BEVEZETÉS A RÉSZECSKEFIZIKÁBA

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "BEVEZETÉS A RÉSZECSKEFIZIKÁBA"

Átírás

1 BEVEZETÉS A RÉSZECSKEFIZIKÁBA Pásztor Gabriella University of Geneva & MTA Wigner FK CERN Hungarian Teachers Programme.

2 PROGRAM HéOő Részecskefizika célja, eszközei Elemi részecskék és kölcsönhatásaik Kedd Szimmetriák a részecskefizikában Elemi részecskék tömege és a Higgs bozon Szerda Neutrínók A Standard Modellen túl: szuperszimmetria és extra dimenziók Pásztor: Bevezetés a részecskefizikába 2

3 1. RÉSZ Mit vizsgál a részecskefizika és milyen eszközökkel? Elemi részecskék és kölcsönhatásaik Pásztor: Bevezetés a részecskefizikába 3

4 A KÉRDÉS Mik a világegyetem elemi építőkövei? ~10-10 m Részecskék Erők / kölcsönhatások ~10-14 m ~10-15 m < m Pásztor: Bevezetés a részecskefizikába 4

5 A VÁLASZ Leptonok Kvarkok Kölcsönhatás közvetítők Pásztor: Bevezetés a részecskefizikába 5

6 A VÁLASZ Kedd Leptonok Kvarkok Szerda Hé7ő Kölcsönhatás közvetítők Pásztor: Bevezetés a részecskefizikába 6

7 A VÁLASZ A MATEMATIKA NYELVÉN L = 1 4 F µ a F aµ +i D + h.c. + i ij j + h.c. + D µ 2 V ( ) (Forces) (Erők) (Interacqons) (Kölcsönhatások) (Flavour) (Fermionok tömege) (EWSB) (Elektrogyenge szimmetriasértés) Pásztor: Bevezetés a részecskefizikába 7

8 AZ ÚT Több mint 100 ötletekkel, elméletekkel és kísérletekkel teli év 30 Nobel díj Pásztor: Bevezetés a részecskefizikába 8

9 Kineqkus elmélet, Termodinamika Boltzmann Maxwell Newton Részecskék e - μ - νe νµ τ - ντ ν mass e + p - Atom Atommag p + n Hadronok ( particle zoo )" u π d s Brown mozgás Terek Electromágneses Speciális relativitáselmélet Kvantum mechanika Hullám / részecske Fermionok / Bozonok Spin Antianyag c STANDARD MODELL b t QED GUT foton" Higgs W bozon Szuperszimmetria Szuperhúrok Fermi β-bomlás P, C, CP sértés W" Z" Gyenge Erős Radioaktivitás Elektrogyenge egyesítés 3 fermion család Yukawa π csere QCD szín gluon" Világegyetem Kozmikus sugarak Galaxisok; táguló világgegyetem Sötét anyag Kozmikus hávérsugárzás Kozmikus hávérsugárzás egyenetlenségei (COBE, WMAP) Sötét Energia (?) Általános relativitáselmélet Magfúzió Ősrobbanás ( Big bang ) Nukleoszintézis Infláció Technológia Detektor Geiger számláló Ködkamra Buborékkamra Ionizációs gázkamra Gyorsító Ciklotron Szinkrotron e + e - ütköztető Nyaláb hűtés Online számítógépek p + p - ütköztető Modern" detektorok" WWW GRID 2010 From Rolf Landua Pásztor: Bevezetés a részecskefizikába 9

10 Kineqkus elmélet, Termodinamika Boltzmann Maxwell Newton Részecskék e - μ - νe νµ τ - ντ ν mass e + p - Atom Atommag p + n Hadronok ( particle zoo )" u π d s Brown mozgás Terek Electromágneses Speciális relativitáselmélet Kvantum mechanika Hullám / részecske Fermionok / Bozonok Spin Antianyag c STANDARD MODELL b t QED GUT foton" Higgs W bozon Szuperszimmetria Szuperhúrok Fermi β-bomlás P, C, CP sértés W" Z" Gyenge Erős Radioaktivitás Elektrogyenge egyesítés 3 fermion család Yukawa π csere QCD szín gluon" Világegyetem Kozmikus sugarak Galaxisok; táguló világgegyetem Sötét anyag Kozmikus hávérsugárzás Kozmikus hávérsugárzás egyenetlenségei (COBE, WMAP) Sötét Energia (?) Általános relativitáselmélet Magfúzió Ősrobbanás ( Big bang ) Nukleoszintézis Infláció Technológia Detektor Geiger számláló Ködkamra Buborékkamra Ionizációs gázkamra Gyorsító Ciklotron Szinkrotron e + e - ütköztető Nyaláb hűtés Online számítógépek p + p - ütköztető Modern" detektorok" WWW GRID 2010 H? From Rolf Landua Pásztor: Bevezetés a részecskefizikába 10

11 ELEMI RÉSZECSKE Egyszerű, szerkezet nélküli, tovább nem bontható de nem feltétlenül stabil, azaz elbomolhat más részecskékre Pásztor: Bevezetés a részecskefizikába 11

12 AZ ATOM FOGALMÁNAK FEJLŐDÉSE I.e. 6. évszázad, India I.e. 5. évszázad, Leukipposz, majd i.e. 450, Démokritész 1805, John Dalton: modern atomelmélet 1827, Robert Brown: kis részecskék véletlenszerű mozgása folyadékban 1905, Albert Einstein: molekulák lökdösik 1869, Dmitri Mengyelejev: kémiai elemek periódusos rendszere 1897, J.J. Thomson: katódsugárzás vizsgálata, q/m mérése elektron, minden atom része 1909, Ernest Rutherford: α részecskék szórása arany fólián atommag 1913, Frederick Soddy: izotópok 1913, Henry Moseley: atommag töltés = periódusos rendszerbeli pozíció (Antonius van den Broek hipotézise) 1917 (1919), Rutherford, Hidrogén atommag minden más atommag része, proton 1919, Francis William Aston: tömeg spektrometer, izotóp tömegek, egész szám szabály 1932, James Chadwick: neutron 1913, Niels Bohr: atom model kvantált elektronpályákkal (színképvonalak) 1924, Louis de Broglie: részecske hullám kevősség 1926, Erwin Schrödinger: atom matemaqkai modellje 3D elektron hullámokkal Pásztor: Bevezetés a részecskefizikába 12

