Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem"

Átírás

1 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok együttes számát d) az elektronok számát Magfizika tesztek 3. Miben különböznek a 12 C és a 14 C izotópok egymástól? a) 14 C izotóp magjában kettővel több neutron van. b) 14 C izotóp magjában kettővel több proton van. c) 14 C izotóp elektronburkában kettővel több elektron van. d) Nem különböznek egymástól. 4. Melyik állítás nem igaz? a) z atommagot nukleonok alkotják. b) protonok száma az adott atom rendszáma. c) z atom tömegének 99,9%-a a magban koncentrálódik. d) z azonos rendszámú és azonos tömegszámú atomokat izotópoknak nevezzük. 5. Melyik állítás nem igaz? a) protonok és neutronok együttes száma adja az atom tömegszámát. b) z atom tömegének 99,9%-a a magban koncentrálódik. c) z azonos rendszámú és különböző tömegszámú atomokat izotópoknak nevezzük. d) z izotópok kémiai viselkedése különböző. 6. Melyik állítás nem igaz? a) z atommagot nukleonok alkotják. b) z azonos rendszámú és különböző tömegszámú atomokat izotópoknak nevezzük. c) z izotópok kémiai viselkedése egyforma. d) protonok és neutronok együttes száma adja az atom rendszámát. 7. Melyik állítás nem igaz a C 12 és a 14 C izotópok összehasonlítása során? a) 14 C izotóp atomja nagyobb tömegű. b) 14 C izotóp magjában kettővel több proton van. c) 14 C izotóp magjában kettővel több neutron van. d) Mindkét atom elektronburkában azonos számú elektron van. 8. Melyik állítás nem igaz? a) z atomok átlagos mérete m. b) z atommagok átlagos mérete m. c) z atom tömegének 99,9%-a a magban koncentrálódik. d) z atommag sűrűsége kg/m 3 nagyságrendű. 9. Melyik állítás nem helyes? a) Egy elektronvolt egyenlő avval az energiával, amellyel a hidrogénatom egyetlen elektronját kiszakíthatjuk az atomból. b) Egy elektronvolt 1, J.

2 c) Egy elektronvolt avval az energiával egyenlő, amennyivel egy elektron mozgási energiája megváltozik egy volt gyorsító feszültség hatására. d) Egy elektronvolt egyenlő avval az energiával, amelyre az elektron 1 V potenciálkülönbség befutása során szert tesz. 10. Melyik állítás nem helyes? a) protonokat és az elektronokat közös néven nukleonoknak nevezzük. b) z atom tömegének 99,9%-a a magban koncentrálódik. c) z anyag fogalmába a tömeggel rendelkező részecskék és az energiák egyaránt beletartoznak. d) Egy elektronvolt avval az energiával egyenlő, amennyivel egy elektron mozgási energiája megváltozik egy volt gyorsító feszültség hatására. 11. Melyik állítás nem illik az atommagot összetartó kölcsönhatásra (erőre) vonatkozóan? a) Vonzó típusú. b) Nagyságrendje szer nagyobb az elektromos kölcsönhatásnál. c) Csak a proton és neutron között jelenik meg. d) Nagyon kis hatótávolságú. 12. Melyik állítás nem illik az atommagot összetartó kölcsönhatásra (erőre) vonatkozóan? a) Bármely két nukleon között megjelenik. b) Nagyon kis hatótávolságú. c) Erőssége az elektromos kölcsönhatással összemérhető. d) Vonzó hatású. 13. z 16 8 O oxigén atommagjának mért tömege 2, kg. protonok és neutronok tömegének számított összege 2, kg. Mekkora az oxigén atommag kötési energiája? a) 6, J b) 2, J c) 2, J d) 1, J Fe vas atommagjának mért tömege 9, kg. protonok és neutronok tömegének számított összege 9, kg. Mekkora a vas atommag kötési energiája? a) 8, J b) 8, J c) 2, J d) 7, J Pb ólom atommagjának mért tömege 3, kg. protonok és neutronok tömegének számított összege 3, kg. Mekkora az ólom atommag kötési energiája? a) 3, J b) 3, J c) 8, J d) 2, J 16. Melyik állítás nem helyes? a) z atommag tömege egyenlő az őt alkotó protonok és neutronok tömegének összegével. b) rendszám növekedésével a neutronok számaránya megnövekszik a protonok számához képest. c) rendszám növekedésével az atommag sűrűsége nem változik. d) kötési energia az az energia, melyet be kellene fektetni, hogy az atommagot alkotórészeire bontsuk. 17. Melyik állítás helyes? a) nagyobb rendszámú elemek atommagjában a neutronok száma jóval több a protonok számánál.

3 b) z atommagban a protonok és neutronok száma csak kicsit térhet el, ekkor beszélünk izotópokról. c) z atommagban a protonok és neutronok száma között nincs összefüggés. d) z atommagban a protonok és neutronok száma mindig egyenlő. 18. Melyik állítás helyes? a) z atommag sűrűsége a periódusos rendszer adott sorában növekszik, majd a következő sor elején megint kisebb. b) z atommag sűrűsége a rendszám növekedésével nő. c) z atommag sűrűsége a rendszám növekedésével nem változik. d) z atommag sűrűsége a rendszám növekedésével csökken. 19. Mi a tömegdefektus jelensége? a) z atommag tömege kisebb, mint az őt alkotó protonok és neutronok tömegének összege. b) z atommag tömege nagyobb, mint az őt alkotó protonok és neutronok tömegének összege. c) z atom tömegének 99,9%-a az atommagba koncentrálódik. d) z atommag külső hatásra deformálódik. 20. Melyik állítás hamis? a) z atommag tömege kisebb, mint az őt alkotó protonok és neutronok tömegének összege. b) kötési energia a tömeghiány és a fénysebesség négyzetének szorzata. c) z atommagban a protonok és neutronok száma csak kicsit térhet el egymástól. d) z atommag annál mélyebb energiaszinten van, minél nagyobb a kötési energia. 21. Melyik állítás hamis? a) Minél nagyobb az egy nukleonra jutó kötési energia, annál stabilabb az atommag. b) He kötési energiája jóval kisebb, mint a vasé, ezért a He atommagja mélyebb energiaszinten van. c) Minél nagyobb az egy nukleonra jutó kötési energia, annál mélyebb energiaszinten van az atommag. d) vas fajlagos kötési energiája nagyobb, mint az uráné. 22. z ábra a fajlagos kötési energiát ábrázolja a tömegszám függvényében. Melyik állítás hamis? 60 E a) kisebb rendszámú elemek atommagjai mélyebb energiaszinten vannak. b) kb. 60-as tömegszámtól kezdve a fajlagos kötési energia csökken. c) kb. 60-as tömegszámtól kezdve az atomok energiaszintje emelkedik. d) fajlagos kötési energia pozitív érték. 23. z ábra a fajlagos kötési energiát ábrázolja a tömegszám függvényében. Melyik állítás hamis?

