKEFIZIKA F1404 ATOMMAG- és RÉSZECSKEFIZIKA Dr. Raics Péter DE TTK Kísérleti Fizikai Tanszék, Debrecen, Bem tér 18/A RAICS@TIGRIS.KLTE.HU Ajánlott irodalom Raics P.: Atommag- és részecskefizika. Jegyzet. DE Kísérleti

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Ligeti Zoltán. Ernest Orlando Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720. Kivonat

Ligeti Zoltán. Ernest Orlando Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720. Kivonat CP szimmetria sértés 1 Ligeti Zoltán Ernest Orlando Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720 Kivonat Ha a,,tükör, amit CP szimmetriának hívunk, hibátlan volna,

Részletesebben

IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN

IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN ! " #! " 154 IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN (Ludwig Boltzman) (James Clerk Maxwell)!" #!!$ %!" % " " ( Bay Zoltán )

Részletesebben

11. tétel - Elektromágneses sugárzás és ionizáló sugárzás kölcsönhatása kondenzált anyaggal, áthatolóképesség, záporjelenségek.

11. tétel - Elektromágneses sugárzás és ionizáló sugárzás kölcsönhatása kondenzált anyaggal, áthatolóképesség, záporjelenségek. 11. tétel - Elektromágneses sugárzás és ionizáló sugárzás kölcsönhatása kondenzált anyaggal, áthatolóképesség, záporjelenségek. Ionizáció Bevezetés Ionizációra minden töltött részecske képes, de az elektront

Részletesebben

A részecskefizika eszköztára: felfedezések és detektorok

A részecskefizika eszköztára: felfedezések és detektorok A részecskefizika eszköztára: felfedezések és detektorok Varga Dezső MTA WIGNER FK, RMI NFO Az évszázados kirakójáték: az elemi részecskék rendszere A buborékkamrák kora: a látható részecskék Az elektronikus

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

Puskin utcai kvarkok. A kvarkfizika második korszaka ( )

Puskin utcai kvarkok. A kvarkfizika második korszaka ( ) Puskin utcai kvarkok A kvarkfizika másoik korszaka 968-978 SZUBJKTÍV KVARKTÖRTÉNT!! A MI VRZIÓNK! Szilár Leó Az első korszak 963-968 Gell-Mann és Zweig kvarkjai Aitív kvark moell MZONOK Zweig-szabály MÉLYN

Részletesebben

Magsugárzások, Radioaktív izotópok. Az atom alkotórészei. Az atom felépítése. A radioaktivitás : energia kibocsátása

Magsugárzások, Radioaktív izotópok. Az atom alkotórészei. Az atom felépítése. A radioaktivitás : energia kibocsátása Magsugárzások, Radioaktív izotópok radioaktivitás : energia kibocsátása az atommagból részecskék vagy elektromágneses sugárzás formájában z atom felépítése z atom alkotórészei protonok neutronok nukleonok

Részletesebben

Építsünk részecskefizikát

Építsünk részecskefizikát Építsünk részecskefizikát Oláh Éva Mária Bálint Márton Általános és Középiskola 2045 Törökbálint Óvoda u. 6. A részecskefizika az egyik leggyorsabban fejlődő tudomány a világon. A középiskolákban nincs

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Egzotikus részecskefizika

Egzotikus részecskefizika Egzotikus részecskefizika CMS-miniszimpózium, Debrecen, 2007. nov. 7. Horváth Dezső horvath@rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: Egzotikus

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS)

RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS) ATOMMAGFIZIKA II. (NUCLEAR PHYSICS II.) RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS) (Harmadik, korszerűsített kiadás) (Third up-dated edition) FÉNYES TIBOR DEBRECENI EGYETEMI KIADÓ,

Részletesebben

Szimmetriák és sértésük a részecskék világában a paritássértés 50 éve 1

Szimmetriák és sértésük a részecskék világában a paritássértés 50 éve 1 Szimmetriák és sértésük a részecskék világában a paritássértés 50 éve 1 Horváth Dezső (E-mail: horvath@rmki.kfki.hu) MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen 1. Tükrözési

Részletesebben

Fizikus szemmel a szimmetriáról (II. rész)

Fizikus szemmel a szimmetriáról (II. rész) Ismerd meg! Fizikus szemmel a szimmetriáról (II. rész) Belső (rejtett) szimmetriák A mikrovilág három szintjén olyan szimmetriákkal is találkoztak, amelyek nem magyarázhatók téridő jellegű szerkezeti vagy

Részletesebben

Úton a kvarkok felé. Atommag-és részecskefizika 3. előadás február 23.

Úton a kvarkok felé. Atommag-és részecskefizika 3. előadás február 23. Úton a kvarkok felé Atommag-é rézeckefizika 3. előaá 010. febrár 3. V-rézeckék 1. felfeezé 1946, Rocheter, Btler ezen a képen egy emlege rézecke bomláakor két töltött rézecke (pionok) nyoma villa alakot

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Tartalomjegyzék. Előszó 13

Tartalomjegyzék. Előszó 13 Tartalomjegyzék Előszó 13 I. Részecskefizikai fenomenológia 19 1. Részecskék és szimmetriák 19 1.1. Szimmetriák a részecskefizikában 19 1.2. Szimmetriacsoportok és perdület 20 1.3. Fermionok és bozonok

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

Az atom felépítése Alapfogalmak

Az atom felépítése Alapfogalmak Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet

Részletesebben

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest 1 Papp Gábor, Németh Judit Magizika egyetemi jegyzet izika tanár szakos hallgatóknak 2003, ELTE, Budapest 2 Tartalomjegyzék 1. Atommagok tulajdonságai 7 1.1. Az atommag alkotórészei......................

Részletesebben

Hogyan tegyük láthatóvá a láthatatlant?

Hogyan tegyük láthatóvá a láthatatlant? Hogyan tegyük láthatóvá a láthatatlant? Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport Bolyai Kollégium Budapest 2019. április 24 2015. évi Fizikai Nobel-díj Takaaki

Részletesebben

Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető

Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető MAFIOK 2010 Békéscsaba, 2010.08.24. Hajdu Csaba MTA KFKI RMKI hajdu@mail.kfki.hu 1 Large Hadron Nagy Collider Hadron-ütköztető proton ólom mag

Részletesebben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben 06.08.. Fizikai kémia. 3. Részecskék mágneses térben, ESR spektroszkópia Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Részecskék mágneses térben A részecskék mágneses térben ugyanúgy

Részletesebben

Kozmikus sugárzás a laborban...?

Kozmikus sugárzás a laborban...? Kozmikus sugárzás a laborban...? ELTE, Fizikai Intézet Atomfizikai Tanszék vg@ludens.elte.hu Az Atomoktól a Csillagokig ELTE, 2018. január 31. Méretskálák a természetben Big Bang Proton Atom Föld sugár

Részletesebben

Theory hungarian (Hungary)

Theory hungarian (Hungary) Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Mágneses monopólusok?

Mágneses monopólusok? 1 Mágneses monopólusok? (Atomcsill 2015 február) Palla László ELTE Elméleti Fizikai Tanszék 2 Maxwell egyenletek potenciálok, mértéktranszformáció legegyszerűbb e.m. mezők A klasszikus e g rendszer A monopólus

Részletesebben

Szuperszimmetrikus részecskék

Szuperszimmetrikus részecskék Szuperszimmetrikus részecskék keresése a CERN-ben 1 Horváth Dezsõ MTA doktora, tudományos tanácsadó KFKI RMKI, Budapest, ATOMKI, Debrecen horvath@sunserv.kfki.hu 1. A Standard Modell és a szuperszimmetria

Részletesebben