13 A FELFEDEZÉS MÓDSZEREI Szórás kísérletek (példa: atommag felfedezése) Következtetés a megfigyelt rendszerek tulajdonságaiból: tömeg, spin, élevartam, (példa: a kvark- modell megszületése) Pásztor: Bevezetés a részecskefizikába 13

14 RÉSZECSKE SZÓRÁS MINT MIKROSZKÓP: AZ ATOMMAG FELFEDEZÉSE Az eredmény értelmezése atommag elektron(felhő) Cél- tárgy ~1/8000 Detektor Részecske forrás Geiger- Marsden (Rutherford) kísérlet: az atommag felfedezése Eredeq kísérleq elrendezés Pásztor: Bevezetés a részecskefizikába 14

15 KÍSÉRLETI ADATOK RENDSZEREZÉSE: A KVARKOK FELFEDEZÉSE A as évekre több száz erős kölcsönhatásban résztvevő részecskét fedeztek fel ( részecske állatkert ) 1962, Murray Gell- Mann rendszerezi a részecskéket, és megjósolja az Ω - létezését (1969, Nobel díj) A modern kvark modell megszüleqk 1964, Brookhaven, Ω - felfedezése a megjósolt tulajdonságokkal Spin- 0 mezon oktev Spin- 1/2 baryon oktev Spin- 3/2 baryon dekuplev Pásztor: Bevezetés a részecskefizikába 15

16 MÉRTÉKEGYSÉGEK Energia: 1 ev = J (elektron által felvev energia, amint áthalad 1V potencialkülönbségen) Speciális relaqvitáselmélet: E = mc 2 és E 2 =p 2 c 2 +m 02 c 4 Fénysebesség: c = m/s 1 Mértékegységek: [m] = [p] = [E] = ev (vagy kev, MeV, GeV, TeV) Elektron nyugalmi tömege: m e = 511 kev/c 2 vagy röviden 511 kev Heisenberg határozatlansági reláció: Δx Δp > h/4π, ΔE Δt > h/4π Planck állandó: h/2π J s ev s 1 p=100 GeV/c impulzusú részecske >10-18 m felbontással lát Pásztor: Bevezetés a részecskefizikába 16

17 AZ ANYAG FELÉPÍTÉSE 1 mm Vízcsepp mm Víz molekula 10-7 mm mm <10-15 mm (pontszerű) Proton Gluon Elektron Hidrogén atom Kvarkok és gluonok a protonban Kvark Pásztor: Bevezetés a részecskefizikába 17

18 FERMIONOK ÉS BOZONOK Spin: belső impulzus- momentum Analógia: Föld forgása a tengelye körül spin Föld keringése a Nap körül pályamomentum Elemi részecskék esetében a spin nem köthető forgáshoz, hanem egy belső tulajdonság! Kvantum- rendszerekben az impulzusmomentum kvantált: h/2π [s (s+1)], ahol s egész (0,1,2 ) és fél- egész (1/2,3/2..) értékeket vehet fel Fermionok: fél- egész spinű részecskék (pl. az elektron, a proton, a neutron 1/2- spinű) Bozonok: egész spinű részecskék (pl. a foton, a pion 1- spinű) Fermionok és bozonok különbözően viselkednek a fermionok Fermi- Dirac staqszqkával írhatók le, a Pauli- féle kizárási- elvet köveqk, a bozonok a Bose- Einstein staqszqkát köveqk, és kondenzálódhatnak Pásztor: Bevezetés a részecskefizikába 18

19 A STANDARD MODELL ELEMI RÉSZECSKÉI Pásztor: Bevezetés a részecskefizikába 19

20 AZ ANYAG ÉPÍTŐKÖVEI: A FERMIONOK 4 He atom 3 család, növekvő részecske tömeg Pásztor: Bevezetés a részecskefizikába 20

21 LEPTONOK ( 1) elektron muon tau Elektromosan töltöv leptonok: a nega v töltésű elektron és nehezebb társai A nehéz töltöv leptonok gyorsan elbomlanak, például (0) elektron- neutrínó muon- neutrínó tau- neutrínó Semleges neutrínók: nagyon könnyűek (0- tömegűnek tartovák őket sokáig) és nehezen észlelhetők A neutrínók nagyon gyengén hatnak kölcsön, jelenlétükre fizikai folyamatokban általában a hiányzó energia és impulzus utal ( energia és impulzus megmaradás!) Pásztor: Bevezetés a részecskefizikába 21

22 LEPTONOK ( 1) (0) elektron elektron- neutrínó muon muon- neutrínó tau tau- neutrínó 1897, J.J. Thomson, katódsugárzás vizsgálata: elektron NOBEL 1932, Carl Anderson, kozmikus sugarak vizsgálata ködkamrával: pozitron, az elektron anq- részecske társa NOBEL 1936, Carl Anderson, kozmikus sugarak vizsgálata ködkamrával: muon (eleinte μ- mezon ) 1930, Wolfgang Pauli, β- bomlás magyarázata: neutrínó hipotézis NOBEL Magyar vonatkozás: 1957 Szalay Sándor és Csikai Gyula Neutrínó észlelés 6He β- bomlásában hvp://epa.oszk.hu/00300/00342/00185/pdf/ FizSzem_EPA00342_2005_10_ pdf 1956, C. Cowan & F. Reines, reaktor anq- ν e kimutatása vízzel teli detektorral νe p n e +, e + e γγ NOBEL 1962, L.M. Lederman, M. Schwartz, J. Steinberger, Brookhaven AGS neutrínó nyaláb: muon neutrínó , M.L. Perl et al. (SLAC- LBL), SPEAR e + e - ütköztetőnél e + e - e ± μ +E hiányzó események: tau NOBEL 2000, DONUT kollaboráció (FNAL): tau neutrínó Pásztor: Bevezetés a részecskefizikába 22 NOBEL