4 60 E a) természetben spontán lejátszódó folyamatok abba az irányba haladnak, hogy a kialakuló atommagok kötési energiája egyre kisebb lesz. b) természetben spontán lejátszódó folyamatok abba az irányba haladnak, hogy a kialakuló atommagok kötési energiája egyre nagyobb lesz. c) kisebb rendszámú elemeknél a fúzió jár energia-felszabadulással. d) nagyobb rendszámú elemeknél a hasadás jár energia-felszabadulással. 24. z ábra a fajlagos kötési energiát ábrázolja a tömegszám függvényében. Melyik állítás hamis? 60 E a) z as tömegszámnál kisebb tömegszámú elemek atommagjai hajlamosak a hasadásra. b) z atomerőműben az as tömegszámnál nagyobb tömegszámú elemek atommagjaira jellemző folyamatok játszódnak le. c) csillagokban az as tömegszámnál kisebb tömegszámú elemek atommagjaira jellemző folyamatok játszódnak le. d) z energiaminimumra törekvés során a 60-nál nagyobb tömegszámú elemek magjai bomlanak. 25. z ábra a fajlagos kötési energiát ábrázolja a tömegszám függvényében. Melyik állítás hamis?

5 60 E a) cseppmodell szerint az nál kisebb tömegszámú elemek esetén főleg a felületi-energiatag miatt kicsi a kötési energia. b) cseppmodell szerint a 60-nál nagyobb tömegszámú elemek esetén a tömegszám növekedésével főleg a Coulomb-energiatag miatt csökken a kötési energia. c) cseppmodell szerint a tömegszám növekedésével a térfogati-energiatag növekszik. d) cseppmodell szerint a térfogati-energiatag növekedése emeli az energiaszintet. 26. cseppmodell szerint melyik állítás hamis? a) Minél nagyobb az atommag, annál kisebb felületi-energiatag. b) Minél nagyobb az atommag, annál nagyobb a térfogati-energiatag. c) Minél nagyobb az atommag, annál kisebb a Coulomb-energiatag. d) z atommag növekedésével nem növekszik az egy nukleonra jutó nukleáris kölcsönhatások számának maximális lehetősége. 27. Melyik állítás hamis? a) Minél több proton van az atommagban, az elektromos taszítás annál jobban emeli az energiaszintet. b) Minél több nukleon van az atommagban, az erős kölcsönhatás annál jobban csökkenti az energiaszintet. c) Minél több nukleon van a mag felszínén, a kevesebb nukleáris kölcsönhatás annál jobban csökkenti az energiaszintet. d) Minél több neutron van az atommagban, az erős kölcsönhatások számának növekedése annál jobban segít a protonok közötti elektromos taszítás legyőzésében. 28. Melyik állítás hamis az atommag csepp-modell szerint felírt energia-kifejezésében? a) Minél több proton van az atommagban, annál nagyobb a Coulomb-energiatag. b) Minél több nukleon van a mag felszínén, annál nagyobb a felületi-energiatag. c) Minél több nukleon van az atommagban, annál kisebb abszolút értékű a térfogati-energiatag. d) Minél nagyobb a tömegszám, annál jobban eltolódik a neutron-proton arány a neutronok javára. 29. Melyik radioaktív sugárzás a legnagyobb áthatoló-képességű? a) z -sugárzás b) -sugárzás c) -sugárzás d) Egyformán viselkednek. 30. Melyik radioaktív sugárzás a legnagyobb energiájú? a) z -sugárzás b) -sugárzás c) -sugárzás d) Egyformán viselkednek.

6 31. Melyik radioaktív sugárzás részecskéje a legnagyobb nyugalmi tömegű? a) z -sugárzás b) -sugárzás c) -sugárzás d) Egyformák. 32. Melyik radioaktív sugárzás részecskéje a legkisebb nyugalmi tömegű? a) z -sugárzás b) -sugárzás c) -sugárzás d) Egyformák. 33. Melyik állítás hamis az -sugárzással kapcsolatban? a) z -részecske He atommag. b) z -részecske kétszeresen pozitív töltésű. c) z -bomlás következtében a mag rendszáma 4-el csökken. d) z -bomlás következtében a mag egy másik elem magjává alakul át. 34. Melyik állítás hamis az -sugárzással kapcsolatban? a) -részecske negatív töltésű elektron. b) -bomlás következtében a rendszám 1-el változik. c) -bomlás következtében a tömegszám nem változik. d) -bomlás során semleges részecske is keletkezik. 35. Melyik állítás hamis a -sugárzással kapcsolatban? a) -részecske lehet pozitív és negatív töltésű. b) -bomlás következtében a rendszám 1-el változik. c) -bomlás következtében a tömegszám 1-el változik. d) -bomlás során semleges részecske is keletkezik. 36. Melyik állítás hamis a -sugárzással kapcsolatban? a) -részecske nagy energiájú elektromágneses foton. b) -sugárzás során a tömegszám 1-el változik. c) -fotonok energiája szor nagyobb, mint a fény-foton energiája. d) -sugárzás általában az - és -bomlást követően jelenik meg. 37. Mely radioaktív bomlások során nem változik a rendszám? a) és b) és c) és d) csak a 38. Mely radioaktív bomlások során nem változik a tömegszám? a) és b) és c) és d) csak a 39. Melyik állítás nem igaz? a) dott mennyiségű bomlásra képes atommag a felezési idő kétszerese alatt elfogy. b) felezési idő összefügg a még bomlásra képes magok számával.

7 c) felezési idő összefügg az aktivitással. d) Minden radioaktív anyag esetén a felezési idő állandó. 40. z alábbiak közül melyik a felezési idő helyes definíciója? a) z az idő, mely alatt egy radioaktív mag fele elbomlik. b) z az idő, mely alatt egy radioaktív anyagban a bomlásra képes magok fele elbomlik. c) z az idő, mely alatt egy radioaktív anyagban a bomlásra képes magok elbomlanak. d) nnak az időnek a fele, mely alatt egy radioaktív anyagban a bomlásra képes magok elbomlanak. 41. bomlási sorokkal kapcsolatban melyik állítás helyes? a) Négy bomlási sorozatot különböztetünk meg, melyek tagjainak rendszáma néggyel osztva azonos maradékot ad. b) Négy bomlási sorozatot különböztetünk meg, melyek tagjainak tömegszáma néggyel osztva azonos maradékot ad. c) Létezik olyan folyamat, mely két bomlási sor között átmenetet enged. d) bomlási sorok azért alakultak ki, mert a tömegszám és a rendszám az - és - bomlás során mindig azonos módon változik. 42. bomlási sorokkal kapcsolatban melyik állítás helyes? a) Négy bomlási sorozatot különböztetünk meg, melyek tagjainak rendszáma néggyel osztva azonos maradékot ad. b) Létezik olyan folyamat, mely két bomlási sor között átmenetet enged. c) bomlási sorok azért különböztethetők meg, mert a tömegszám csak az -bomlás során változik, s akkor mindig néggyel csökken. d) bomlási sorok azért különböztethetők meg, mert a rendszám csak az -bomlás során változik, s akkor mindig néggyel csökken. 43. z atomerőműben több feladatot is meg kell oldani. z alábbiak közül melyik nem tartozik ide? a) dúsítás b) lassítás c) szabályozás d) hűtés 44. z atomerőműben több feladatot is meg kell oldani. z alábbiak közül melyik nem tartozik ide? a) neutronok lassítása b) hőenergia hasznosítása c) sugárvédelem biztosítása d) fűtőanyag előállítása 45. z atomerőművek fűtőanyagának előállításával kapcsolatban melyik állítás nem helyes? a) z uránércet a természetben bányásszák. b) z uránércben kétféle urán-izotóp található. c) Csak a U izotóp hasad a kis energiájú neutron befogásakor. d) kész fűtőanyagban a U izotóp van többségben. 46. z atomerőművek fűtőanyagának előállításával kapcsolatban melyik állítás nem helyes? a) természetben bányászott uránércben a U izotóp aránya több, mint 99%. b) kész fűtőanyagban a U és a U aránya 95:5 %. c) Csak a U izotóp hasad a kis energiájú neutron befogásakor. d) Dúsításkor a U arányát növelik a másik izotóppal szemben. 47. Melyik állítás nem helyes az atomerőmű működésével kapcsolatban?

8 a) U izotóp hasadásakor 2-3 nagy energiájú neutron keletkezik. b) U izotóp a nagy energiájú neutron befogása során hasad, így bekövetkezik a láncreakció. c) U izotóp a nagy energiájú neutronnal nem lép kölcsönhatásba. d) Moderátornak nevezik azt a közeget, mely a neutront lassítani képes. 48. Melyik állítás nem helyes az atomerőmű működésével kapcsolatban? a) víz lehet moderátor közeg. b) grafit lehet moderátor közeg. c) bór lehet moderátor közeg. d) moderátor közeg lassítja a nagy energiájú neutronokat. 49. z atomerőműben a folyamat szabályozására olyan anyagokat használnak, melyek könnyen elnyelik a neutronokat. Ezzel kapcsolatban melyik állítás nem helyes? a) reaktorban lévő vízben feloldott bór annyi neutront nyel el, hogy a megmaradó neutronok száma kevéssel legyen több egynél hasadásonként. b) bór alkalmazása gyors szabályozási lehetőség. c) neutronokat a kadmium erősen elnyeli. d) finom szabályozást betolható kadmium-rudakkal végzik. 50. z atomreaktorban felszabaduló hőenergiából elektromos energiát nyernek. Ezzel kapcsolatban melyik állítás nem helyes? a) hasadási térben keringő víz gőzzé válik, s ezt vezetik a turbinákra. b) hasadási térben keringő víz 300 o C-on is folyékony. c) hasadási térben keringő víz felforralja a második vízkör vizét, s ezt vezetik a turbinákra. d) természetes víz (tó, folyó) a gőz lehűtéséhez, lecsapatásához kell. Megoldások 1.a 2.c 3.a 4.d 5.d 6.d 7.b 8.b 9.a 10.a 11.c 12.c 13.d 14.d 15.d 16.a 17.a 18.c 19.a 20.c 21.b 22.a 23.a 24.a 25.d 26.c 27.c 28.c 29.c 30.c 31.a 32.c 33.c 34.a 35.c 36.b 37.d 38.c 39.a 40.b 41.b 42.c 43.a 44.d 45.d 46.b 47.b 48.c 49.b 50.a

MAGFIZIKA. a 11.B-nek

MAGFIZIKA. a 11.B-nek MAGFIZIKA a 11.B-nek ATOMMAG Pozitív töltésű, rendkívül kicsi ATOMMAG Töltése Z e, ahol Z a rendszám 10 átmérő Tömege az atom 99,9%-a Sűrűsége: 10 rendkívül nagy! PROTON Jelentése: első (ld. prototípus,

Részletesebben

MAGFIZIKA. Egy elem jellemzője, kémiai tulajdonságainak meghatározója a protonok száma, azaz a rendszám.