23 KVARKOK fel le bájos furcsa felső (beauty) alsó 1964: M. Gell- Mann és G. Zweig felismeri, hogy a rengeteg részecske- ütköztetésben megfigyelt új részecske, megmagyarázható csupán három elemi alkotórész az u, d és s kvarkok létével 1970: S. Glashow, J. Iliopoulos, L. Maiani megjósolja a c kvark létezését az íz- váltó semleges áramok elnyomásának magyarázatául 1973: M. Kobayashi, T. Maskawa megjósolja a b kvark létezését a CP sértés magyarázatául 1974: c kvark egyidejű felfedezése az USA BNL (S. Ting et al.) és SLAC (B. Richter et al.) laboratóriumaiban NOBEL 1977: b kvark felfedezése a FNAL- ban (USA) 1995: t kvark felfedezése a FNAL- ban NOBEL NOBEL Kvarkok nem figyelhetők meg szabadon, csupán kötöv állapotban, részecskékbe zárva Pásztor: Bevezetés a részecskefizikába 23

24 A KVARKOK SZÍNE Problémák a kvark modellel Δ ++ = (u u u ) 3 azonos fermion, mi van a Pauli- kizárással? Mi tartja össze _ a hadronokat? Miért csak (qq) és (qqq) hadronok vannak? Miért nincs szabad kvark? Új kvantumszám, a szín bevezetése: Red, Green, Blue szín- töltés Δ ++ kvarkjai különböző (színű) kvantumállapotban vannak A kvarkok közöv erős szín- szín vonzás van (a szín az erős kcsh töltése) Csak színtelen állapotok szabadok (kvarkbezárás) Analógia a színlátással: 3 erős kcsh- beli állapot ~ 3 alapszín (anq- szín ~ kiegészítő szín, színtelen állapot ~ fehér) Pásztor: Bevezetés a részecskefizikába 24

25 HADRONOK: BARIONOK ÉS MEZONOK Hadron tömeg = Kvarkok tömege (1%) + (mozgási és helyzeq energia) Spin J = (Σ q ±½) + pályamomentum J = 1/2, 3/2, (fermionok) Q = 0, ±1, ±2 Nukleonok, J=1/2: p (uud), n (udd) J = 0, 1, (bozonok) Q = 0, ±1 Pionok, J=0: π - (ud), π - (ud), π 0 (uu- dd)/ 2 Pásztor: Bevezetés a részecskefizikába 25 25

26 ANYAG ÉS ANTI- ANYAG e + e Buborék kamra mágneses térben Dirac- egyenlet nega v energiájú megoldása (1928) Minden részecskének van egy anq- részecske párja, amely mindenben megegyezik vele csak a töltése ellentétes: proton (+) ó anq- proton ( ) elektron ( ) ó pozitron (+) Gravitáció azonosan hat részecskékre és anq- részecskékre, mivel tömegük azonos A természetben β- bomlásban és kozmikus sugarak hatására a föld légkörében is keletkeznek Pozitron felfedezése kozmikus sugarak vizsgálatával (C. Anderson, 1932) Ha egy részecske és egy anq- részecske találkozik, energia felszabadulása közben megsemmisülnek Az univerzum születésekor azonos számban keletkeztek részecskék és anq- részecskék. Mi történt az anq- anyaggal? Pásztor: Bevezetés a részecskefizikába 26 Pásztor: Bevezetés a részecskefizikába 26

27 Példák ELEMI KÖLCSÖNHATÁSOK, ERŐK Elektromágneses Erős Gyenge Gravitációs Minden elektromosan töltött részecske Atomok, molekulák Optikai és elektromos berendezések Telekommunikáció Kvarkok Nukleonok (és más hadronok) Neutron bomlás n p + e ν e Radioaktív β-bomlások Energiatermelés a csillagokban Potenciál ~ 1/r -a/r + b r ~ e -m V r / r ~ 1/r Minden részecske Eső tárgyak Égitestek, galaxisok, fekete lyukak Hatótávolság (F~1/r 2 ) Rövid (1 fm ~ 1/m π ) Rövid (<1 fm) (F~1/r) Élettartam s π 0 γγ s Δ pπ >10-12 s π + µ + ν µ 1 fm = m R proton = 0.8 fm Pásztor: Bevezetés a részecskefizikába 27

28 KÖZVETÍTŐ RÉSZECSKÉK: MÉRTÉK BOZONOK Részecskék közöv ható erőket elemi részecskék, ú.n. mérték bozonok közve qk Hierarchia probléma : gravitációs erőnek a többi erőhöz viszonyított gyengesége Pásztor: Bevezetés a részecskefizikába 28

29 FEYNMAN DIAGRAMMOK Képi megjelenítése a fizikai folyamatot leíró matemaqkai kifejezéseknek Minden részecskét más vonal pus jelöl Szabad véggel rendelkező vonalak valódi részecskéket, egyik vertexből a másikba futók virtuális részecskéket jelölnek Fermionoknál a részecskéket és anq- részecskéket a nyíl iránya különbözteq meg Minden vertexhez (vonalak találkozási pontjához) tartozik egy csatolási állandó Minden vertex egy integrált hoz magával A szórási folyamatok hatáskeresztmetszetének kiszámításához az összes lehetséges közbülső állapotra összegezni kell Minden közbülső állapot ábrázolható egy Feynman gráffal, melyeket könnyebb ávekinteni mint a mögövük lévő bonyolult számításokat Csak perturba v (sorba fejthető) folyamatokat ábrázolhatunk így (pl. az erős kölcsönhatás kötöv állapotait nem) Pásztor: Bevezetés a részecskefizikába 29

30 VIRTUÁLIS RÉSZECSKÉK Csupán nagyon rövid ideig léteznek Nem köveqk be a E 2 =p 2 c 2 +m 02 c 4 összefüggést de a megmaradási törvényeket betartják! Energiájuk bizonytalan a Heisenberg- féle határozatlansági törvény szerint: ΔE Δt > h/4π m=0 részecskék (pl. foton) virtuális formájának van tömege (a vákumtól kölcsönvev energiából) Közeli kapcsolatban állnak a kvantum fluktuáció fogalmával: tekinthetjük születésüket a kvantummechanikai mennyiségek várható érték körüli fluktuációjának következményeként erősen virtuális W boson! Pásztor: Bevezetés a részecskefizikába 30