MAGFIZIKA. Egy elem jellemzője, kémiai tulajdonságainak meghatározója a protonok száma, azaz a rendszám. MAGFIZIKA Az atom áll: Z számú elektronból Z számú protonból A-Z számú neutronból A proton és a neutron közös neve nukleon. A - az atom tömegszáma. Z az atom rendszáma Az atomok atommagból és az azt körülvevő

Részletesebben

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete Magfizika (Vázlat) 1. Az atommaggal kapcsolatos ismeretek kialakulásának történeti áttekintése a) A természetes radioaktivitás felfedezése b) Mesterséges atommag-átalakítás Proton felfedezése Neutron felfedezése

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

A nukleáris fizika története, a nukleáris energetika születése

A nukleáris fizika története, a nukleáris energetika születése Tematika 1. Az atommagfizika elemei 2. A nukleáris fizika története, a nukleáris energetika születése 3. Magsugárzások detektálása és detektorai 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja

Részletesebben

A természetes radioaktív sugárzás

A természetes radioaktív sugárzás A természetes radioaktív sugárzás A radioaktív sugárzás felfedezése több egymást követő véletlen esemény és egy tévedés következménye volt. 1895-ben Röntgen katódsugárcsővel végzett kísérleteket. A katódsugárcsövet

Részletesebben

RADIOAKTIVITÁS. Természetes (spontán) radioaktivitásról beszélünk, ha a természetben megtalálható elemek atommagja képes átalakulni.

RADIOAKTIVITÁS. Természetes (spontán) radioaktivitásról beszélünk, ha a természetben megtalálható elemek atommagja képes átalakulni. RADIOAKTIVITÁS Az atommagoknak két csoportja van, a stabil és a radioaktív magok. Ez utóbbiak nagy energiájú sugárzást kibocsátva más atommagokká alakulnak. Ilyen radioaktív elem például a rádium a polónium

Részletesebben

Tartalom Az atom szerkezete... 1 9 Atom. Részecske. Molekula... 1 4 Atommodellek... 4 6 A.) J. Thomson féle atommodell...4 B.) A Rutherford-féle vagy

Tartalom Az atom szerkezete... 1 9 Atom. Részecske. Molekula... 1 4 Atommodellek... 4 6 A.) J. Thomson féle atommodell...4 B.) A Rutherford-féle vagy Tartalom Az atom szerkezete... 1 9 Atom. Részecske. Molekula... 1 4 Atommodellek... 4 6 A.) J. Thomson féle atommodell...4 B.) A Rutherford-féle vagy bolygó atommodell... 4 5 C.) A Bohr-féle atommodell...

Részletesebben

Tudnivalók. Dr. Horváth András, Berta Miklós. 0.2-es változat. Kedves Hallgató!

Tudnivalók. Dr. Horváth András, Berta Miklós. 0.2-es változat. Kedves Hallgató! Kérdések és feladatok atom- és magfizikából Dr. Horváth András, Berta Miklós 0.2-es változat Tudnivalók Kedves Hallgató! Az alábbiakban egy válogatást közlünk az elmúlt évek vizsga- és ZH-feladataiból.

Részletesebben

Az atomok szerkezete. Az atomok szerkezete. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Az atomok szerkezete. Az atomok szerkezete. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Az atomok szerkezete A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Atommodellek A kémiai szempontból legkisebb önálló részecskéket atomoknak nevezzük. Az atomok felépítésével kapcsolatos

Részletesebben

43. A modern fizika születése. A fényelektromos jelenség

43. A modern fizika születése. A fényelektromos jelenség 43. A modern fizika születése. A fényelektromos jelenség Röviden vázolja fel a XIX XX. századforduló idején a fizika tudományának helyzetét! Fogalmazza meg Planck kvantumhipotézisét! Kísérlet: Végezzen

Részletesebben

Hidrogénfúziós reakciók csillagokban

Hidrogénfúziós reakciók csillagokban Hidrogénfúziós reakciók csillagokban Gyürky György MTA Atommagkutató Intézet 4026 Debrecen, Bem tér 18/c, 52/509-246 Napunk és a hozzá hasonló fősorozatbeli csillagok magfúziós reakciók révén termelik

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2007. május 14. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 14. Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fizika

Részletesebben

Magsugárzások. Előadásvázlat. Készítette: Dr. Blaskó Katalin

Magsugárzások. Előadásvázlat. Készítette: Dr. Blaskó Katalin Magsugárzások Előadásvázlat. Készítette: Dr. Blaskó Katalin Az Orvosbiologia Mérnökképzés "Radiológiai Technikák" cimű tantárgyának egy részlete. A további részeket : Dr. Makó Ernő (SOTE), Dr. Sükösd Csaba,

Részletesebben

Középszintű érettségi feladatsor Fizika. Első rész

Középszintű érettségi feladatsor Fizika. Első rész Középszintű érettségi feladatsor Fizika Első rész Az alábbi kérdésekre adott válaszlehetőségek közül pontosan egy a jó. Írja be ennek a válasznak a betűjelét a jobb oldali fehér négyzetbe! (Ha szükséges,

Részletesebben

Thomson-modell (puding-modell)

Thomson-modell (puding-modell) Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja

Részletesebben

A fény korpuszkuláris jellegét tükröző fizikai jelenségek

A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan

Részletesebben

Radiológiai technikák

Radiológiai technikák Radiológiai technikák Előadásvázlat, készítette: Dr. Sükösd Csaba (Az Orvosbiologia Mérnökképzés "Radiologiai Technikák" cimű tantárgyának egy részlete. A további részeket :Dr. Blaskó Katalin és Dr. Makó

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2008. november 3. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. november 3. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2005. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Fizika középszint írásbeli vizsga

Részletesebben

KÖSZÖNTJÜK HALLGATÓINKAT!

KÖSZÖNTJÜK HALLGATÓINKAT! 2010. március 10. Önök KÖSZÖNTJÜK HALLGATÓINKAT! Berta Miklós: Csillag a Földön A fúziós energiatermelés érdekességei előadását hallhatják! Csillag a Földön A fúziós energiatermelés érdekességei Nukleáris

Részletesebben

Atomenergetika Erőművek felépítése

Atomenergetika Erőművek felépítése Atomenergetika Erőművek felépítése Atomenergetika Az Európai Uniós atomerőművek jellemzése az összes villamosenergia 35%-át adják ám 2015 és 2030 között elérik a tervezett élettartamuk végét Franciaország

Részletesebben

Elméleti kérdések és válaszok

Elméleti kérdések és válaszok Elméleti kérdések és válaszok 11. évfolyam Tartalomjegyzék 1. Mikor beszélünk rezgőmozgásról?... 4 2. Milyen fajtái vannak a rezgőmozgásnak?... 4 3. Mikor beszélünk harmonikus rezgőmozgásról?... 4 4. Mit

Részletesebben

KÉMIA FELVÉTELI DOLGOZAT

KÉMIA FELVÉTELI DOLGOZAT KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74

Részletesebben

Magfizika az iskolában

Magfizika az iskolában Magfizika az iskolában Sükösd Csaba BME Nukleáris Technikai Intézet ELTE PhD Iskola Tartalom Nukleáris ismeretek a kerettantervekben Válogatott fejezetek a magfizikából Rutherford kísérlet Láncreakció

Részletesebben

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy

Részletesebben

rzások a Dr. Fröhlich Georgina ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest

rzások a Dr. Fröhlich Georgina ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárz rzások a gyógy gyításban Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest ELTE TTK, Budapest chopin.web.elte.hu Bevezetés 1. A radioaktivitás alapjai (atomszerkezet,

Részletesebben

HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY

HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY MAGYAR TERMÉSZETTUDOMÁNYI TÁRSULAT HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY A megyei (fővárosi) forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:...

Részletesebben

Elektrosztatika tesztek

Elektrosztatika tesztek Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverő kis papírdarabkákat messziről magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges

Részletesebben

Nukleáris fizika II. rész

Nukleáris fizika II. rész Fizikai Intézet Dr. Paripás Béla Nukleáris fizika II. rész Miskolc, 015 Tartalomjegyzék 1. Ionizáló sugárzások külső és belső természetes forrásai... 3. Az anyag hullámtermészete... 7 3. A határozatlansági

Részletesebben

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer A kémiai kötés Kémiai

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2013. május 16. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 16. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. november 6. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. november 6. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

Alapfokú sugárvédelmi ismeretek

Alapfokú sugárvédelmi ismeretek Alapfokú sugárvédelmi ismeretek - 1 - Bevezetés Az ionizáló sugárzás felhasználása a XIX. század végi felfedezése óta egyre nagyobb teret hódít magának az egészségügy, az ipar, a mezőgazdaság, a tudományos

Részletesebben

3. Előadás 2014. Molnár Zsuzsa Radanal

3. Előadás 2014. Molnár Zsuzsa Radanal 3. Előadás 2014 Molnár Zsuzsa Radanal Az atommagban rejlő energia alkalmazása MAGHASADÁS/FISSZIÓ hasadóanyag: 235 U, 239 Pu, 233 U 235 U + n term 137 Te + 97 Zr + 2n gyors + 200 MeV, 4 sec 137 I, 25 sec

Részletesebben

NYOMELEMEK 1. rész. Elemek keletkezése Az első elemek megjelenése 114

NYOMELEMEK 1. rész. Elemek keletkezése Az első elemek megjelenése 114 Magyar Kémiai Folyóirat - Összefoglaló közlemények 27 NYOMELEMEK. rész. Elemek keletkezése NEMECZ Ernő * Pannon Egyetem, 8002 Veszprém, Pfi ók 58 Az általunk érzékelhető anyagi világot kémiai elemek építik

Részletesebben

Anyag, energia, erők

Anyag, energia, erők Tartalom Mi az anyag, az energia, mik az erők és a kölcsönhatások? Ezek legfontosabb tulajdonságai. Megjegyzés Ez egy elég rövid és érthető téma. Azt magyarázza el, hogy miből van az anyagi világ és mi

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2008. május 14. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 14. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Magfizika. Fábián Margit Osán János Dr. Zagyvai Péter

Magfizika. Fábián Margit Osán János Dr. Zagyvai Péter Magfizika Magfizika Fábián Margit Osán János Dr. Zagyvai Péter Edutus Főiskola Budapest, 2012 Fábián Margit, Osán János, Dr. Zagyvai Péter, 2012 Kézirat lezárva: 2012. január 31. Edutus Főiskola A kiadásért

Részletesebben

A legkisebb részecskék a világ legnagyobb gyorsítójában

A legkisebb részecskék a világ legnagyobb gyorsítójában A legkisebb részecskék a világ legnagyobb gyorsítójában Varga Dezső, ELTE Fiz. Int. Komplex Rendszerek Fizikája Tanszék AtomCsill 2010 november 18. Az ismert világ építőkövei: az elemi részecskék Elemi

Részletesebben

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilárd, folyékony vagy

Részletesebben

Az egészen kis részek. e. meli 03

Az egészen kis részek. e. meli 03 Atomok felépítése Az egészen kis részek 1 Epikürosz ( i.e. 34-70 ) az atomokat különböző horgokkal és kapcsokkal képzeli el. ( kapcsok eltörnek: víz elpárolog - lecsapódik??? ) Arisztotelész ( i.e. 384-3

Részletesebben

MATEMATIKA 11. évfolyam osztályozóvizsga/javítóvizsga témakörei

MATEMATIKA 11. évfolyam osztályozóvizsga/javítóvizsga témakörei MATEMATIKA 11. évfolyam osztályozóvizsga/javítóvizsga témakörei 1.félév I. Kombinatorika, gráfok Permutációk, variációk Ismétlés nélküli kombinációk Binomiális együtthatók, Pascal-háromszög Gráfok pontok,

Részletesebben

Δ x Δ px 2. V elektromos. nukleáris. neutron proton

Δ x Δ px 2. V elektromos. nukleáris. neutron proton Nukleáris kölcsöhatás: az atommagba számú proto, és N = számú eutro va, és stabil képződméy Mi tartja össze az atommagot? Heiseberg-féle határozatlasági reláció alapjá egy ukleo becsült kietikus eergiája

Részletesebben

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23.