31 KÖLCSÖNHATÁSOK HATÓTÁVOLSÁGA ÉS A KÖZVETÍTŐ RÉSZECSKÉK TERMÉSZETE I. γ e - e + γ Kvantummechanika szerint egy részecske összes lehetséges útját össze kell adni a megfelelő súlyokkal ahhoz, hogy egy fizikai jelenséget pontosan leírjunk Hogyan függ az EM kölcsönhatás erőssége a távolságtól? Minél messzebb van két töltés a köztük haladó foton annál több virtuális párt tud kelteni, melyek kis dipólokként árnyékolják a töltéseket távolsággal az erő csökken Pásztor: Bevezetés a részecskefizikába 31

32 KÖLCSÖNHATÁSOK HATÓTÁVOLSÁGA ÉS A KÖZVETÍTŐ RÉSZECSKÉK TERMÉSZETE II. Miért gyenge a gyenge kölcsönhatás? A közve tő részecskék (W, Z) nehezek, nagyobb energiára van szükség a létrehozásukhoz A részecskefizika nyelvén f 1 V* ~ 1 q 2 + M 2 f 2 Kölcsönhatási potenciál: V(r) ~ e m V r r f 1 ' f 2 Pásztor: Bevezetés a részecskefizikába 32

33 KÖLCSÖNHATÁSOK HATÓTÁVOLSÁGA ÉS A KÖZVETÍTŐ RÉSZECSKÉK TERMÉSZETE III. Miért erős az erős kölcsönhatás? A gluon tömege 0 (mint a fotoné) A gluon töltöv (színes) az erős kölcsönhatás szempontjából Nemcsak virtuális fermion párok, hanem gluon párok is születhetnek a vákumban ÚJ! V(r) ~ a r + br Ezek a virtuális gluonok nem árnyékolják, hanem erősíqk a kölcsönhatást! A fenq potenciál leírja mindkét megfigyelt jelenséget: a kvark- bezárást, és az aszimptoqkus szabadságot Pásztor: Bevezetés a részecskefizikába 33

34 KVARK BEZÁRÁS Mi történik, ha két részecskét megpróbálunk eltávolítani egymástól? Elektromos tér (széverjed) Színtér (szétszakad) kvark bezárás Pásztor: Bevezetés a részecskefizikába 34

35 HADRONZÁPOROK Az ütközésben keletkező kvarkok távolodnak egymástól amíg energiájuk futja, kvark párokat keltenek kialakul egy részecske- vagy hadron- zápor ( jet ) A közeli kvark párok, kvark hármasok hadronokat hoznak létre (mezonok, barionok) Fragmentáció, hadronizáció augusztus Pásztor: Bevezetés a részecskefizikába Gluon felfedezése (DESY PETRA) 35

36 RÉSZECSKE DETEKTOROK Töltés meghatározás Impulzus mérés F = qv B = m v 2 Pásztor: Bevezetés a részecskefizikába 36 r r = mv qb

37 RÉSZECSKE DETEKTOROK Detektor metszet, részecske nyomokkal Részecskék nyoma a detektorban Pásztor: Bevezetés a részecskefizikába 37

38 A NÉHAI OPAL DETEKTOR LEP gyorsító 4 sok- célú detektorának (ALEPH, DELPHI, L3, OPAL) egyike Adatgyűjtés: Méret: 12 m x 12m x 12m Pásztor: Bevezetés a részecskefizikába 38

39 LEP LEP1, s 91 GeV: e + e - Z ff LEP2, s 200 GeV: e + e - WW, ZZ, ff(γ), Pontszerű leptonok ütközése Tiszta események Tipikus LEP2 esemény: e + e - WW qqqq 4 hadron zápor <100 töltöv részecske Pásztor: Bevezetés a részecskefizikába 39

40 ??? Pásztor: Bevezetés a részecskefizikába 40

41 Z μ + μ - AT LEP OPAL Pásztor: Bevezetés a részecskefizikába 41

42 ??? Pásztor: Bevezetés a részecskefizikába 42

43 Z μ + μ - γ AT LEP OPAL Pásztor: Bevezetés a részecskefizikába 43

44 ??? Pásztor: Bevezetés a részecskefizikába 44

45 Z e + e - AT LEP OPAL Pásztor: Bevezetés a részecskefizikába 45

46 ??? Pásztor: Bevezetés a részecskefizikába 46

47 Z e + e - γ AT LEP OPAL Pásztor: Bevezetés a részecskefizikába 47

48 ??? Pásztor: Bevezetés a részecskefizikába 48

49 Z τ + τ - μ + e - + E hiányzó AT LEP OPAL Pásztor: Bevezetés a részecskefizikába 49

50 ??? Pásztor: Bevezetés a részecskefizikába 50

51 Z τ + τ - h + (h - h + h - ) + E hiányzó AT LEP OPAL Tau élevartam (0.3 ps) mérhető ilyen eltolt vertexű eseményekkel Pásztor: Bevezetés a részecskefizikába 51

52 ??? Pásztor: Bevezetés a részecskefizikába 52

53 Z ννγ AT LEP OPAL Pásztor: Bevezetés a részecskefizikába 53

54 ??? Pásztor: Bevezetés a részecskefizikába 54

55 Z qq AT LEP OPAL Pásztor: Bevezetés a részecskefizikába 55

56 ??? Pásztor: Bevezetés a részecskefizikába 56

57 Z qqg AT LEP OPAL Pásztor: Bevezetés a részecskefizikába 57

58 ??? K 0 Pásztor: Bevezetés a részecskefizikába 58

59 Z bb AT LEP OPAL - b b K 0 Pásztor: Bevezetés a részecskefizikába 59

60 ??? φ K + K - J/ψ μ + μ - Pásztor: Bevezetés a részecskefizikába 60

61 Z bb AT LEP OPAL - b b φ K + K - J/ψ μ + μ - B s J/ψ φ Pásztor: Bevezetés a részecskefizikába 61

62 EXTRA Pásztor: Bevezetés a részecskefizikába 62

63 Z BOZON BOMLÁS elektron pár muon pár tau pár muon, elektron kvark (hadron zápor) pár kvark pár és gluon (3 hadron zápor) tau pár hadron, muon Pásztor: Bevezetés a részecskefizikába 63

64 Z BOZON BOMLÁS A LEP GYORSÍTÓN elektron pár muon pár tau pár elektron, muon kvark (hadron zápor) pár kvark pár és gluon (3 hadron zápor) tau pár 1 és 3 hadron Pásztor: Bevezetés a részecskefizikába 64

65 A TOP KVARK FELFEDEZÉSE Tevatron proton-antiproton ütköztető CDF and D0 kísérletei (Fermilab, USA), 1995 Pásztor: Bevezetés a részecskefizikába 65 Pásztor: Bevezetés a részecskefizikába 65

66 A TOP KVARK FELFEDEZÉSE A detektor képe Számítógépes rekonstrukció Egy megfigyelt esemény a CDF detektorban A fizikus értelmezése Pásztor: Bevezetés a részecskefizikába 66 Pásztor: Bevezetés a részecskefizikába 66

67 HADRONZÁPOROK Pásztor: Bevezetés a részecskefizikába 67

68 LEP éra (- 2000) A CERN GYORSÍTÓI LHC éra (2008- ) Pásztor: Bevezetés a részecskefizikába 68

BEVEZETÉS A RÉSZECSKEFIZIKÁBA

BEVEZETÉS A RÉSZECSKEFIZIKÁBA BEVEZETÉS A RÉSZECSKEFIZIKÁBA Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme 2015. augusztus 17-21. Pásztor: Bevezetés a részecskefizikába 1 PROGRAM Részecskefizika célja, eszközei Elemi részecskék

Részletesebben

Részecskefizika kérdések

Részecskefizika kérdések Részecskefizika kérdések Hogyan ad a Higgs- tér tömeget a Higgs- bozonnak? Milyen távla= következménye lesznek annak, ha bebizonyosodik a Higgs- bozon létezése? Egyszerre létezhet- e a H- bozon és a H-

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Kölcsönhatások Az atommag felépítése Az atommag pozitív töltésű protonokból (p) és semleges neutronokból (n) áll. A protonok és neutronok kvarkokból + gluonokból állnak. A

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2007) Horváth Dezső horvath@rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Horváth Dezső: Bevezetés a részecskefizikába I CERN, 2009. augusztus 18. 1. fólia p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2009. aug. 17-21.) Horváth Dezső horvath@rmki.kfki.hu

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

Részecskefizika. Ujvári Balázs HTP2016

Részecskefizika. Ujvári Balázs HTP2016 Részecskefizika Ujvári Balázs HTP2016 Oláh Éva előadása Atom, nukleon, kvarkok méretei Hogy rakunk össze egy protont? Színek, antiszínek (a hadronok legyenek fehérek) Bomlási szabályok, megmaradó mennyiségek

Részletesebben

CERN: a szubatomi részecskék kutatásának európai központja

CERN: a szubatomi részecskék kutatásának európai központja CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Megmérjük a láthatatlant

Megmérjük a láthatatlant Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy

Részletesebben

NAGY Elemér Centre de Physique des Particules de Marseille

NAGY Elemér Centre de Physique des Particules de Marseille Korai CERN együtműködéseink a kísérleti részecskefizika terén Az EMC és L3 kísérletek NAGY Elemér Centre de Physique des Particules de Marseille Előzmények A 70-es évektől kezdve a CERN meghatározó szerephez

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL tartozó valószínûség -hez, a többi nullához tart. A most vizsgált esetben (M M = 0) a (0) szerint valóban ennekkell történnie. Teljesen hasonlóan igazolható (0) helyessége akkor is, amikor k = n. A közbensô

Részletesebben

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( ) a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj

Részletesebben

Repetitio est mater studiorum

Repetitio est mater studiorum Repetitio est mater studiorum Anyagi részecskék Kvarkok: A mai nap főszereplői Közvetítő részecskék Leptonok: Ők mind Fermionok (s=1/2) Ők mind Bozonok (s=1) 2. Kölcsönhatások Milyen kölcsönhatásokra utalnak

Részletesebben

Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei?

Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei? Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei? Veres Gábor ELTE Fizikai Intézet Atomfizikai Tanszék e-mail: vg@ludens.elte.hu Az atomoktól a csillagokig előadássorozat nem csak középiskolásoknak

Részletesebben

A CERN, az LHC és a vadászat a Higgs bozon után. Genf

A CERN, az LHC és a vadászat a Higgs bozon után. Genf A CERN, az LHC és a vadászat a Higgs bozon után Genf European Organization for Nuclear Research 20 tagállam (Magyarország 1992 óta) CERN küldetése: on ati uc Ed on Alapítva 1954-ben Inn ov ati CERN uniting

Részletesebben

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest 1 Papp Gábor, Németh Judit Magfizika egyetemi jegyzet fizika tanár szakos hallgatóknak 2003, ELTE, Budapest 2 Tartalomjegyzék 1. Atommagok tulajdonságai 7 1.1. Az atommag alkotórészei......................

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Részecske- és magfizika vizsgakérdések

Részecske- és magfizika vizsgakérdések Részecske- és magfizika vizsgakérdések Az alábbi kérdések (vagy ezek kombinációi) fognak az írásbeli és szóbeli vizsgán is szerepelni. A vastag betűs kérdések egyszerűbb, beugró-kérdések, ezeknek kb. 90%-át

Részletesebben

A Standard Modellen túl. Cynolter Gábor

A Standard Modellen túl. Cynolter Gábor A Standard Modellen túl Cynolter Gábor MTA Elméleti Fizikai Tanszéki Kutatócsoportja Budapest, 1117 Pázmány Péter sétány 1/A Kivonat Az elemi részecskék kölcsönhatásait leíró Standard Modell hihetetlenül

Részletesebben

Theory hungarian (Hungary)

Theory hungarian (Hungary) Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető

Részletesebben

A legkisebb részecskék a világ legnagyobb gyorsítójában

A legkisebb részecskék a világ legnagyobb gyorsítójában A legkisebb részecskék a világ legnagyobb gyorsítójában Varga Dezső, ELTE Fiz. Int. Komplex Rendszerek Fizikája Tanszék AtomCsill 2010 november 18. Az ismert világ építőkövei: az elemi részecskék Elemi

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Magszerkezet modellek. Folyadékcsepp modell

Magszerkezet modellek. Folyadékcsepp modell Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus