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. A neutronok személyi dozimetriája Deme Sándor MTA EK 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. Előzmény, 2011 Jogszabályi háttér A személyi dozimetria jogszabálya (16/2000

Részletesebben

Az egzotikus atommagok szerkezete

Az egzotikus atommagok szerkezete Az egzotikus atommagok szerkezete Horváth Ákos ELTE TTK, Atomfizikai Tanszék 1. Felfedezetlen területek az izotópok térképén 1932-ben James Chadwick felfedezte a neutront, azóta tudjuk miből állnak a körülöttünk

Részletesebben

Fúziós energiatermelés

Fúziós energiatermelés Fúziós energiatermelés Dr. Paripás Béla fizikus, egyetemi tanár Posztulátumok (rögzítsük le már az elején, hogy:) A felhasznált energia nagy része ma is a fúzióból származik hisz a Nap egy önszabályzó

Részletesebben

RADIOKÉMIAI MÉRÉS. Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése. = felezési idő. ahol: A = a minta aktivitása.

RADIOKÉMIAI MÉRÉS. Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése. = felezési idő. ahol: A = a minta aktivitása. RADIOKÉMIAI MÉRÉS Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése A radioaktív bomlás valószínűségét kifejező bomlási állandó (λ) helyett gyakran a felezési időt alkalmazzuk (t

Részletesebben

ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont

ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont Az atomenergia-termelés jelenleg két fontos kérdést vet fel, amelyekre pozitív választ kell találni: az egyik a

Részletesebben

Az uránérc bányászata

Az uránérc bányászata Az uránérc bányászata Az urán különböző koncentrációban ugyan, de a világ minden pontján megtalálható. A talajban az átlagos koncentráció 3-5 gramm/tonna, és a tengerek és óceánok vizének minden köbméterében

Részletesebben

HEFOP 3.3.1-P.-2004-0900152/1.0

HEFOP 3.3.1-P.-2004-0900152/1.0 Készült a HEFOP 3.3.1-P.-2004-0900152/1.0 azonosítójú A Felsőoktatás szerkezeti és tartalmi fejlesztése című pályázat keretében. Konzorciumvezető: Pannon Egyetem Környezetmérnöki Tudástár Sorozat szerkesztő:

Részletesebben

Nagy Erika. Kémiából Ötös. 7. osztályosoknak. Részletek a könyvből. www.kemia.info

Nagy Erika. Kémiából Ötös. 7. osztályosoknak. Részletek a könyvből. www.kemia.info Nagy Erika Kémiából Ötös 7. osztályosoknak Részletek a könyvből www.kemia.info 1 Készítette: Nagy Erika 2009 MINDEN JOG FENNTARTVA! Jelen kiadványt vagy annak részeit tilos bármilyen eljárással (elektronikusan,

Részletesebben

FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI MINTAFELADATSOR

FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI MINTAFELADATSOR FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI MINTAFELADATSOR I. A feladatlap megoldásához 120 perc áll rendelkezésére. Olvassa el figyelmesen a feladatok előtti utasításokat és gondosan ossza be idejét! Használható segédeszközök:

Részletesebben

1. Környezetvédelmi célú gamma spektrummérések

1. Környezetvédelmi célú gamma spektrummérések 1. Környezetvédelmi célú gamma spektrummérések 1.1. A különböző szférákban előforduló radioaktív izotópok A környezetünkben előforduló radioaktivitás származhat természetes és mesterséges (antropogén)

Részletesebben

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1 I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1) Iondózis/Besugárzási dózis (ro: Doza de ioni): A leveg egy adott V térfogatában létrejött ionok Q össztöltésének és az adott térfogatban található anyag

Részletesebben

Nukleáris képalkotás 1.

Nukleáris képalkotás 1. Balkay László Hegyesi Gyula Imrek József Kertész Zsolt Lajtos Imre Kalinka Gábor Mohácsi Ilona Molnár József Valastyán Iván Nukleáris képalkotás 1. 2010. Debrecen 1 Tartalomjegyzék ELŐSZÓ... 5 1 Magfizikai

Részletesebben

A chicagói atommáglya

A chicagói atommáglya A chicagói atommáglya Már 1939-ben felmerült a gondolat, hogy a maghasadások során egyszerre több neutron is keletkezhet. Még ebben az évben egyszerre három helyen is kimutatták, hogy hasadásonként körülbelül

Részletesebben

ORVOSI-BIOLÓGIAI IZOTÓPLABORATÓRIUMOK SUGÁRVÉDELME

ORVOSI-BIOLÓGIAI IZOTÓPLABORATÓRIUMOK SUGÁRVÉDELME ORVOSI-BIOLÓGIAI IZOTÓPLABORATÓRIUMOK SUGÁRVÉDELME ORVOSI-BIOLÓGIAI SUGÁRVÉDELME IZOTÓPLABORATÓRIUMOK Tartalom 1. AZ IONIZÁLÓ SUGÁRZÁS FIZIKÁJA... 1 1. Az ionizáló sugárzás fizikája... 1 2. Radioaktivitás,

Részletesebben

2. Rész A kozmikus háttérsugárzás

2. Rész A kozmikus háttérsugárzás 2. Rész A kozmikus háttérsugárzás A kozmikus sugárzás felfedezése 1965: A. Penzias és R. Wilson (Bell Lab) érzékeny mikrohullámú antennája A kozmikus sugárzás 1965: A. Penzias és R. Wilson érzékeny mikrohullámú

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalmak. 3. A sugárzás mérése (42-47) Prefixumok

1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalmak. 3. A sugárzás mérése (42-47) Prefixumok 1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalak (35-41) Gondolat, 1976 3. A sugárzás érése (42-47) KAD 2010.09.15 2 levegőben (átlagosan) 1 ionpár keltéséhez 34 ev 5.4

Részletesebben

Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?

Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Boronkay György Műszaki Középiskola és Gimnázium Budapest, 2011. október 27. www.meetthescientist.hu

Részletesebben

Neutron Aktivációs Analitika

Neutron Aktivációs Analitika Neutron Aktivációs Analitika Irodalom: Alfassi, Z.B., 1994, Determination of Trace Elements,(Rehovot: Balaban Publ.) Alfassi, Z.B., 1994b, Chemical Analysis by Nuclear Methods, (Chichester: Wiley) Alfassi,

Részletesebben

Tudománytörténet 5. 5. Előadás A globális változások kezdete

Tudománytörténet 5. 5. Előadás A globális változások kezdete Tudománytörténet 5. 5. Előadás A globális változások kezdete XIX. század közepe Kialakul a modern gyáripar (szén, gőzgép) Társadalomban, jogrendben, politikai felépítésben lényeges változások Fokozódó

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2006. május 15. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. május 15. Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Fizika emelt szint

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 17. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Fizika

Részletesebben

ATOMMAG- és RÉSZECSKEFIZIKA

ATOMMAG- és RÉSZECSKEFIZIKA ATOMMAG- és RÉSZECSKEFIZIKA Dr. Raics Péter DE Kísérleti Fizikai Tanszék BEVEZETÉS A kvantumfizikát az anyag szerkezetére és felépítésére vonatkozó kutatások alapozták meg. Az atomok, atommagok és elemi

Részletesebben

Quo vadis nukleáris energetika

Quo vadis nukleáris energetika Quo vadis nukleáris energetika Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem Győr Az előadás vázlata Energiaéhség Energiaforrások Maghasadás és magfúzió Nukleáris energetika Atomerőmű működése

Részletesebben

Fizika tantárgy 12. évfolyam

Fizika tantárgy 12. évfolyam KISKUNHALASI REFORMÁTUS KOLLÉGIUM SZILÁDY ÁRON GIMNÁZIUMA FELNŐTTOKTATÁSI TAGOZAT Fizika tantárgy 12. évfolyam 1.1 Fontos tudnivalók A tankönyv anyagát önálló tanulással kell feldolgozni, melyhez segítséget

Részletesebben

Plazma elektron spray ionizáló rendszer

Plazma elektron spray ionizáló rendszer Plazma elektron spray ionizáló rendszer tartalom Ismertetés 2... Fő funkciók 5... Jellemzők 7... Üzemmódok és alkalmazás 9... Tesztek és tanúsítványok 10... Technikai adatok 12... Csomagolás 13... 1. Ismertetés

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

KVANTUMMECHANIKA. a11.b-nek

KVANTUMMECHANIKA. a11.b-nek KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300

Részletesebben

2014/2015 I. forduló

2014/2015 I. forduló 2014/2015 I. forduló 1. Hány km/órás az igen erős szél a Beaufort-szélskála szerint? 38-44 km/óra 45-54 km/óra 91-104 km/óra 2. Mekkora volt 2006-ban Magyarországon az atomenergia részesedése az összes

Részletesebben

KÁOKSZI VIZSGAFEJLESZTŐ KÖZPONT Földrajz próbafeladatok 2003. Minta

KÁOKSZI VIZSGAFEJLESZTŐ KÖZPONT Földrajz próbafeladatok 2003. Minta 1. FELADAT Földünk és környezetünk Középszintű írásbeli érettségi feladatlap 3. minta 2. rész A feladatlap-rész megoldásához atlasz használható Milyen mozgásokat végez a Nap? Jelölje az állítások előtt

Részletesebben

1. konzultáció (1-2. témakör):

1. konzultáció (1-2. témakör): Felnőttoktatás, természettudomány tantárgy: 1. dia: címdia 1. konzultáció (1-2. témakör): 2. dia: Atommodellek: a görögök közül Thálesz (i.e. 640-546) azt hirdette, hogy a víz az ősanyag. Később Démokritosz

Részletesebben

ATOMERÕMÛVEK KÖRNYEZETI HATÁSAI RADIOAKTÍV KIBOCSÁTÁSOK

ATOMERÕMÛVEK KÖRNYEZETI HATÁSAI RADIOAKTÍV KIBOCSÁTÁSOK Somlai János ATOMERÕMÛVEK KÖRNYEZETI HATÁSAI RADIOAKTÍV KIBOCSÁTÁSOK 2004 1. Atomerõmûvek környezeti hatásai, radioaktív kibocsátások Az elmúlt évtizedek rohamos ipari, technikai fejlõdése óhatatlanul

Részletesebben

AZ ÓZON. 1. kérdés: AZ ÓZON. Olvasd el az ózonrétegrl szóló cikk alábbi részletét!

AZ ÓZON. 1. kérdés: AZ ÓZON. Olvasd el az ózonrétegrl szóló cikk alábbi részletét! AZ ÓZON Olvasd el az ózonrétegrl szóló cikk alábbi részletét! 5 10 15 20 Az atmoszféra, a leveg hatalmas óceánja a földi életet tápláló természetes források közül az egyik legértékesebb. Sajnálatos, hogy

Részletesebben

Meglesz-e a Higgs-bozon az LHC-nál?