Részletesebben

Részecskegyorsítókkal az Ősrobbanás nyomában

Részecskegyorsítókkal az Ősrobbanás nyomában Csanád Máté Részecskegyorsítókkal az Ősrobbanás nyomában Zrínyi Ilona Gimnázium Nyíregyháza, 2010. december 10. www.meetthescientist.hu 1 26 Az anyag szerkezete Atomok proton, neutrok, elektronok Elektron

Részletesebben

Ligeti Zoltán. Ernest Orlando Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720. Kivonat

Ligeti Zoltán. Ernest Orlando Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720. Kivonat CP szimmetria sértés 1 Ligeti Zoltán Ernest Orlando Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720 Kivonat Ha a,,tükör, amit CP szimmetriának hívunk, hibátlan volna,

Részletesebben

Magyarok a CMS-kísérletben

Magyarok a CMS-kísérletben Magyarok a CMS-kísérletben LHC-klubdélután, ELFT, 2007. ápr. 16. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: Magyarok a CMS-kísérletben LHC-klubdélután,

Részletesebben

Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető

Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető MAFIOK 2010 Békéscsaba, 2010.08.24. Hajdu Csaba MTA KFKI RMKI hajdu@mail.kfki.hu 1 Large Hadron Nagy Collider Hadron-ütköztető proton ólom mag

Részletesebben

Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár

Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár Atommodellek Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Ernest Rutherford Rausch Péter kémia-környezettan tanár Modellalkotás A modell a valóság nagyított

Részletesebben

Részecskefizika 3: neutrínók

Részecskefizika 3: neutrínók Horváth Dezső: Bevezetés a részecskefizikába III CERN, 2014. augusztus 20. p. 1 Részecskefizika 3: neutrínók Előadássorozat fizikatanárok részére (CERN, 2014) Horváth Dezső Horvath.Dezso@wigner.mta.hu

Részletesebben

Töltött Higgs-bozon keresése az OPAL kísérletben

Töltött Higgs-bozon keresése az OPAL kísérletben Horváth Dezső: Töltött Higgs-bozon keresése az OPAL kísérletben, RMKI-ATOMKI-CERN, 28..3. p. /27 Töltött Higgs-bozon keresése az OPAL kísérletben Budapest-Debrecen-CERN szeminárium, 28. okt. 3. Horváth

Részletesebben

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61 Elektronok, atomok 2-1 Elektromágneses sugárzás 2-2 Atomi Spektrum 2-3 Kvantumelmélet 2-4 A Bohr Atom 2-5 Az új Kvantummechanika 2-6 Hullámmechanika 2-7 Kvantumszámok Dia 1/61 Tartalom 2-8 Elektronsűrűség

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat.

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat. Néhány szó a neutronról Különböző részecskék, úgymint fotonok, neutronok, elektronok és más, töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival

Részletesebben

Nehézion ütközések az európai Szupergyorsítóban

Nehézion ütközések az európai Szupergyorsítóban Nehézion ütközések az európai Szupergyorsítóban Lévai Péter MTA KFKI RMKI Részecske- és Magfizikai Kutatóintézet Az atomoktól a csillagokig ELTE, 2008. márc. 27. 17.00 Tartalomjegyzék: 1. Mik azok a nehézionok?

Részletesebben

Marx György (1927-2002)

Marx György (1927-2002) Marx György (1927-2002) 2002) Egy tanítvány visszaemlékezései (Dr. Sükösd Csaba, Budapest) Tartalom Korai évek A leptontöltés megmaradása Az Univerzum keletkezése és fejlıdése Neutrínófizika Híd Kelet

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Thomson-modell (puding-modell)

Thomson-modell (puding-modell) Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja

Részletesebben

Új, 125 GeV nyugalmi tömegű részecske megfigyelése

Új, 125 GeV nyugalmi tömegű részecske megfigyelése Új, 125 GeV nyugalmi tömegű részecske megfigyelése CMS Együttműködés, CERN 2012. július 4. Összefoglalás A mai, a CERN-ben és az ICHEP 2012 konferencián 1 megtartott együttes szemináriumon a CERN Nagy

Részletesebben

Budapest, 2010. december 3-4.

Budapest, 2010. december 3-4. Mócsy Ildikó A természettudomány A természettudomány szakágazatai: - alap tudományok: fizika kémia biológia földtudományok csillagászat - alkalmazott tudományok: mérnöki mezőgazdaság orvostudomány - matematika,

Részletesebben

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

A Higgs-bozon felfedezése: a nagyenergiás fizika negyvenéves kalandja

A Higgs-bozon felfedezése: a nagyenergiás fizika negyvenéves kalandja Horváth Dezső: A Higgs-bozon felfedezése TIT, 2014.12.17. p. 1/40 A Higgs-bozon felfedezése: a nagyenergiás fizika negyvenéves kalandja TIT József Attila Szabadegyetem, Budapest, 2014.12.17. Horváth Dezső

Részletesebben

Antirészecskék. I. rész

Antirészecskék. I. rész ismerd meg! Antirészecskék I. rész A XX. század fizikájának két korszakalkotó eredménye a kvantumelmélet és a relativitáselmélet volt. Természetes módon merült fel e két elmélet összekapcsolásának az igénye.

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 16. Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 16. Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB08-80137 2010. augusztus 16. Hungarian Teacher Program, CERN 1 Hogyan látunk különböző méreteket? A világban megtalálható tárgyak mérete

Részletesebben

A mikrovilág szimmetriái: CERN-kísérletek DE Kossuth Lajos Gyakorló Gimnáziuma

A mikrovilág szimmetriái: CERN-kísérletek DE Kossuth Lajos Gyakorló Gimnáziuma A mikrovilág szimmetriái: CERN-kísérletek DE Kossuth Lajos Gyakorló Gimnáziuma Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: A mikrovilág szimmetriái:

Részletesebben

Speciális relativitás

Speciális relativitás Bevezetés a modern fizika fejezeteibe 3. (b) Speciális relativitás Relativisztikus dinamika Utolsó módosítás: 2013 október 15. 1 A relativisztikus tömeg (1) A bevezetett Lorentz-transzformáció biztosítja

Részletesebben

RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS)

RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS) ATOMMAGFIZIKA II. (NUCLEAR PHYSICS II.) RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS) (Harmadik, korszerűsített kiadás) (Third up-dated edition) FÉNYES TIBOR DEBRECENI EGYETEMI KIADÓ,

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 22.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 22. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2011. február 22. A radioaktivitásról Tévedések, téves következtetések is voltak : Curie házaspár: felfedezi, hogy a rádiumsók állandóan

Részletesebben

Elektronok, atomok. Tartalom

Elektronok, atomok. Tartalom Elektronok, atomok 8-1 Elektromágneses sugárzás 8-2 Atomi Spektrum 8-3 Kvantumelmélet 8-4 ABohr Atom 8-5 Az új Kvantummechanika 8-6 Hullámmechanika 8-7 Kvantumszámok, elektronpályák Slide 1 of 60 Tartalom

Részletesebben

Tényleg megvan a Higgs-bozon?