Meglesz-e a Higgs-bozon az LHC-nál? Meglesz-e a Higgs-bozon az LHC-nál? Horváth Dezső, MTA KFKI RMKI és ATOMKI A Peter Higgs (és vele egyidejűleg, de tőle függetlenül mások által is) javasolt spontán szimmetriasértési (vagy Higgs-) mechanizmus

Részletesebben

Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat

Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat Fı részek 1. Magfizikai alapok. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés

Részletesebben

FODRÁSZ ANYAGISMERET

FODRÁSZ ANYAGISMERET FODRÁSZ ANYAGISMERET A jegyzet tartalmazza a modulzáró vizsgákhoz és a szakképesítő vizsgához szükséges elméleti tananyagot, valamint a gyakorláshoz szükséges feladatokat is. Összeállította: Szeverényi

Részletesebben

A sugárzás és anyag kölcsönhatása. Atommag és részecskefizika 8. előadás 2011. április 12.

A sugárzás és anyag kölcsönhatása. Atommag és részecskefizika 8. előadás 2011. április 12. A sugárzás és anyag kölcsönhatása Atommag és részecskefizika 8. előadás 011. április 1. E Ismétlés: visszalökődés gamma-bomlásban i p E f + Eγ + M -p M γ pe γ /c E E i E f E p Eγ Eγ M Mc γ + + A második

Részletesebben

Versenyfeladatsor. 2. feladat

Versenyfeladatsor. 2. feladat Versenyfeladatsor 1. feladat Egy nyíltláncú alként brómmal reagáltatunk. A reakció során keletkező termék moláris tömege 2,90-szerese a kiindulási vegyület moláris tömegének. Mi a neve ennek az alkénnek,

Részletesebben

3. Előadás: Az ember tevékenységeinek energia igénye.

3. Előadás: Az ember tevékenységeinek energia igénye. 3. Előadás: Az ember tevékenységeinek energia igénye. 3.1. Az emberi tevékenységek és azok energiában mérve. 3.2. Az elérhető energiaforrások megoszlása, felhasználásuk szerkezete 3.1. Az emberi tevékenységek

Részletesebben

1. TERÜLET/TÉMA: AZ ANYAG TULAJDONSÁGAI ÉS VÁLTOZÁSAI

1. TERÜLET/TÉMA: AZ ANYAG TULAJDONSÁGAI ÉS VÁLTOZÁSAI KÉMIA I T1.1. 1. TERÜLET/TÉMA: AZ ANYAG TULAJDONSÁGAI ÉS VÁLTOZÁSAI Az anyagok fizikai és kémiai tulajdonságai A bennünket körülvevő természetben az élő és élettelen testek, beleértve magunkat is, anyagokból

Részletesebben

minipet labor Klinikai PET-CT

minipet labor Klinikai PET-CT minipet labor Klinikai PET-CT Pozitron Emissziós Tomográfia A Pozitron Emissziós Tomográf (PET) orvosi képalkotó eszköz, mely háromdimenziós funkcionális képet ad. Az eljárás lényege, hogy a szervezetbe

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika emelt szint 0804 ÉRETTSÉGI VIZSGA 010. május 18. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Horváth Dezső: Bevezetés a részecskefizikába I CERN, 2009. augusztus 18. 1. fólia p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2009. aug. 17-21.) Horváth Dezső horvath@rmki.kfki.hu

Részletesebben

A nukleáris energiatermelés helyzete és szerepe a jelenkori társadalomban

A nukleáris energiatermelés helyzete és szerepe a jelenkori társadalomban EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR A nukleáris energiatermelés helyzete és szerepe a jelenkori társadalomban SZAKDOLGOZAT TÉMAVEZETŐ Dr. Homonnay Zoltán egyetemi tanár ELTE TTK Kémia

Részletesebben

Irányított energiájú fegyverek III. Részecskesugár fegyverek (írta: Jenő)

Irányított energiájú fegyverek III. Részecskesugár fegyverek (írta: Jenő) Irányított energiájú fegyverek III. Részecskesugár fegyverek (írta: Jenő) Témával foglalkozó korábbi két cikkemben bemutattam az irányított energiájú fegyvereket általánosságban, illetve egyik fő típusukat

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2013. október 25. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 25. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Az SI mértékegységrendszer

Az SI mértékegységrendszer PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN Az SI mértékegységrendszer http://hu.wikipedia.org/wiki/si_mértékegységrendszer 1 2015.09.14.. Az SI mértékegységrendszer Mértékegységekkel szembeni

Részletesebben

Mag- és részecskefizika 2003 20

Mag- és részecskefizika 2003 20 Mag- és részecskefizika 003 0 11. A β-bomlás FORMÁI (β, β -, elektronbefogás, az univerzális gyenge kölcsönhatás, a bomlás mechanizmusa, a folytonos elektromos spektrum értelmezése, a neutrínó kimutatása,

Részletesebben

Óriásrezonanciák vizsgálata és neutronbőr-vastagság mérések a FAIR gyorsítónál

Óriásrezonanciák vizsgálata és neutronbőr-vastagság mérések a FAIR gyorsítónál Óriásrezonanciák vizsgálata és neutronbőr-vastagság mérések a FAIR gyorsítónál (Repülési-idő neutron spektrométer fejlesztése az Atomki-ban az EXL és az R3B együttműködésekhez) A töltéscserélő reakciókat

Részletesebben

ELTE TTK Hallgatói Alapítvány FELVÉTELIZŐK NAPJA 2006. április 22.

ELTE TTK Hallgatói Alapítvány FELVÉTELIZŐK NAPJA 2006. április 22. ELTE TTK Hallgatói lapítvány FELVÉTELIZŐK NPJ 2006. április 22. Székhely: 1117 udapest, Pázmány Péter sétány 1/; Telefon: 381-2101; Fax: 381-2102; E-mail: alapitvany@alapitvany.elte.hu FIZIK FELTSOR NÉV:.

Részletesebben

A nagy aktivitású leszerelési és üzemviteli hulladékok végleges elhelyezése

A nagy aktivitású leszerelési és üzemviteli hulladékok végleges elhelyezése A nagy aktivitású leszerelési és üzemviteli hulladékok végleges elhelyezése Hózer Zoltán 1, Hordósy Gábor 1, Slonszki Emese 1, Vimi András 1, Tóta Ádám 2 1 Magyar Tudományos Akadémia KFKI Atomenergia Kutatóintézet,

Részletesebben