Tényleg megvan a Higgs-bozon? Horváth Dezső: Higgs-bozon CSKI, 2014.02.19. p. 1 Tényleg megvan a Higgs-bozon? CSFK CSI, 2014.02.19 Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Részecske- és Magfizikai

Részletesebben

A részecskefizika anyagelmélete: a Standard modell

A részecskefizika anyagelmélete: a Standard modell A részecskefizika anyagelmélete: a Standard modell Horváth Dezső MTA KFKI Részecske- és Magfizikai Kutatóintézet, Budapest 1. Bevezetés A CERN nagy hadronütköztető (LHC) gyorsítóját 2008-ban indítják,

Részletesebben

A természet legmélyebb szimmetriái

A természet legmélyebb szimmetriái A természet legmélyebb szimmetriái Horváth Dezső horvath@rmki.kfki.hu. RMKI, Budapest és ATOMKI, Debrecen Horváth Dezső: A természet legmélyebb szimmetriái Ortvay-kollokvium, 2004. dec. 16. p.1 Vázlat

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

Gyorsítók. Veszprémi Viktor Wigner Fizikai Kutatóközpont OTKA NK augusztus 12. Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor Wigner Fizikai Kutatóközpont OTKA NK augusztus 12. Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor Wigner Fizikai Kutatóközpont OTKA NK81447 2013. augusztus 12. Hungarian Teacher Program, CERN 1 A részecskefizika alapkérdései Hogyan alakult ki a Világegyetem? Miből áll? Mi

Részletesebben

A mai nap főszereplői. Kvarkok: Közvetítő részecskék. Anyagi részecskék. Leptonok: Ők mind Fermionok (s=1/2) Ők mind Bozonok (s=1)

A mai nap főszereplői. Kvarkok: Közvetítő részecskék. Anyagi részecskék. Leptonok: Ők mind Fermionok (s=1/2) Ők mind Bozonok (s=1) Anyagi részecskék Kvarkok: A mai nap főszereplői Közvetítő részecskék Leptonok: Ők mind Fermionok (s=1/2) Ők mind Bozonok (s=1) Előszó. Olyan dolgokról fogok most Nektek beszélni amit a 3.- 4. éves fizikus

Részletesebben

Kémiai alapismeretek 2. hét

Kémiai alapismeretek 2. hét Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 14. 1/15 2011/2012 II. félév, Horváth Attila c XIX sz. vége,

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben

Detektorok. Fodor Zoltán. Wigner fizikai Kutatóközpont. Hungarian Teachers Programme 2015

Detektorok. Fodor Zoltán. Wigner fizikai Kutatóközpont. Hungarian Teachers Programme 2015 Detektorok Fodor Zoltán Wigner fizikai Kutatóközpont Hungarian Teachers Programme 2015 Mi is a kisérleti fizika HTP 2015 Detektorok, Fodor Zoltán 2 A természetben is lejátszodó eseményeket ismételjük meg

Részletesebben

Vélemény Siklér Ferenc tudományos doktori disszertációjáról

Vélemény Siklér Ferenc tudományos doktori disszertációjáról Vélemény Siklér Ferenc tudományos doktori disszertációjáról 1. Bevezető megjegyzések Siklér Ferenc tézisében nehéz ionok és protonok nagyenergiás ütközéseit tanulmányozó részecskefizikai kísérletekben

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

Részecskefizika a CERN-ben

Részecskefizika a CERN-ben Horváth Dezső: Részecskefizika a CERN-ben Wigner FK, Budapest, 2014.02.07. p. 1/46 Részecskefizika a CERN-ben Diákoknak, Wigner FK, Budapest, 2014.02.07. Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner

Részletesebben

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT.

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT. T&T tematika & tételek A magkémia alapjai, kv1n1mg1 (A) A magkémia alapjai tárgykiegészítés, kv1n1mgx (X) című, ill. kódú integrált előadáshoz http://www.chem.elte.hu/sandor.nagy/okt/amka/index.html Bevezető

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja László András Wigner Fizikai Kutatóintézet, Részecske- és Magfizikai Intézet 1 Kivonat Az erősen kölcsönható anyag és fázisai Megfigyelések a fázisszerkezettel

Részletesebben

Miből áll a világunk? Honnan származik? Miért olyan, mint amilyennek látjuk?

Miből áll a világunk? Honnan származik? Miért olyan, mint amilyennek látjuk? Miből áll a világunk? Honnan származik? Miért olyan, mint amilyennek látjuk? Jóllehet ezeket a kérdéseket még nem tudjuk teljes bizonyossággal megválaszolni, ám az utóbbi években nagyon sokmindent felfedeztünk

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

További olvasnivaló a kiadó kínálatából: HRASKÓ PÉTER: Relativitáselmélet FREI ZSOLT PATKÓS ANDRÁS: Inflációs kozmológia E. SZABÓ LÁSZLÓ: A nyitott

További olvasnivaló a kiadó kínálatából: HRASKÓ PÉTER: Relativitáselmélet FREI ZSOLT PATKÓS ANDRÁS: Inflációs kozmológia E. SZABÓ LÁSZLÓ: A nyitott Az isteni a-tom További olvasnivaló a kiadó kínálatából: HRASKÓ PÉTER: Relativitáselmélet FREI ZSOLT PATKÓS ANDRÁS: Inflációs kozmológia E. SZABÓ LÁSZLÓ: A nyitott jövő problémája TIMOTHY FERRIS: A világmindenség.

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Horváth Dezső: Bevezetés a részecskefizikába II: Higgs CERN, 2014. augusztus 19. p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2014 aug. 19.) (Pásztor Gabriella helyett)

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

A magkémia alapjai. Standard modell, szubatomi részecskék, fundamentális & nukleáris kölcsönhatások, spontaneitás & tömeg

A magkémia alapjai. Standard modell, szubatomi részecskék, fundamentális & nukleáris kölcsönhatások, spontaneitás & tömeg A magkémia alapjai Standard modell, szubatomi részecskék, fundamentális & nukleáris kölcsönhatások, spontaneitás & tömeg Nagy Sándor ELTE, Kémiai Intézet 01 Részecsketörténeti összefoglaló (kivezetés az

Részletesebben

Szimmetriák és sértésük a részecskék világában

Szimmetriák és sértésük a részecskék világában Szimmetriák és sértésük a részecskék világában A paritássértés 50 éve Horváth Dezső horvath@rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: Szimmetriák

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925)

a magspin és a mágneses momentum, a kizárási elv (1924) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) a magspin és a mágneses momentum, a kizárási elv (1924) Wolfgang Pauli (1900-1958) a korrespondencia-elv alkalmazása a diszperziós formulára (1925) Hendrik Anthony Kramers (1894-1952) a mátrixmechanika

Részletesebben

Részecskefizika és az LHC: Válasz a kérdésekre

Részecskefizika és az LHC: Válasz a kérdésekre Horváth Dezső: Részecskefizika és az LHC Leövey Gimnázium, 2012.06.11. p. 1/28 Részecskefizika és az LHC: Válasz a kérdésekre TÁMOP-szeminárium, Leövey Klára Gimnázium, Budapest, 2012.06.11 Horváth Dezső

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Bevezetés a nehézion-fizikába (Introduction to heavy ion physics)

Bevezetés a nehézion-fizikába (Introduction to heavy ion physics) Bevezetés a nehézion-fizikába (Introduction to heavy ion physics) Veres Gábor (CERN-PH és ELTE) Hungarian Teachers Programme CERN, 2015. augusztus 20. vg@ludens.elte.hu Hungarian Teachers Programme, CERN,

Részletesebben

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 18. Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 18. Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB08-80137 2011. augusztus 18. Hungarian Teacher Program, CERN 1 szilárdtest, folyadék molekula A részecskefizika célja EM, gravitáció Elektromágneses

Részletesebben

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C -Mészáros Erik -Polányi Kristóf - Vöröseltolódás - Hubble-törvény: Edwin P. Hubble (1889-1953) - Ősrobbanás-elmélete (Big

Részletesebben

RUBIK KOCKÁBAN A VILÁG

RUBIK KOCKÁBAN A VILÁG RUBIK KOCKÁBAN A VILÁG A TÖKÉLETES KVARKFOLYADÉK MODELLEZÉSE Csörgő Tamás fizikus, MAE MTA Wigner FK, Budapest és KRF, Gyöngyös reszecskes.karolyrobert.hu Élet és Tudomány 2010 év 49 szám 1542. oldal ÉVFORDULÓK

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Részecskefizika a CERN-ben

Részecskefizika a CERN-ben Horváth Dezső: Részecskefizika a CERN-ben Wigner FK, Budapest, 2014.07.23. p. 1/41 Részecskefizika a CERN-ben Diákoknak, Wigner FK, Budapest, 2014.07.23. Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner

Részletesebben

Alapvető szimmetriák kísérleti vizsgálata a CERN ben

Alapvető szimmetriák kísérleti vizsgálata a CERN ben Alapvető szimmetriák kísérleti vizsgálata a CERN ben Horváth Dezső horvath@rmki.kfki.hu. RMKI, Budapest és ATOMKI, Debrecen 50 éves a CERN MTA, 2004. szept. 22. Horváth Dezső Alapvető szimmetriák kísérleti

Részletesebben

ALICE: az Univerzum ősanyaga földi laboratóriumban. CERN20, MTA Budapest, 2012. október 3.

ALICE: az Univerzum ősanyaga földi laboratóriumban. CERN20, MTA Budapest, 2012. október 3. ALICE: az Univerzum ősanyaga földi laboratóriumban CERN20, MTA Budapest, 2012. október 3. Barnaföldi Gergely Gábor, CERN LHC ALICE, Wigner FK ,,Fenomenális kozmikus erő......egy icipici kis helyen! Disney

Részletesebben

F1404 ATOMMAG- és RÉSZECSKEFIZIKA

F1404 ATOMMAG- és RÉSZECSKEFIZIKA F1404 ATOMMAG- és RÉSZECSKEFIZIKA Dr. Raics Péter DE TTK Kísérleti Fizikai Tanszék, Debrecen, Bem tér 18/A RAICS@TIGRIS.KLTE.HU Ajánlott irodalom Raics P.: Atommag- és részecskefizika. Jegyzet. DE Kísérleti

Részletesebben

Meglesz-e a Higgs-bozon az LHC-nál?

Meglesz-e a Higgs-bozon az LHC-nál? Meglesz-e a Higgs-bozon az LHC-nál? Horváth Dezső, MTA KFKI RMKI és ATOMKI A Peter Higgs (és vele egyidejűleg, de tőle függetlenül mások által is) javasolt spontán szimmetriasértési (vagy Higgs-) mechanizmus

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás

Részletesebben

Szimmetriák és sértésük a részecskék világában a paritássértés 50 éve 1

Szimmetriák és sértésük a részecskék világában a paritássértés 50 éve 1 Szimmetriák és sértésük a részecskék világában a paritássértés 50 éve 1 Horváth Dezső (E-mail: horvath@rmki.kfki.hu) MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen 1. Tükrözési

Részletesebben

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

A tudatlanság néha áldás avagy mekkora a laborban létrehozott ősrobbanás

A tudatlanság néha áldás avagy mekkora a laborban létrehozott ősrobbanás A tudatlanság néha áldás avagy mekkora a laborban létrehozott ősrobbanás Csanád Máté ELTE Atomfizikai Tanszék http://csanad.web.elte.hu/ 2014. december 11. Az előadás vázlata A fény természete: hullám

Részletesebben